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Abstract—The potential and the field of a prolate or an oblate magnetic spheroid in a static homogeneous field are computed
and expressed in Cartesian coordinates. The directions of both the primary magnetic field and of the symmetry axis are
completely arbitrary. These expressions are used to investigate trabecular structures built from spheroids having different
symmetry axes and positions for Magnetic Resonance (MR-) Osteodensitometry.

Index Terms—Prolate or oblate spheroid in homogeneous field, building flexible models for magnetic resonance imaging or
spectroscopy.

I. INTRODUCTION

In gerneral, the potential of a magnetic spheroid in a given
external magnetic field is derived in spheroidal coordinates,
whose symmetry axis is the z-axis. Models of biological tissues,
as e.g. trabecular bones, are arrays of such spheroids with sym-
metry axes having various directions. Having such applications
in mind, we derived potential and field expressions for prolate
and oblate spheroids in a homogeneous field. These expressions
depend on Cartesian coordinates for arbitrary directions of both
the field and the symmetry axes.

II. METHOD OF SOLUTION

A spheroid (permeability µi = µ0(1 + χi); semi-axes
a, a, c) is in a medium (permeability µe = µ0(1 + χe))
and a static homogeneous field H0 = (H0x, H0y, H0z) =
H0(sin β cos α, sin β sin α, cos β) of arbitrary direction. At
first the problem of a prolate spheroid is solved in prolate
spheroidal coordinates ([1], Fig.1.06)

x + iy = ep sinh η sin θ eiψ

z = ep cosh η cos θ
(1)

or in the corresponding oblate spheroidal coordinates ([1],
Fig.1.07)

x + iy = eo cosh η sin θ eiψ

z = eo sinh η cos θ.
(2)

for an oblate spheroid as shown e.g. in [2] to [4]. The particular
solutions of the potential equation are obtained by separation
giving Legendre functions and polynomials of cosh η, i sinh η
respectively multiplied by Legendre polynomials of cos θ and
by trigonometric functions of ψ. A solution of this problem
is found by the usual method, namely by expanding the
potential in the interior and in the exterior of the spheroid
w.r.t. the particular solutions fulfilling the appropriate boundary
conditions: i) the total potential must be finite at η = 0; ii)
the total potential must agree with that of the primary field
(5) at η = ∞. The expansion coefficients are determined
by the continuity conditions that the total potential must be
continuous Φ0 +Φσ

e = Φ0 +Φσ
i and the corresponding normal

component of the magnetic induction must be continuous at the
interface of the two media ((7) with n = ez). The solutions
contain only Legendre funtions and polynomials of order 1

since the inhomogeneity (5) is of that order. Thereafter the
Legendre functions and polynomials may be replaced with
elementary functions of η and θ. These may be in turn ex-
pressed by functions of Cartesian coordinates by use of (1),
(2) respectively and by cosh η = up(r, ez)/

√
2, sinh η =

uo(r, ez)/
√

2, eq.(24) respectively. The expansion coefficients
Lσ

0 , Lσ
1 , Mσ

0 , Mσ
1 obtained from matching the two pieces of

the potential at the interface are first expressed in Legendre
functions and polynomials of argument ηp, ηo respectively:

ηp = Arcoth(cp/ap) (3)
ηo = Artanh(co/ao). (4)

The coefficients are also reexpressed in elementary functions
of these geometrical parameters and by the magnetic suscepti-
bilities χe, χi to give eqs.(8) to (11), (13) to (16) respectively.
In the last step the potential in both domains is transformed to
an arbitrary direction n of the spheroidal symmetry axis. All
vectors in the potential are decomposed into vectors parallel to
or perpendicular to the z-axis. Finally all vectors ez occuring
in these expressions are replaced by n.

This description is rather concise; full details may be found
in the papers [3] and [4] and in the notebooks at the website
quoted. But the next paragraph gives a complete listing of all
formulas needed for the applications.

III. RESULTS

The primary field is homogeneous with the potential

Φ0(x, y, z) = − (H0x x + H0y y + H0z z). (5)

A. The potentials of the reaction fields
The presence of a spheroid induces a reaction field with

potential (r = (xβ)) :

Φσ
k(x, y, z) =

3X

α,β=1

H0αtσ,k
αβ xβ = H0 · Tσ,k · r (6)

with σ = p (= prolate) or = o (= oblate) and k = e (= external)
or i (= internal) to the ellipsoid

Eσ :=
r2 − (n · r)2

a2
σ

+
(n · r)2

c2
σ

= 1. (7)
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For a prolate spheroid, ap < cp, the excentricity is ep =p
c2

p − a2
p; for an oblate one, co < ao, and the excentricity

is eo =
√

a2
o − c2

o.
The coefficients Lσ

0 , Lσ
1 , Mσ

0 , Mσ
1 depend only on the geo-

metric shape of the spheroids, i.e. on the semi-axes aσ, cσ , and
on the magnetic susceptibilites χ1, χ2. The former dependence
is through the functions ηp, ηo (eqs.(3), (4)) respectively of the
quasi-radial prolate or oblate elliptical coordinates correspond-
ing to the interface Eσ = 1. But all expressions depending on
ηp, ηo may be replaced by functions of the aσ, cσ, eσ:

Lp
0 = [(χ1 − χ2)cp/ep]/Dp

0 (8)
Dp

0 = 1 + χ2 − (1 + χ1)c
2
p/a2

p + (χ1 − χ2) dpcp/ap

Lp
1 = [χ1 − χ2]/Dp

1 (9)
Dp

1 = (2 + χ1 + χ2) − (χ1 − χ2) a2
p/e2

p (1 − dpcp/ep)

Mp
0 = − (1 + χ1)/Dp

2 (10)
Dp

2 = 1 + χ1 + (χ1 − χ2) a2
p/e2

p (1 − dpcp/ep)

Mp
1 = [− 2 (1 + χ1)]/Dp

1 (11)
dp = Arcoth(cp/ep) (12)

Lo
0 = [(χ1 − χ2)co/eo]/Do

0 (13)
Do

0 = (1 + χ2) − (1 + χ1) c2
o/a2

o + (χ1 − χ2) doco/eo

Lo
1 = − [(χ1 − χ2) a2

oco/e3
o]/Do

1 (14)
Do

1 = (2 + χ1 + χ2) + (χ1 − χ2) a2
o/e2

o (1 − doco/eo)

Mo
0 = [(1 + χ1) e2

o/a2
o]/Do

0 (15)
Mo

1 = [2(1 + χ1)]/Do
1 (16)

do = arccot(co/eo). (17)

In the exterior, Eσ ≥, 1 the tensor Te,σ = (T e,σ
αβ ) is:

T e,σ
αβ = δαβ Lσ

1 (fσ
1 − fσ

2 )

+ nαnβ [Lσ
0 (fσ

1 − fσ
3 ) − Lσ

1 (fσ
1 − fσ

2 )].(18)

In the interior, Eσ ≤ 1, the field is homogeneous:

T i,σ
αβ = δαβ (1 ± Mσ

1 ) ± nαnβ (Mσ
0 − Mσ

1 ). (19)

Above and below the upper (lower) signs apply for σ = p (o).

fp
1 = Arcoth

`
up(n, r)/

√
2

´
(20)

fo
1 = arccot

`
uo(n, r)/

√
2

´
(21)

fσ
2 =

√
2 uσ(n, r)/[

`
uσ(n, r)

´2 ∓ 2] (22)

fσ
3 =

√
2/uσ(n, r) (23)

up,o(n, r) =
q

±1 + r2/e2
p,o + wp,o(n, r) (24)

wp,o(n, r) =
q`

± 1 + r2/e2
p,o

´2 ∓ 4(n · r)2/e2
p,o(25)

B. The magnetic reaction fields
For the evaluation of the impact of the inhomogeneous field

distribution on the MR resonance signals the magnetic reaction
fields are needed. The tensors Kσ,k = (Kσ,k

αβ ) transform the
primary field H0 = (H0β) into the reaction fields Hσ

k =
(Hσ,k

α ) :

Hσ,k
α (x, y, z) =

3X

β=1

Kσ,k
αβ H0β , σ = p, o; k = e, i. (26)

The tensors are found by computing the gradients of the
reaction potentials. This requires also the gradients of the
functions fσ

n . Which are evaluated by symbolic computation
[4] using Mathematica. Since the resulting expressions consist

again of polynomials and the square roots already occuring in
the exterior potentials it is possible to find simpler expressions.
These are again checked against the original gradients by
symbolic computation [4]. All gradients are proportional to the
vectors rp(= xp

α), ro(= xo
α) respectively:

rp,o :=

√
2

e2
p,o

„
r ∓ 2n

(n · r)
[up,o(r,n)]2

«
. (27)

The expressions for the reaction tensors of prolate or oblate
spheroids with symmetry axis n in an external homogeneous
magnetic field H0 are then in the exterior:

Eσ ≥ 1 :

Kσ,e
αβ (x, y, z) = (28)

− δαβ Lσ
1 (fσ

1 − fσ
2 ) −

− nαnβ [Lσ
0 (fσ

1 − fσ
3 ) − Lσ

1 (fσ
1 − fσ

2 )]

∓ xσ
α xβ Lσ

1
uσ(r,n)
wσ(r,n)

4
[(uσ(r,n))2 ∓ 2]2

− xσ
α nβ (r · n) Lσ

0
2

[2 ∓ (uσ(r,n))2]uσ(r,n) wσ(r,n)

± xσ
α nβ (r · n) Lσ

1
4 uσ(r,n)

wσ(r,n) [(uσ(r,n))2 ∓ 2]2
.

The upper, lower signs respectively apply to prolate (σ = p),
oblate (σ = o) spheroids respectively. The fields in the interior
are homogeneous, but are not parallel to the primary field, in
general:

Eσ ≤ 1 :

Kσ,i
α,β(x, y, z) = (29)

− δαβ (Mσ
1 ± 1) − nαnβ (Mσ

0 − Mσ
1 ).

The theory above has been derived under the assumption that
the spheroid is centred at the origin. If the centre is at the point
r0 then r must be replaced by r − r0 in all formulas.

IV. APPLICATION: MODELLING TRABECULAR BONE

Applications presuppose that the magnetic susceptibilities
of the medium and of the spheroids are small. So the total
magnetic induction at the location of a proton spin is approx-
imated by that of the primary field and those of the reaction
fields of all spheroids. One application from the area of MR-
Osteodensitometry is given: modelling of micro cracks in bone
structures as examples of trabecular rarefaction.

A. Introduction: MR-Osteodensitometry
Generally, in magnetic resonance experiments disturbances

of the homogeneous main magnetic field have an essential
impact on the formation of the resonance signal. Especially
in MR-Osteodensitometry information about the status of can-
cellous bone can be gained based on susceptibility effects
between the mineralized bone and bone marrow [5]. In the
presence of trabeculae the relaxation properties of bone marrow
are changed due to the inhomogeneity of the magnetic field,
induced by the discontinuities of the magnetic susceptibility
across the surface of the bone [6]. In several studies direct
relations between the effective transversal relaxation time with
bone mineral density (BMD) [7], [8], [9] and with mechanical
competence of trabecular bone [10], [11], [12] were reported.

The resonance signal decay in a gradientecho MR experiment
obeys, in case of these inhomogeneities being of Lorentzian
characteristics, the following empirical expression:

S(TE) ∝ e−R∗
2TE with R∗

2 = 1/T2 + R′
2 , (30)

with T2 giving the intrinsic transversal relaxation time and
TE the echo time. The quantity R′

2 = 1/T ′
2 accounts for
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the additional contribution, originating from the local field
inhomogeneities, to the effective transversal relaxation rate R∗

2 .
Further, R′

2 ≈ γ∆B with ∆B representing the field variation
and γ the gyromagnetic ratio.

B. Theory: Computersimulation
The aim of the current simulation is to investigate effects on

the induced line broadening of the resonance spectra evoked
through micro cracks as examples of trabecular rarefaction.
Thus, the evaluation of the magnetic field distribution was
performed utilizing a two-compartment model, consisting of
marrow and bone. In oder to mimic the known trabecular micro
structure within a vertebra [13] prolate ellipsoids were arranged
appropriately within a three-dimensional unit cell.

The precession frequency of spins in a homogeneous mag-
netic field is determined through the magnetic induction B.
Hence, in a first step the reaction fields induced by the suscep-
tibility difference between the ellipsoids (trabeculae) and the
background (bone marrow) were computed [14].

Introducing a sample with a different susceptibility, in the
current experiment trabecular bone (χ2) is surrounded by bone
marrow (χ1), the resulting magnetic induction Bz can be
generally written as:

Bz = µ (H0z + Mz (r)) = µ0(1+χ) (H0z + Mz (r)) , (31)

with Mz characterising the induced reaction field. Herin the
units are given in the MKS-system, and susceptibility units are
per unit volume.

Since the transversal magnetization decay of mineralized
bone is several magnitudes faster comparing to bone marrow,
the received resonance signal in MR-Osteodensitometry is gov-
erned by the magnetization arising within the marrow. Thus Mz

corresponds to the computed reaction fields ∆Hr1,z caused by
the difference in magnetic property between bone and marrow.

The resulting magnetic field distribution within the unit cell
was determined as the sum of the individual contributions Hzi

originating from all ellipsoids n:

∆Hr1,z (r) =
nX

i=1

Hzi (r) . (32)

Interactions between the trabeculae have been neglected. This
assumption is valid, since interactions between such structures
include susceptibility effects of the second order, which will
give rise to field contributions of the order of H0 (∆χ)2, or
≈ H0 · 10−12.

In a simple MR experiment, excitation followed by an
acquisition period, the signal of the free induction decay (FID)
can be written as:

S(t) = const
Z

V OI

d3r e−iω(r)t e−T2/t; (33)

with ω(r) = γBz(r) it follows:

S(t) = const
Z

V OI

d3r e−iγBz(r)t e−T2/t. (34)

Using again expression (31) the following expression in
∆Hr1,z can be found:

S(t) = const
Z

V OI

d3r e−iγtµ0(1+χ)(H0z+∆Hr1,z(r)) e−T2/t.

(35)
This integral must be extended over the entire unit cell enclos-
ing the ellipsoids.

In order to compare the simulation results with MR images
the magnitude of S(t) must be found. Except for the dissipative
relaxation phenomenon e−T2/t the expressions in (35) are

purely oscillatory in H0z . Hence, for the analysis of the signal
course the essential decay can be expressed as:

|S(t)| = const
Z

V OI

d3r e−iγtµ0(1+χ)∆Hr1,z(r). (36)

∆Hr1,z(r) can be computed according to (32) as the sum
over all the reactions fields of the individual ellipsoids, where
µ0(1+χ) describes the magnetic permeability at the location r.

1) Algorithm: Utilizing the expression developed for the
reaction field (28) the simulation was implemented in Mathe-
matica (Wolfram Research, Inc.). The program computed the
field distribution of ∆Hr1,z(r) in the sense of a histogram and
generated the MR signal curve according to (36).

As input parameters the spacing of the trabeculae in x-,
y- and z-direction, the dimensions of the ellipsoids and the
position of the symmetry axis with respect to the z-axis
of the coordinate system had to be defined. Further, the
susceptibilities of the bones and the background as well as the
orientation of the applied homogenous main magnetic field had
to be set. The results of the simulations were the histograms
of the magnetic field distribution and the signal curve, which
was further utilized within a fitting-procedure yielding the
relaxation constant R′

2.

2) Data fitting: Utilizing the simulated signal curves a
exponential signal model was applied in order to approximate
the relaxation time T ′

2 [15]. The computed signal intensities (36)
at the echo times ranging from 0 to 50 ms, 5 ms increment, were
used to generate a single T ′

2 value by means of a non linear
least-squares-approximation to a two parameter fit function:

S(t) = A e−t/T ′
2 . (37)

C. Model of vertebra
The three-dimensional unit cell was composed out of thirty

prolate ellipsoids, fifteen aligned along the x- and z-direction
each, mimicing the initial intact trabeculae. The interruptions
were simulated in the way, that each trabecula was replaced by
two ellipsoids, which were displaced along the x/z-axis by 50
µm forming a crack. The configuration of the three-dimensional
vertebra model and the applied parameter setting are given in
Fig.1.

Fig. 1. Depiction of the 3.75 × 3.75 × 3.75 mm3 unit cell; the
x/z aligned sets are built up of three planes displaced by 750 µm.
The trabeculae in each plane were modelled with a trabecular spacing
and width of 500 µm and 120 µm respectively. The trabecular micro
fractures were simulated by replacing each of the intact trabeculae with
two opposed shifted versions.
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D. Results
The resulting reaction fields Hr1 pre- and post bone rarefac-

tion are depicted in Fig.2. Note, that the field distribution is
directly affected by the shape of the micro cracks, whereby the
resulting field inhomogeneities in the vicinity of the spiky edges
lead to the observed major field broadening. Prior rarefaction,
the inital field distribution ranged approximately around ±1
A/m, afterwards field values from almost ±2 A/m were found
within the three-dimensional vertebra model. The effect of the
interrupted bone mesh on the MR signal decay and the resulting
estimated relaxation time T ′

2 is presented in Fig.3. The modelled
cracks gave rise to a change of the initial T ′

2 of 26.1 ms to
approximately 14.4 ms.

Fig. 2. Resulting field distribution of the reaction field Hr1,z within
the applied three-dimensional vertebra model. The trabecular cracks
causing a broadening of the distribution, resulting in a more Lorentzian
like line shape. A main magnetic field H0 = 2.38732 · 106 A/m with
α = 30◦ and β parallel z-axes, and values of χ1 = −0.62 ·4 ·π ·10−6

and χ2 = −0.9 · 4 · π · 10−6 were applied.

V. CONCLUSION

The advantage of this new approach is that it is very easy
to build and investigate structures built from spheroids with
different axes and positions. There is no need of complicated
coordinate transformations.

The analytical solutions of the Laplacian potential problem
of spheroids in Cartesian coordinates were successfully applied.

Fig. 3. Resulting resonance signal decays affected by the reaction field
Hr1,z of the vertebra model in the two situations. As a consequence
of the increasing inhomogeneous reaction field a rapid signal decay in
case of micro cracks is visible (green curve). The signals are normalized
to the values at the first echo time TE , markers are indicating the
computed signal values at TE .

A three-dimensional magnetostatic problem in the area of MR-
Osteodensitometry, susceptibility effects in the vicinity of micro
cracks, was analysed. Within vertebrae affected by pathologies
such as osteoporosis horizontally arranged structures get typi-
cally interrupted at first. The novel expressions make it possible
to study the bone rarefaction along such pathologies, whereby
either cracks of the horizontal, the vertical or arbitrary structures
are accessible for modelling.

In the present work just one application of the analytical
expressions, the modelling of bone disorders in the area of
MR-Osteodensitometry, was given. For example in the field
of functional MRI the devoloped toolbox eases the analysis of
the BOLD (blood oxygenation level-dependent) contrast, where
induced reaction fields in the surrounding of vascular networks
are of great interest [16]. A fast and precise computation of the
magnetic distortion is essential for improving the precision of
the temperature determination in techniques using the proton
resonance frequency (PRF) shift method [17], [18]. Tempera-
ture mapping in the vicinity of the needle electrode is a crucial
determinant of MRI guided interventional radiofrequency abla-
tions [19]. Further, in the field of metabolism studies using
NMR spectroscopy (MRS) the expressions can be used in
order to model specific cells introduced in solutes differing in
magnetic susceptibility. [20].

In summary, the authors believe that the novel formulation
of solutions depending solely on the Cartesian coordinates will
facilitate the modelling of countless magnetostatic problems.
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Correction of 4 misprints (underlined):

In a simple MR experiment, excitation followed by an
acquisition period, the signal of the free induction decay
(FID) can be written as:

S(t) = const
∫

V OI

d3r e−iω(r)t e−t/T2 ; (33)

with ω(r) = γBz(r) it follows:

S(t) = const
∫

V OI

d3r e−iγBz(r)t e−t/T2 . (34)

Using again expression (31) the following expression in
∆Hr1,z can be found:

S(t) = const
∫

V OI

d3r e−iγtµ0(1+χ)(H0z+∆Hr1,z(r)) e−t/T2 .

(35)
This integral must be extended over the entire unit cell
enclosing the ellipsoids.

In order to compare the simulation results with MR
images the magnitude of S(t) must be found. Except
for the dissipative relaxation phenomenon e−t/T2 the
expressions in (35) are purely oscillatory in H0z . Hence,
for the analysis of the signal course the essential decay
can be expressed as:


