4. Defining Functions. Substitutions. Delayed
Assignments. Transforming Expressions.

2016-04-15
$Version

10.0 for Mac OS X x86 (64-bit) (December 4, 2014)

4.1 User Defined Functions

4.1.1 Definition of a function
Variables with an underscore ("_") at the left hand sinde are dummy variables. Other variables are
global.

Clear[f, x, y, c]l;
flx_ ,y] =x"2+y"2-c

—c+x?+y?
In the example above x and y are dummy variables, c is global. It is important that no assigne-

ments have been made for the dummy variables used in the definition of the function. This is
explained in more detail below.

f[a, b]

a?+b%-c

f[2,5]
29 -c¢

c = 13.3
13.3

£[2,5]
15.7

f[a,b]

-13.3 +a? + b?

Clear|[c]
f[a,b]

a?+b%-c

flx] = x"3 + x -1

“l+x+x3

sf = NSolve[f[x] == O0,x]

{({x->-0.341164-1.161541}, {x>-0.341164+1.161541}, {x—> 0.682328}}

Now the consequences are shown, which result from a variable with a previous assignement (here x)
used in the definition of a function.

x = 37

37

math4a.nb

flx] = x"3 + x -1
50689

£[d]
50689

Properties of Functions: Selfcalls

A function may call itself in Mathematica. This is a feature forbidden in some other programming

linguages. This may be used to calculate an expression or a function defined by a recurrence which calls this

same function. For example, the Legendre polynomials Py (x) fullfilling the recurrence
(N+1)Preq(X)-(2n+1)xPyu(x) + nPu_4(x) =0

may be generated in the following way:

Clear[p, x]

p[O,x_] = 1; p[l,x_] = x;

p[(n_?NonNegative) ?IntegerQ,x]:=
p[n,x]=((2n-1)/n x) p[n-1,x] - p[n-2,x] (n-1)/n;

p[5,z]//Apart
15z 352z° 632z2°

- +

8 4 8

LegendreP[5, z] // Apart

15z 3523 632°

- +

8 4 8
p[.5,2]
p[0.5, z]

LegendreP[.5, z]

LegendreP[0.5, z]
LegendreP[-6, z]

1

— (152-702°+63 2°)

8

Though the recurrence is valid for any (real or complex) value n, the above program gives correct
results for a postive integer n, only. This is safeguarded by the checks attached to the argument n
at the left hand side.

Properties of Functions: Dynamic Programming

Recurrences can be defined in two ways. The second one of those given below is much faster and is
called dynamic programming. The recurrence below gives the Fibonacci numbers; in the sequence
each number is the sum of the two preceeding numbers. The first two numbers are 1.
Clear[fib]; f£fib[0] = fib[1] = 1;

fib[n_] := fib[n-1] + fib[n - 2];

nt = Table[{k, £ib[k]} // Timing, {k, 2, 25}];

nt[[Range[l, 14]]]

{{0.000013, {2, 2}}, {7.x10°%, {3, 3}}, {0.000014, {4, 5}}, {0.000022, {5, 8}},
{0.000035, {6, 13}}, {0.000057, {7, 21}}, {0.000092, {8, 34}}, {0.000148, {9, 55}},
{0.000236, {10, 89}}, {0.000383, {11, 144}}, {0.000618, {12, 233}},

{0.001006, {13, 377}}, {0.001626, {14, 610}}, {0.002620, {15, 987}} |

The first number in each sublist is the computing time needed to compute the Fibonacci
number given as the very last number in each sublist.

math4a.nb

tp = Table[{nt[k, 2, 1], nt[k, 1]}, {k, Length[nt]}];
ListPlot[tp, PlotRange -» All, AxesLabel » {"n", "time [s]"},
PlotLabel -» "time for computing the n-th \nFibonacci number\n\n"]

time for computing the n-th
Fibonacci number

time [s]

[]
0.30 +
0.25 1
0.20 [
0.15
[
0.10
[]
0.05 1 []
[]
] °° -
1 15 20 25

Clear[fib]; £fib[0] = fib[1] = 1;
fib[n_] := fib[n] = fib[n-1] + fib[n - 2] ;
dt = Table[{k, fib[k]}, {k, 2, 200}] // Timing ; dt[[1]]

0.001715

The preceeding block of expressions presents the same recurrence in dynamic programming.In
dynamic programming it takes almost the same time to compute the first 200 numbers as is needed to
compute the 14-th Fibonacci number in the first approach ! The latter times increase steeply with n;
e.g. forn =41, it amounts to 13324 s = 3.7 h | Mathematica has also a programme for computing
Fibonacci numbers:

dm = Table[{k, Fibonacci[k]}, {k, 2, 200}] // Timing; dm[[1]]
0.000300

4.1.4 Functions with two list of arguments

Clear[a, b, c, x]
exXpr =a*xX+b*x"2
D[expr, x]

ax+bx?

a+2bx

%/. {a>1,b>2, x->c}
l+4c

Here is another method to get the same result; it uses a function definition for the original expression.
By using separate square brackets for the parameters, (a,b), and the variable,x, one can use the
standard Mathematica

derivative notation.

Clear[f, a, b, x]

fla_,b_]J[x_] :=a*xx+b*xx"2

£f[1, 2] '[c]

l+4c

4.1.5 Substitutions in Function Definitions

In tha fiinrtinn halaw anv additinn ie ranlarad hv a miiltinlicatinn Ta nindaretand thie Aana chniild knnw

math4a.nb

a litte
how Mathematica expressions are stored (Chap.20).

Clear|[g]
g[x_] := x /. Plus -> Times

gla + b + c]

abc

4.1.6 Conditions in Function Definitions

4.2

Conditions may be introduced into function definitions by use of /; another method may use branch-

ing
commands (If[], Which[],...), s. sect. 7.4.

plx_] :=x2/; x> 0; plx_] := -x2/;x<0

{p[1], p[.5], p[O], P[-.5], P[-1]}

{1, 0.25, 0, -0.25, -1}

There is still another way: Introducing conditions into the argument of the function:

Clear[f, n]

f[(n_?Positive)?IntegerQ] = n!
f[n_] := Print["f expects a positive integer argument"]

n!

£[3]

f[-4]
f expects a positive integer argument
£f[2.2]

f expects a positive integer argument

Built-In Functions.

Mathematica contains numerous programs for the evaluation of elementary or special functions.
These contain several rules for analytic computations. These yield numeric values for numeric argu-
ments; these may be taken from wide domains. A table of the names for the most important functions
is given in the file MathFunctionsinMMA.pdf on the website.

4.3 Pure Functions

The definition of a functions in the first paragraph involved dummy variable denoted by underscores in
the list of arguments. These variables are not called by their names; the names only serve as symbols
to denote a position or variable. Another way to achieve such an aim is the pure function. Here we
give a short introduction; the subject will be treated in more detail insect. 21.3; in particular the use of
pure functions with the operators Map[] and Apply[].

body & a pure function in which arguments are specified as # or #1,#2,#3,... etc.

The ampersand & is obligatory in this way of defining a pure function. Examples are:

X //H"2 &

x2

math4a.nb

a//#"2 &

a.2

Pi // N[#, 22] &
3.141592653589793238463

The pure functions are applied in postfix form (sect.20.2) to expressions preceeding them. Another
important application of pure functions is in searching for or selecting elements in lists, see sect. 5.8

4.4 Substitutions (Rule)

Substitutions must be prescribed according to the following rules:

exp /. var -> value

exp /. list

list = {varl -> vall, var2 -> val2, ... }

A variable at the left of an arrow occuring in exp is assigned the value given at the right of the arrow;
SO a new expression is obtained. The old expression remains unchanged.

hl =h /. z -> 44
44

hl
44

Clear([x,y,f]
flx_,y_.] =x"2 +y* 2 - c

—c+x?+y?

h = £[x,y]

—c+x?+y?

hi =h /. ¢ -> 13.3
-13.3 +x%? +y?

h

—c+x?+y?

hl

-13.3 +x%? +y?

h2 = hl /. {x -> a, ¥y -> b}

-13.3 +a? + b?

math4a.nb

M
non
'S

41 - ¢
hl

27.7

h2

-13.3 +a? + b?

fp,qal

—c+p?+q?

flx,y]
41 - ¢

44,1 Iterated Substitutions
Two slashes in the substitution command incite Mathematica to apply the substitution several times:
Clear[a, b, c,d, e, f,u, v, w, x,vy]
u=(a+b)2; v=(c+d)"2; w= (e + £)°2;
uv = Expand[u + Vv + w]
a?+2ab+b?+c?+2cd+d?+e?+2ef+f?
uv /. x_ "2 + 2 x_y_+Y_."2 -> (x +y)"2
(a+b)?+c?+2cd+d?+e?+2ef+f?
uv //. x_"2 + 2 x_y_+yY_"2 -> (x +y)"2

(a+b)?+ (c+d)?+ (e+f)?

4.4.2 Substitutions Restricted by Conditions

Substitutions may be restricted by the command /; as it was done in the definitinion of functions.
51
120

51" (*» 5x 3 x 1 %)
15

Clear[m, n, k]

Qk+2n-2)"Vr

Cm+ 3) /. T(n_+ k_ /; 0ddQ[2k]) —> 1
2k—2—+n

Gamma [3 + m]

math4a.nb

Qk+2n-2)"Vrx

1
2k— 2—+n

F(m " z—] /. Ta_+ k_ /; OddQI2K]) —>

272"\t (3+2m) !}
% /. m -> 4

10395~/

64

%% /. m -> 4.3
575.696

44.3 Delayed Substitutions (Rule Delayed)

lhs > rhs is a substitution that transforms Ihs to rhs, evaluating rhs only after the
rule is applied.
= is generated by the colon (:) followed by the greater-than sign (>)

x>t

f = x"2
%2

f /. su
£2

t = 5;
f /. su
25
Clear[t]
f /. su
£2

4.5 Immediate and Delayed Definitions (Assignments)

Ihs = rhs Immediate assignment: rhs is evaluated when the assignment is made.
rhs is intended to be the final value of the name Ihs.

Ihs :=rhs Delayed assignment: rhs is evaluated each time the value of Ihs is requested.
rhs gives a "command" or "program" to be executed whenever one asks for
the value of Ihs.

Clear[p, s, x, yl

x = 4

4

s = x"2
16

math4a.nb

x =5

5
Print[s]
16
Print[p]
25

Clear[x]; ex[x_] := Expand[(1 + x) *2]

?ex
Global ex

ex[x_| ::Expand[(1+x)2}

iex[x_] = Expand[(1 + x) 2]

1+2x+x°

?iex
Global iex
iex[x_] =1+2x+x?2

rd = ex[y + 2]

9+6y+y?

ri

iex[y + 2]

1+2 (2+y) + (2+y)2

rd - ri

)2

8+6y+y2—2 (2+y) - (2+y

4.5.1 Further applications of assignments

The transcendental equation
fi(x,a)=x-exp(-ax)=0
has a single real root xo = xg(a), which is a function of the parameter a. The program below calcu-
lates this root for a given value a by a numeric method.
fl[x_, a

g0[a_]
glla_]

:= - Exp[-ax] + x;
= Iffa >0, 1/a, 1/ (1+a)];

= FindRoot[fl[x, a], {x, g0O[a]l}];

_1

math4a.nb

Plot[x /.gl[a], {a, -0.357, 15}]

07}
o6l
05
04l
03f
02f
1 : 1 n 1
2 4 6 8 10 12 14
fl[x_, a_] = - Exp[- ax] + x
gO[a_] = If[fa >0, 1/a, 1/ (1+a)]
glla_] = FindRoot[fl[x, a], {x, gO[a]}]
1. 1.
t Valuelf[a >0, —,] in searchspecificatiofx, g0[a]} is nota numberorarrayof numbers>
a 1.+a
—e %+ x
1 1
If[a >0, —, }
a l+a
FindRoot [fl[x, a], {x, g0[a]}]

Plot[x /. gl[a], {a, -.35, 15}]

0.7

T T

0.6

T

T T T

0.5

T

T

0.4

T

T T

0.3

T

T T T

0.2

T T

L T S B N I T S T T R S B T T T S ST S ST S S

2 4 6 8 10 12 14

The result is same figure as above. So one can work with immediate or delayed assignments. Using
the latter avoids the error messages and other unnecessary output.

4.6 Transforming Alebraic Expressions

Expand[expr] multiply out products and powers, writing the result as a sum of terms
ExpandAll[exprl apply Expand[] everywhere

Factor[expr] reduce to a product of factors

Together[expr] put all terms over a common denominator

Apart[expr] separate into terms with simple denominators

Apart[expr,var] partial fraction decomposition w.r.t. variable var

10

Cancel[expr] cancel common factors between numerators and denominators

Simplify[expr] try a sequence of algebraic transformations and give the smallest form
of expr found

Simplify[expr,assump] ~ does simplification using assumptions assump

FullSimplify[exp] may lead to still simpler expressions than Simplify[], but is sometimes
very time-consuming

math4a.nb

Mathematica contains these commands in the menue "Algebraic Manipulations".

This is called via the menues "File", "Palettes".
£f = x*7 - a*7

—a’ +x’

g = Factor[f]

-(a-x) (a®+a’x+a*x?+a’x’ +a’xt rax®+ x%)

h=x-a

-—a+Xx

k = f/g

—a’ +x’

(a-x) (a®+a’x+a*x?+a’x’+a’x!+ax®+xf)
Simplify[k]
1

Cancel [k]
1

k = £f/h
-a’ +x’

—a+ X
Simplify[k]
—a’ +x’

-—a+X

Cancel [k]
ab+a’x+a*x?+adix*+a’?xt+ax’+xb

e = (x-1)"2 (2 +x) /((1 +x) (x -3)"2)
(-1+x)% (2+X%)

(-3+x)% (1+x)

Expand[e]
2 3x x3
- +
(-3+x)2 (1+x) (-3+x)2(1l+x) (-3+x)%2 (1+x)
ExpandAll[e]
2 3x x3

+

3 9+3x-5x%x%+x

3 3

9+3x-5x%x%+x 9+3x-5x%x%+x

math4a.nb

et = Together[%]

2-3x+x3

(-3+x)%2 (1+x)

ae = Apart([%]

5 19 1
1+ + +

(-3+x)%2 4 (-3+x) 4 (1+x)

Factor [%]
(-1+x)%2 (2+x)
(-3+x)%2 (1+x)

s = Simplify[%]
(-1+x)%2 (2+x)
(-3+x)2 (1L +x)

n = Numerator|[s]

(-1+x)2 (2+x)

d = Denominator([s]
(-3+x)2 (1+x)

d = Factor[d]
(-3+x)2 (1+x)

n/d

(-1+x)%2 (2+X%)

(-3+x)2 (1+x)

e =

True

e == ae

(-1+x)%2 (2+%) 5 19 1
=1+ + +

(-3+x)%2 (1+x) (-3+x)2 4 (-3+x) 4 (1l+x)

e = et

(-1+x)% (2+%) 3 2-3x+x3

(-3+x)%2 (1+x) (-3+x%)2 (1+x)

The expression on the rhs was obtained from that on the lhs. But Mathematica does not take note of
their identity. The equality must be transformed. One may start with Together[] or ExpandAll[]; if
these are not successful one may continue with the more powerful but also more time-consuming
operators Simplify[] or even FullSimplify[].

e = et // ExpandAll

True

e = ae // ExpandAll

2 3x x3 19 1 5
+ =1+ + +
9+3x-5x%%+x%3 -12+4x 4+4xX 9-6x%x+x2

3 3

9+3x-5x?+x> 9+3x-5x%+x
e = ae // Simplify

True

11

12

math4a.nb

Clear([x, y]
f = E"Abs[x - y]

(eAbs [x-y]

The derivative of this function exists. But Mathematica cannot handle it directly:
D[f, x]

ePPs[xY] Abs' [x -]

The above derivative of f is not usable. So one must distinguish the two cases; this is accomplished by
the option for assumptions in Simplify[] :

g = Simplify[f, x > y]
D[g, x]
e*Y

g = Simplify[f, x < y]
D[g, x]

e XY

Collect[expr, x] group together powers of X

This command may be used to order complicated expressions according to the various variables. it
may be necessary to procedd step by step:

f=4x+ 6y + 10 z

4x+6y+10z

g = Collect[f"3, x]
64 x> +216 y> + 1080 y* z + 1800y z° + 1000 2> + x* (288y +480z) +x (432y” + 1440y z + 1200 z°)

h = Collect[£f"3, y]

64 x> +216 y> +480x% z+1200x2°+ 1000 2> + y* (432x+10802) +y (288 x* + 1440 x z + 1800 2°)

PowerExpand|[expr] transform (x y)*p into x*p y”*p , etc.

PowerExpand[] must be used with great care. A sloppy use of it may give wrong results, in particular
for complex values or variables.

f = sqrt[xy]
VXY

g = PowerExpand[f]
VE Y

f-gqg
E Y s AEY
Simplify[%]
E Y s AEY
ExpandAll [%%]
E Y s EY

PowerExpand [%%%]
0

math4a.nb

PowerExpand|[Sqrt[- x y]]
1Vx Yy

Tan[ArcTan[x]]

X

ArcTan[Tan[x]]

ArcTan[Tan[Xx]]

PowerExpand [%]

X

FullSimplify [%%]

ArcTan[Tan[x]]

4.6.1 Treating complex expressions

13

ComplexExpand[expr] perform expansions assuming that all variables are real
ComplexExpand[expr, Opt] as above but with opt steering the output. Options:
TargetFunctions -> {Re, Im} Rectangular coordinates in the complex plane

TargetFunctions -> {Abs, Ar} Polar coordinates in the complex plane

In order to save space, input and output are displayed in the same line below:

Input Output
z=x+ly X+iy
Re[z"3] Re[(x+1y)3]
Im[z"3] Im[(x+]'1y)3}
rg = ComplexExpand[Re[z"3]] X3-3xy2
ig = ComplexExpand[Im[z"3]] 3x2y-y3
rg+ I ig x*-3xy’+i (3x°y-y?)
ComplexExpand[z " 3] x*-3xy?+i (3x2y-y?)

Z =x+1y

X+1y
ComplexExpand[1/z"3]
x3 3xy? . 3x%y y3
- +1 |- +
(x*+y?)7 (%2 ey?) (x*+y?)7 (%2 ey?)

ComplexExpand[Sin[x + Iy]]

Cosh[y] Sin[x] + 1 Cos[x] Sinh[y]

4.6.2 Further Examples of Transformations and Simplifications

Below is a partical fraction decomposition w.r.t. the variable w, where square root expressions are
involved

Clear([n, z1, z2, z3, w]

14

V-n+w
AVw AVw-z1 A/w-22 /w-23
VW A niw Aw-22 Jw-23 W /-n+w Jw-zl Jw-z3
Jw-z1 zl (z1-22) (z1-23) . w-22 (zl-22) 22 (22-23)
V-n+w Jw-zl \Jw-22 \Jw-2z3 W oA—n+w Aw-zl AJw-z2
w z12z2 23 ’ w-23 23 (-2z1+23) (-22+23)

In inserting complicated alebraic expressions into an algebraic equation one may encounter
difficulties to simplify these

Apart| W]

Clear[u]

f=-2u+2u’+2e-2ue
_2u+2ui+2e-2ule
df = D[f,u]

—2+6u®-4duc

2 2 2 2 3
{287*(87«/3+82]7*8 €-+/3+€? +7[€*\/3+82J ,
3 27
2 22 3
25——(£+ 3+£2)——£ €++/3+¢? +—(s+ 3+£2)}
3 9 27
Expand[f0]
4e 4e3 4+3+€7 4 5 4e 4e’ 4+/3+¢? 4 3
{—— + + — € 3+e°, — - - - —¢&“4/3+¢ }
3 27 9 27 3 27 9 27
Simplify[£f0]
4 4
{*(9£7€3+3\/3+£2 +€2\/3+€2J,—*(—9€+€3+3ﬂ3+82 +62\/3+€2)}
27 27
FullSimplify[£0]
4 2 2 4 2 2
{—(3 3+¢ +£(9+£(—£+ 3+¢])J,——(3 3+¢ +a[—9+a(a+ 3+¢]))}
27 27
FullSimplify['\/z V6 +5]
V2 ++/3

Simplify[Sqrt[x~2]]

[%2
Simplify[Sqrt[x~2], x > 0]

X

Simplify[x~2 > 3, x > 2]

True

math4a.nb

math4a.nb

Simplify[m® € Integers, {m, n} € Integers &&m > 0&&n > 0]

True

Simplify[a/b > 0, a > 0 && b > 0]

True

Simplify[Sqrt[b~2], a*b > 0 && a > 0]
b

Integrate[Sin[a x] Cosh[b x] /Sinh[x] , {x,0, Infinity}]
7t Sinh[a 7]

2 (Cos[br] +Coshl[ar])

ConditionalExpression[, Abs[Im[a]] + Abs[Re[b]] < l}

J‘m Sin[a x] Cosh[b x]
—© Sinh[x]
st Sinh[a 7]

ConditionalExpression | , Abs[Im[a]] +Abs[Re[b]] < 1]

Cos[b] + Cosh[a]
Gamma [x] Gamma[l - x]

Gamma [1 - x] Gamma [X]

FunctionExpand[%]

T Csc [T x]
FunctionExpand[Besseld[n, I x]]
(J'L x) " x " BesselI[n, X]
FunctionExpand[BesselY[n, I x]]

2 (1'1 x)'n x" BesselK[n, x] .

+BesselI[n, x] (— (J'l x)’nx + (Ji x)"x’n Cos[nﬂ]) Csc[n 7]

JT
Hypergeometric2F1[1/2,1/2, 3 /2, Sin[z] " 2]

ArcSin[Sin[z]] Csc[z]

PowerExpand [%]

zCscz]

Hypergeometric2F1[1/2,1,3/2, z"2]
ArcTanh([z]

z

PowerExpand [%]
ArcTanh[z]

z
Clear([n, z, t]

HypergeometricZFl[—n/Z, -(n-1)/2,1/2, z"2/tA2]

) 1-n n 1 2z?
HypergeometrchFl[it A —]
2 2 2 t?
PowerExpand [%]
i -n n 1 z?
Hypergeometric2F1 [D e *]
2 2 2 t?

16

Hypergeometric2Fl[1-n, 1, 2, -z /t]
t+
e (-1 (55)")

nz

PowerExpand [%]

t(-1+t™ (t+2)")

nz

ExpandAll [%]
t tl? (t+z)n

- —+
nz nz

4.6.3 Treating complex expressions with the operators Simplify[], FunctionExpand[] may lead to
wrong results:

expr = wx/ (x+1-2(-1)"(1/3) + ISqrt[3])

TX
1-2 (-3 4143 +x

expr /. x -> 0
0

Simplify[expr]

T

Clear|[z]
sl = Hypergeometric2F1l[1/2, 1, 2, 4z (1 - 2z)]

144/ (-1+22)2

2(-1+2)z
s2 = FunctionExpand[%]

144/ (-1+22)2

2(-1+2)z

s3 = PowerExpand[sl]
-2+22
2 (-1+2)z

s4 = Cancel[sl]

—1l+4/(-1+22)?2

2(-1+2)z

{sl, s2, s3, s4} /. z -> 1/4
4 4 4

(e

3 3 3

Hypergeometric2F1[1/2, 1, 2, 4/4 (1 -1/4)]

math4a.nb

math4a.nb 17

4.6.4 Collecting variables with non-integer exponents

expr = Expand[Sum[(-b + an) x"(n + 0.12/n), {n, 3}]]

axl-12 _pxl-12, 24 x2:06 _px2-06, 35 x3:04 1 53.04

Collect[expr, x]
axi-12 _pxl-12 [9 g x2-06 1) 2.06 | 3 o 43.04) 3.04
Collect[] only works with integer exponents. A way to perform the Collect[] in expressions with non-

integer exponents is to allow a pattern variable for the exponent. This will in effect create a separate
"variable" for each distinct power, and this suffices to do what one wants in this particular example.

Collect[expr, x-"]
(a-b) x'"*?+ (2a-b) x*%+ (3a-b) x**%
x-+ is generated in the following way: Type x ; use m" contained in the menue “Palettes” “Other-Basic

Typesetting” or “Other-Basic Math Input” ; put the curser into the empty superscript square and type
the keys “underscore” and then “point”.

FullForm[x--]

Power [x, Optional[Blank[]]]

4.6.5 Collecting logarithms

4.7

Logarithms can be combinend with the help of the following two commands:
Simplify[Log[x] + Log[y]]

Log[x] + Log[y]

FullSimplify[Log[x] + Log[y]]

Log[x] + Log[y]

Define the following function:
CollectLogs[xx_] := Log[Simplify[E" xx]]
CollectLogs|[Log[x] + Log[y]]

Log[xy]

CollectLogs|[Log[x] -Log[y]]
b4

Log| —|
y

or using Simplify[] , provided the two arguments are real and have the same sign:

Simplify[Log[a] - Log[b], Element[{a, b}, Reals] &&a > 0&&b > 0]
a

Log[k—)]

Simplify[Log[a] -Log[b], {b>0, a > 0}]
a

Log[k—)]

Simplify[Log[a] -Log[b], {b< 0, a< 0}]
Log[a] - Log[b]

Treating Expressions Containing Trigonometric,
Hyperpolic Functions and Exponentials

18

math4a.nb
TrigFactor[expr] factors trigonometric functions in expr
TrigFactorList[expr] factors trigonometric functions in expr, yielding a list of lists
containing trigonometric monomials and exponents.
TrigReduce[expr] rewrites products and powers of trigonometric functions in expr
in terms of trigonometric functions with combined arguments.
ExpToTrig[expr] converts exponentials in expr to trigonometric functions,
works also on hyperbolic functions
TrigToExp[expr] converts trigonometric function in expr to exponentials,
works also on hyperbolic functions
f = Sin[x]"3 Cos[2 x]
Cos[2 x] Sin[x]?3
g = TrigExpand[f]
Sin[x] 9 ” 5 . 3sin[x]® 5 . , Sin[x]®
-+ Zcos[x]?Sin[x] - —Cos[x]*Sin[x] - ————+ ~Cos[x]%Sin[x]?- ———
2 8 8 8 4 8
Expand[g /. Cos[x] -> (1 - Sin[x]"2)"(1/2)]
sin[x]3®-2sin[x]®
TrigFactor[f]
T T
2sin[—-x]| sin[x]?sin| — + x|
4 4
r = TrigReduce[f]
1 . . .
— —4Sln[x}4—3Sln[3x]-—Sln[5x])
8
TrigExpand[r]
Sin[x] 9 g 5 4 3sin[x]3 g ; Sin[x]®
-—+ —Cos[x]“Sin[x] - —Cos[x]"Sin[x] - — + —Cos [xX]“ Sin[Xx]
2 8 8 8 4 8

t = TrigToExp[f]

7i1 (e-jxieix>3 (e—zjx+e211x>
16
Expand[t]
ije—ix‘_lje]'lx_‘_i]'le—:%]'lx_ije:i]ix_L]'le—S]'lx_'_ijeSle
4 4 16 16 16 16
ExpToTrig[%]
Sin[x] 3 . 1
- ——+ —8in[3x] - —Sin[5 x]

2 8 8

f

Cos[2x] Sin[x]?3

f == %% // Simplify

True

2+Cos[2x] +Cos[2y] +Cos[2 (x+Y)]

2+Cos[2x] +Cos[2y] +Cos[2 (x+YVY)]

math4a.nb 19

4.8

%/.Cos[2x_]=»2Cos[x]"2-1

-1+2Cos[x]?+2Cos[y]?+2Cos[x+y]?

Exercises

4.1 Define the function f(x, n)=x". Evaluatef (2, 1), f(3, 2), f(4, 7), f(y, k).

4.2 Transform the expression f=sin (k1 x) sin (k2 y)into g by replacing k1 with a and k2 with b.
4.0 DeCcompose e 1010wINg €Xpressions 1Mto pdrudl 1Iracuons; tmeredlier put mem over comimon
denominator and expand completely. At the end simplify all these expression as much as possible.

2+ 1 B +3x2-4x+3 x H
D — 2) ——— 1 3
(x=2)(x2+1) (2 -1)(2+1) -1

4.4 Plot the function f(x) = sin(x)/(1+x"2) intheintervall (0, rt) anddetermine the
maximum xm and f(xm).

4.5 Assuming thatx and y are real, compute the real and imaginary parts
of the following expressions :

1) (x+Iy)% 2) cos(x+iy); 3) (x + iy)2¥sin (x + iy).
4.6 Transform the following expressions into Fourier sums and into pure powers of sin x and

cos X. These results are not unique in view of the relation sin’x + cos?x =1. In addition some
transformations must be imposed by presenting some trigonometric relations as substitutions.

1) cos(4 x) sin®x, 2) sin?(2x) + cos?(2x), 3) sin(3x) cos(5 x) cos?x;
4.7 A series circuit consists of a resistor with resistance R, a capacitor with capacitance

C and a coil of inductance L. For a given angular frequency w the impedance of this Cir-
cuitis: Z= R+iwlL+ 1/(i wC).

Compute the admittance Y = 1/Z ; decompose it into the real and the imaginary part.

4.8 Spherical Bessel functions z(m,x) are proportional to Bessel functions with half odd inte-

ger order:
jm(X) = A/ % I+ 1/2(X)! y m(X) = % Y+ 1/2(X) ;

they fulfil the following recurrence relations :

z(m+1,x) - (2m + 1)/x z(m,x) + z(m-1,x) = 0;
j(0,x) = y(-1,x) = sin(x)/x; j(-1,x) = - y(0,x) = cos(x)/x

Define a function, which computes j(m,x) or y(m,x) for arbitrary natural m.
So z is either j or y. Compute the first few j's and y's.

4.9 Define the Heaviside step functionwithout a branching command.

410 Get a numeric value of e? to 31 decimal places with one postfix command,
which uses only e as input.

411 Expandthesum (r+s+t+v) andsimplifyitagain:
r=(a+b)* s=(c+d)* t=(e+f)* u=(x+y)

4.12 Find the roots of the following polynomial and verify that they fulfil the corresponding
equation p(u) = 0. puy=-2u+2u+3ec-2u’e
4.13 Get the simplest expressions for the following hypergeometric series:
1) Hypergeometric2F1[1/2,1/2,3/2, Sin[z]"2]
2) Hypergeometric2F1[1,1,3/2, Sin[z]*2]
3) Hypergeometric2F1[n/2,-n/2,1/2, Sin[z]*2]
4) Hypergeometric2F1[1/2,1,2, 4 z (1 - z)]

20

4,14 Compute analytical expressions (polynomials in x) for the first 7 Chebishev
nomials from the defining relation T(x) = cos(n arccos(x)), (n =0,1,2,...,6) .

math4a.nb

poly-

