
11.2.7 Finding Eigenvalues by the Shooting Method

The shooting method is a means to compute eigenvalues of a boundary problem defined by a one-
dimensional differential equation and boundary conditions fixed at the end of the interval whereinthe 
equation is defined. 
At first a trial value is inserted for the eigenvalue and the differential equationis solved by numeric 
integration for an initial problem with initial data fulfilling the boundary condition(s) at one end. The 
integration goes as far as the other end. In most cases inspection of the solution shows that there,the 
boundary condition(s) is (are) not fulfilled. But the result gives a hint how to improve the trial value for 
the eigenvalue. This procedure is repeated till a solution fulfilling all boundary conditions is obtained. 
The trial value then used is an approximation to an eigenvalue of the boundary value problem. 

This method is displayed for the eigenvalue problem of the one-dimensional harmonic oscillator in 
quantum mechanics. The differential equation expressed in dimensionless variables is :

∂𝜕2y

∂𝜕x2
+ 2 ν𝜈 + 1 -− x2 y = 0

ν𝜈  is the eigenvalue parameter; it is related to energy  E  by   E =  ℏω𝜔 (2 ν𝜈 + 1)/2.  The boundary cond-
tions are:

x = ± ∞:  y = 0.

Analytic solution leads to   E/ℏω𝜔  =  1/2, 3/2, ...,  i.e. ν𝜈 = 0, 1, ... ; see § 11.1.1 This is now shown by the 
shooting method. In place of  x = ± ∞  a value of sufficient magnitude is chosen; experience shows that 
for low  ν𝜈  x = 5  suffices; the value of the first derivative must be small, the specific value is uncritical. 
The end value xe is determined empirically such that the resulting curve fits into the picture.

Clear[x, y, sh, nu, xe]

11.2.7.1   Showing the shooting method in detail for  n = 0 

sh[nu_,xe_] :=
NDSolve[ {y''[x]  + (2 nu + 1 -− x^2) y[x] == 0, 

y[-−5] == 4 10^-−6, y'[-−5] == 5 10^-−5}, y[x], {x,-−5,xe}]

SetOptions[Plot, PlotStyle -−> Thickness[.005]];
dd = PlotStyle -−> Dashing[{.01}];
dt = PlotStyle -−> Dashing[{.02,.01,.0025,.01}];

so = Table[0, {5}]; pp = so;

so〚1〛 = sh[-−1.5`, xe = -−0.5`];
pp〚1〛 = Plot[Evaluate[y[x] /∕.so〚1〛], {x, -−5, xe}, Evaluate[dd]];
so〚2〛 = sh[-−0.5`, xe = 1];
pp〚2〛 = Plot[Evaluate[y[x] /∕.so〚2〛], {x, -−5, xe}, Evaluate[dd]];
so〚3〛 = sh[-−0.01`, xe = 6];
pp〚3〛 = Plot[Evaluate[y[x] /∕.so〚3〛], {x, -−5, xe}, Evaluate[dd]]; so〚4〛 = sh[0, xe = 7];
pp〚4〛 = Plot[Evaluate[y[x] /∕.so〚4〛], {x, -−5, xe}]; so〚5〛 = sh[0.01`, xe = 6];
pp〚5〛 = Plot[Evaluate[y[x] /∕.so〚5〛], {x, -−5, xe}, Evaluate[dt]];



Show[pp〚1〛, pp〚2〛, pp〚3〛, pp〚4〛, pp〚5〛, PlotRange → {-−5, 5}, AxesLabel → {"x", "y(x)"},
PlotLabel → "Harm.oscillator: ν = -−1.5, -−.5, -−.1, 0, .1 . \n\n",
PlotRegion → {{0.01`, 0.99`}, {0.01`, 0.99`}},
Epilog → {Text["ν = -−1.5", {-−2.1, 4.75}], Text[-−0.5, {0.19, 4.75}],

Text["ν = -− .1", {2.47, 4.75}], Text["ν = 0.1", {2.47, -−4.75}],
Text["ν = 0 ", {5, 0.55}]}]
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Harm.oscillator: ν𝜈 = -−1.5, -−.5, -−.1, 0, .1 .
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The boundary conditions are best approximated by the continuous curve corresponding to  ν𝜈 = 0. Note 
the different behaviour  of the solutions belonging to  ν𝜈 < 0 (dashed curves) or ν𝜈 > 0 (dashed-dotted 
curves). 
Since the curve for   ν𝜈 = 0  has no node in the interior of the interval, the eigenvalue must be the lowest 
one. 

11.2.7.2  Automating the routine for finding the eigenvalues 

Now the method is automated so that a routine searches for the characteristic values. A function is 
defined to get the end value y(xe)  as a function of  ν𝜈 =nu. This function is used in FindRoot[]. In order 
to avoid troubles with FindRoot[] one must either 

1) apply the operator Hold[] to the definition of tr[n_u]. This holds the evaluatin till te[nu] is 
     used in FindRoot[]. 
     This hold is released by the command Release.  or
2) restrict the arguments of the function  te[] to numeric values as done at the end of this 
    subsubsection.

xe = 5;

tet[nu_] := Hold[y[xe] /∕. NDSolve[ {y''[x]  + (2 nu + 1 -− x^2) y[x] == 0, 
y[-−5] == 4 10^-−6, y'[-−5] == 5 10^-−5}, y, {x,-−5,xe}]]

FindRoot[tet[nnn], {nnn, .8, 1.3}]
tet[nnn /∕. %] /∕/∕ Release

{nnn → 1.}

-−8.97932 × 10-−9

FindRoot[tet[nnn], {nnn, 1.8, 2.3}]
tet[nnn /∕. %] /∕/∕ Release

{nnn → 2.}

8.34379 × 10-−12
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FindRoot[tet[nnn], {nnn, 2.8, 3.3}]
tet[nnn /∕. %] /∕/∕ Release

{nnn → 3.}

-−8.51405 × 10-−12

11.2.7.3   The variant wherein  nu  is restricted to numeric values 

ten[nu_?NumericQ] := y[xe] /∕. NDSolve[ {y''[x]  + (2 nu + 1 -− x^2) y[x] == 0, 
y[-−5] == 4 10^-−6, y'[-−5] == 5 10^-−5}, y, {x,-−5,xe}]

FindRoot[ten[nnn], {nnn, .8, 1.3}]
ten[nnn /∕. %]

{nnn → 1.}

-−8.97932 × 10-−9

FindRoot[ten[nnn], {nnn, 1.8, 2.3}]
ten[nnn /∕. %]

{nnn → 2.}

8.34379 × 10-−12

11.3 Solutions of Partial Differential Equations.

11.3.1  Analytical Solution

Remember that while an ordinary  differential equation determines the solution up to some integration 
constants the solution of a partial differential equation contains arbitray functions. These are denoted as 
C[i]  (i being some integer) and are arbitray except that a suffcient number of  derivatives must be 
continuous.

deq = y D[u[x, y], x] + x D[u[x, y], y] == 0

x u(0,1)[x, y] + y u(1,0)[x, y] ⩵ 0

so = DSolve[deq, u[x, y], {x, y}]

u[x, y] → C[1]
1

2
-−x2 + y2

deq = y D[u[x, y], x] + x D[u[x, y], y] == 1

x u(0,1)[x, y] + y u(1,0)[x, y] ⩵ 1

so = DSolve[deq, u[x, y], {x, y}]

u[x, y] → -−Logx + y2  + C[1]
1

2
-−x2 + y2,

u[x, y] → Logx + y2  + C[1]
1

2
-−x2 + y2

deq = y D[u[x, y], x] -− x D[u[x, y], y] == 0

-−x u(0,1)[x, y] + y u(1,0)[x, y] ⩵ 0

so = DSolve[deq, u[x, y], {x, y}]

u[x, y] → C[1]
1

2
x2 + y2
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deq = x D[u[x, y, z], x] + y D[u[x, y, z], y] + z D[u[x, y, z], z] == 0

z u(0,0,1)[x, y, z] + y u(0,1,0)[x, y, z] + x u(1,0,0)[x, y, z] ⩵ 0

so = DSolve[deq, u[x, y, z], {x, y, z}]

u[x, y, z] → C[1]
y

x
,
z

x


deq = D[u[x, y], {x, 2}] + D[u[x, y], {y, 2}] == 0

u(0,2)[x, y] + u(2,0)[x, y] ⩵ 0

so = DSolve[deq, u[x, y], {x, y}]

{{u[x, y] → C[1][ⅈ x + y] + C[2][-−ⅈ x + y]}}

deq = D[u[x, t], {x, 2}] -− 1 /∕ c^2 D[u[x, t], {t, 2}] == 0

-−
u(0,2)[x, t]

c2
+ u(2,0)[x, t] ⩵ 0

so = DSolve[deq, u[x, t], {x, t}]

u[x, t] → C[1]t -−
x

c2
 + C[2]t +

x

c2


PowerExpand[so] /∕/∕ Flatten

u[x, t] → C[1]t -−
x

c
 + C[2]t +

x

c


deq = D[u[r, ϕ], {r, 2}] + 1 /∕ r D[u[r, ϕ], r] + 1 /∕ r^2 D[u[r, ϕ], {ϕ, 2}] == 0

u(0,2)[r, ϕ]

r2
+
u(1,0)[r, ϕ]

r
+ u(2,0)[r, ϕ] ⩵ 0

so = DSolve[deq, u[r, ϕ], {r, ϕ}]

DSolve
u(0,2)[r, ϕ]

r2
+
u(1,0)[r, ϕ]

r
+ u(2,0)[r, ϕ] ⩵ 0, u[r, ϕ], {r, ϕ}

11.3.2  Numerical Solution of Simple Partial Differential Equations

This solves the heat equation in one space dimension with the boundaryconditions  x0,1 = 0, 5: T(xi,t) = 
0.
At the beginning a temperature peak is present around x= 2.5.

sol =
NDSolve[{ D[T[x, t], t] == D[T[x, t], x, x] /∕ 10, T[x, 0] == Exp[-−(x -− 2.5)^2 /∕ 0.05 ],

T[0, t] ⩵ 0, T[5, t] == 0}, T, {x, 0, 5}, {t, 0, 4}] /∕/∕ Flatten

T → InterpolatingFunction Domain: {{0., 5.}, {0., 4.}}
Output: scalar


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Plot3D[Evaluate[T[x, t] /∕. sol], {x, 0, 5},
{t, 0, 4}, AxesLabel → {"x", "t", "T(x,t) "},
Ticks → {Range[0, 5], Range[0, 4], Range[0, 2] /∕ 2},
PlotRange → All, BaseStyle → FontSize → 14]

11.3.3  Numerical Solution of Partial Differential Equations by 
Difference or Finite Elements Methods

Numerical Solutions of Partial Differential Equations may be found by difference method or finite ele-
ments. 
For the first method, the partial derivatives are replaced by differences; in this way the differential equa-
tions are approximated by large linear systems of equations for the field values at the nodes of the 
mesh. In the book of 
Victor G. Ganzha and Evgenii V. Vorozhtsov:  Numerical Solutions for Partial Differential Equations:  
Problem Solving Using Mathematica, 
this is shown and programs are given. 

Prem K. Kythe, Pratap Puri, Michael R. Schaferkotter, Hiles K. Jones, Michael R. Schaeferkotter: 
Partial Differential Equations and Boundary Value Problems with Mathematica
CRC Press; 2 edition, 2002
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11.4  Exercises
11.1 A charged particle moves in static, homogeneous, crossed electric and magnetic fields and experiences a 
linear frictional 

force.
d2r/dt2   =   q E  +  q (dr/dt  x  B)  - m a  dr/dt

      
      E = (0, E0, 0),  B = (0,0,B0),  a = const.

Initial data are: 
r(0)  = (0,0,0),    dr/dt(0)  =   (vx, vy, vz).

Solve the system of differential equations analytically (if possible) and numerically for suitable values of the parameters 
and initial conditions.

11.2 Same problem as 1., but the frictional force is quadratic, i.e. it is

- m a dr/dt | dr/dt |.

Compute the trajectory by numeric solution for suitable values of the parameters and prepare a drawing.
11.3. A particle is projected from the ground with a given initial velocity  oblique to the field of gravity. Compute and draw the 

trajectory. 
Indicate equal time intervalls by dots on the trajectory. 
Do the same for an additional linear or quadratic frictional force.

11.4.  A 1-dimensional linear force   F  =  - x  acts on a  particle as long as   |x| < 1;  the force is zero for |x| > 1. 
The particle starts with a giveninitial speed at  x = 0. Compute and draw the position and the velocity as function of time 
and draw the phase space diagram for two initial velocities  such that the particle is bound and for two initial velocities 
belonging to  unbound motion.

11.5.  Compute and draw the Poincare Map for the x,x'-plane of Sect. 11.2.6 

11.6.   Treat the following differential equation:        y'' + 2 x y' + 2 y  =  0;    
11.6.1 Solve the differential equation analytically.
11.6.2 Solve analytically the boundary values problem: y(0) = 0, y(2) =  1. 
11.6.3  Solve numerically the initial value problem: y(0) = 1, y'(0) = 0;   plot the solution.

11.7 Verify that y[x] = Exp[x] is a solution of the following differential equation :

y[x] -− x y′[x] + (-−3 + 2 x) y′′[x] + (2 -− x) y(3)[x] = 0.

11.8  Compute the eigenvalue ν𝜈 = 1 for the quantenmechanical Harmonic Oscillater by the 
shooting method as it is done for ν𝜈 = 0 in  subsubsection 11.2.7.1. Plot the curves for 
⋁ around 1. Show the curvews of the shooting method in detail for  ν𝜈 = 0.8, 0.9, 1.0 and 1.1 . 
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