
This text has been written more than three years ago. During this time the Mathematica

programs have changed considerably. Although the �rst part of each program remained

virtually unaltered other graphics which show details of the electric �eld strength between

the condenser plates were added. These additions make up the bigger part (about 2/3th)

of the programs now. Also the older version of the programs was written for Mathematica

2.2 which we updated for Mathematica 3.01 now available. During all these changes the

text (appart from the inevitable mistakes that we found) remained unchanged (we only

dropped section 2.2). It gives an introduction to the mathematical basics of conformal

mapping the two-dimensional electrostatics on the complex plain as well as an introduction

to the Mathematica commands used in the programs. This �rst chapter is followed by the

presentation of 14 condenser con�gurations: their conformal map, the electric �eld and

surface charge density and the black & white graphics generated by the earlier version

of the Mathematica programs (the new programs nearly coinside with the old ones up

to \(* section with black & white graphics *)"). The actual progam was taken out of

the text and only the line: \Mathematica program n: for the ... Condenser" representing

the old program remained. Therefore the text gives a good introduction to all condenser

con�gurations even though the later graphics are not mentioned at all. One piece of advice

at the end: be carefull with references especially pages and sections.
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Quickly Available Graphics of Static, Electromagnetic Field Distributions Given

by Conformal Maps Using Mathematica

Conformal maps based on the Schwarz-Christo�el transformation map the in�nite plane

condenser on other simple plane con�gurations rigorously. The �eld distributions between

the electrodes as well as the �eld and charge distributions on the electrodes can be computed

from analytic expressions. This thesis contains ready-to-useMathematica programs plotting

these physical quantities for 11 condenser or pole piece con�gurations: The sharp or round

corner of an in�nite rectangular pole piece, a pole piece of �nite thickness, the end of

a condenser consisting of in�nitely thin plates or of planes with arbitrary thickness, two

parallel in�nitely thin strip lines, a channel with a rectangular sharp bend, a channel with

a �nite step, an in�nitely thin stripline in line with a stripline of inifnite width at each side.

The design philosophy was to provide electrical engineers neither being acquainted with

conformal maps nor with Mathematica with a tool for getting computer generated graphics

fast and easily. The parameters de�ning the geometry of the con�gurations and the voltage

may be chosen at will within limits indicated in each program. These programs can also

be applied in magnetostatics, hydro- and aerodynamics and can be modi�ed to deal with

new con�gurations.

Gri�bereite Mathematica Programme f�ur Graphik konform abgebildeter

statischer elektromagnetischer Feldverteilungen

Konforme Abbildungen, welche mittels Schwarz-Christo�el Transformation gewonnen wer-

den, bilden den unendlichen ebenen Plattenkondensator auf Kondensatoren einfacher, planer

Geometrie exakt ab. Die Feldverteilung zwischen den Platten sowie Feld und Ladungsdichte

auf diesen k�onnen damit analytisch berechnet werden. Diese Arbeit enth�alt einfache Ma-

thematica Programme, welche Bilder dieser physikalischen Groessen fuer 11 Kondensator-

oder Polschuhformen zeichnen: z.B. einen unendl. Polschuh mit rechtwinkeliger spitzer

oder runder Ecke, einen Polschuh endlicher Breite, das Ende eines Plattenkondensators

mit unendlich d�unnen und endlich dicken Platten, zwei unendlich d�unne Streifenleiter,

ein Kanal mit einem rechtwinkeligen Knick, einen Kanal mit endlicher Stufe, eine Streifen-

leitung zwischen zwei halbunendlich langen Streifenleitern. Ingenieure und Elektrotechniker

k�onnen damit ohne Vorkenntnisse von Mathematica und konformen Abbildungen auf dem

Computer Bilder f�ur statische Felder schnell erhalten. Die Kondensatorabmessungen, wie

Plattenabstand, Plattendicke, und die Spannung zwischen den Platten k�onnen in grossen

Bereichen selbst vorgegeben werden. Die graphischen Ergebnisse gelten nicht nur f�ur die

Elektro- und Magnetostatik, sondern auch f�ur Hydro- und Aerodynamik. Weiters k�onnen

die Programme f�ur eigene konforme Abbildungen adaptiert werden.
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Introduction

This \ Diplomarbeit " (diploma thesis) contains Mathematica programs for problems of

electrostatics that include conformal maps. Conformal mapping is an important means

to solve problems in Electro- and Magnetostatics as well as in Hydro- and Aerodynamics,

because it helps to reduce complicated mathematical problems in complex space to simpler

ones. Especially graphics (of conformal maps) show their behaviour in a very distinct way,

which was the motivation for this thesis.

When you leaf through the thesis you see a lot of graphics plotted by the programming lan-

guage Mathematica. Although some of these graphics look quite complicated, the pertinent

Mathematica programs are comparatively short.

Mathematica , a language for symbolic computation, has a lot of implemented graphics com-

mands as well as routines for elementary and special functions as, for example, for elliptic

integrals and functions. Together with the package Graphics`ConformalMap` Mathematica

is immensely helpful to plot graphics of conformal maps.

The �rst chapter of this thesis gives a short survey of the mathematic and electrostatic

concept of conformal mapping. The most important Mathematica commands , necessary

to produce the graphics, are explained.

The following chapter contains the mathematical treatment of the conformal function as

well as the Mathematica programs and ensuing graphics for a dozen problems. Those

programs deal with the graphics output of some frequently used condenser con�gurations

and their corresponding electric �eld strengths and surface charge densities. Finally the

di�culties which arise when you want to round the corners of the condensers treated in

chapter 2 are shown.

Although the thesis always talks in electrostatic terms the �eld distribution for magnetic

pole pieces looks the same as that for condensers of equal form. Then the electrostatic

quantities (electric �eld strength, surface charge density) have to be translated to magnetic

terms. Even in Hydro- and Aerodynamics the laminal stream around edges and the sudden

change of the radius of a streamed through tube leads to the same pictures.

You can run the Mathematica programs instantly to produce the printed graphics on your

own computer display. Furthermore as soon as you understand how my Mathematica pro-

grams are constructed you may write your own programs for similar problems.

For readers with no or little knowledge of Mathematica this paper also explains how the

Mathematica objects used in the thesis work. Nevertheless you do not learn Mathematica

by reading the paper!

It was the intention of the autor to render each section describing a Mathematica program

as selfcontained as possible. This entails a certain amount of repetitions.



1 The Conformal Map

This chapter is devided into three sections that treat the mathematic and elecrodynamic

basics as well as the basics of those Mathematica commands that occur in the programs

of the next chapter.

1.1 The Mathematic Concept

At the beginning I give a short mathematic abstract of conformal

mapping including the main de�nitions and rules, followed by a

glimpse to elliptic functions and integrals. This brief

mathematic section should su�ce not only to understand the examples

given in this paper, but also to design your own Mathematica

programs for similar cases that are not treated in chapter 2.

Conformal Map: A function w = f(z) which is single-valued and

holomorphic in a domain Dz of the complex Z -plane (Z = fzj z 2CI g1)
and whose total derivative f 0(z) 6= 0 is called a conformal map.

Two curves C1 and C2 inDz whose tangents, provided they exist, inter-

sect in the point z02Dz at an angle �, will intersect at the same angle �

when they are transformed to the range Rw= f(Dz), the image of Dz on

the complex W-plane, by the conformal map w = f(z).

The inverse function z = f�1(w) of a conformal map f(z) always

exists2 and is again conformal in Rw.

So, when I want to know whether a function f(z) is conformal, I have to verify that it

ful�lls two conditions according to the de�nition given above:

4� Firstly it has to be holomorphic in a set ~Dz�Z -plane. Therefore f(z) has to

satisfy the Cauchy-Riemann di�erential equations for all z of ~Dz .

4� Secondly I have to �nd all zeros z0 of the function's �rst derivative that are

within ~Dz. In these points no inverse function z0 = f�1(w0) of w0 = f(z0)

exists. The set ~Dz without all z0 is called the domainDz for whose elements

f(z) is conformal.

1 Representation of the compex numbers CI by a Gaussian plane named Z with its elements z.
2 However, to write f�1(w) down explicitely usually encounters a lot of trouble because either you have

to calculate the �rst n coe�cients of the B�argmann-Lagrange series for an nth order approximation

of the inverse function or you have to �nd an exact solution by trial and error.



Conformal functions are "very well behaved" since they do not have any singularities and

have a unique inverse function for all elements of the range Rw. Moreover a pair of distinct

lines in the Z -plane is mapped to a pair of distinct lines on theW-plane. So the electric �eld

lines which are parallel to the iy-axis on the Z -plane do not cross on the W-plane either.

So for the In�nite Plane Condenser the equipotential lines which are parallel to the x-axis

on the Z -plane cross the electric �eld lines on the W-plane at right angle too. This is very

convenient when calculating the electric �eld strength or the surface charge density of the

condenser plates.

Some terms mentioned in the de�nition and others emerge throughout the thesis. To avoid

confusion I will always use them in the same way :

General Notations :

4� The real numbers IR = ft j�1 < t <1g do not contain in�nite points.

4� The complex numbers CI = fz = x+ iy j x; y 2 IRg do not contain the in�nite point

either.

4� The term Z -plane with the elements z = x + iy is always used for the complex

plane of the In�nite Plane Condenser.

4� So W-plane { with the elements w = u + iv { is used for condensers that are

obtained from the In�nite Plane Condenser by a conformal map f(z). An exception

is the following one:

4� T-plane { elements t = r + is { denotes the complex plane with =m(t) � 0. This is

the basis for the Schwarz-Christo�el transformation explained later on.

4� The set ~D� (� = z; t) for whose elements � the function f(�) is holomorphic is a

subset of the �� plane (� = Z; T ).

4� The Domain D� is a subset3 of ~D� restricted to the elements � for which f(�) is

conformal. D� = f�jf(�) conformalg = ~D� n f�0jf 0(�0) = 0g.

4� All conformal maps of this thesis are called f(z), their inverse functions f�1(w) or
f�1(t) respectively.

4� All curves on the Z -plane are called Ci, their parametric representations of the

parameter � are denoted by Ci(�). The images on the W-plane are called Ĉi and
Ĉi(!) respectively.

3 A domain D is an open subset of Riemann's sphere. Nevertheless, for simpli�city I will always

regard its boundary @D a part of the domain.



4� (a; b) denotes an interval which is open to both sides.

4� [a; b] is a closed interval: i.e. it contains the points a and b of the boundary:

[a; b] = (a; b) [ f a; b g.

Riemann's Mapping Theorem: Any simply connected domain D of

the complex plane with connected boundary that consists of at least two

points can be transformed schlicht4 to the interior of the unit circle by a

holomorphic function in D.

Riemann's theorem is the fundamental theorem of conformal mapping in simply connected

domains. It states that conformal functions exist for any realistic (physical) problem with

connected boundary5 but it does not show how to �nd them.

For certain classes of problems, however, special prescriptions lead to the conformal map

wanted. One of these is the Schwarz-Christo�el formula which maps a condenser whose

electric �eld is in the upper half of the complex plain to our special con�gurations.

Schwarz-Christo�el Formula: The integral

w = f(t) = A

tZ
t0

nY
i=1

(t� ti)
��i dt +B (1)

with the supplementary conditions:

t1 < t2 < : : : < tn ; 0 < j�ij � 1 and
Pn

i=1�i = 2 with �i; ti 2 IR
for the coe�cients ti and �i is a single-valued and holomorphic map in the

complex plane with nonnegative imaginary part ~Dt = ft j =m(t) � 0g
which transforms the set ^Dt = ft j =m(t) > 0g to the interior of a

polygon whose edges are at wi = f(ti). The coe�cients �i� are the

angles of these edges (cf. Figure 1). A and B are complex constants.

Having the de�nition of conformal mapping in mind I deduce that the map in eq.(1) de�nes

a conformal function for all t 2 ~Dtn ft0jf 0(t0) = 0g =Dt. The points t0 are the points ti of

the real r-axes (= boundary of ~Dt) whose corresponding angles �i� on the W-plane are

negative. Compared to this all points of the interior of ~Dt are conformal. You just have to

solve eq. (1). This, though always possible in principle, may meet some di�culties which

must be overcome by hard labour.

The numbering of the wi is usually done counterclockwise and the angles �i are the (outer

angles ��)/� of the lines meeting at wi (see Figure 1). So when the edge of wi points

4 A function f(z) is called schlicht in the neighbourhood U(z0) of the point z0 when it can be inverted

univalent in the neighbourhood U(w0) of the point w0 = f(z0):
5 A theory for conformal maps in multiply connected domains exists but we do not need it here.



outwards (seen from the interior of the polygon) the corresponding angle �i > 0 is positive,

when it points inwards �i < 0 is negative (cf. �1 and �4 of Figure 1).
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Figure 1: Mapping by the Schwarz-Christo�el Formula

When I know the location of the edges wi and the values of all �i on the W-plane I can

calculate the values of the points ti on the T-plane and the constants A and B in eq.(1) in

the following way :

As the theory of conformal mapping shows you may choose three points ti (i.e assign

real numbers including in�nity to them) arbitrarily to �x the mapping function w = f(t)

completely.

I choose tn to be at in�nity which reduces the product in our integral by one (the last)

term and obtain

w = f(t) = A

tZ
t0

n�1Y
i=1

(t� ti)
��i dt +B (2)

Moreover let tm (1 � m � n� 1) be the arbitrary lower limit of integration. We get :

B = wm
6 (3)

wm+1 = A
tm+1R
tm

f 0(r) dr + wm = f(tm+1)
7 with r2IR8 (4)

Inserting (3) into (4) I obtain a symbolic solution for A as a function of the remaining ti.

Those ti can then be found recursively

6 Proof (using equation(1)): wm = A
R t0
t0

Qn�1

i=1
(t� ti)

��i dt+B = 0 +B = B.
7 When I decide upon m to be n�1, m+1 will then be 1 since tn can no longer be found in our integral.
8 The integration in the complex plain, can be reduced to one on the real r-axis (cf.[du]).



wm+2 = A

tm+2Z
tm+1

f 0(x) dx+ wm+1 = f(tm+2) ; : : : (5)

and be inserted into equation(2) to complete the calculation of the conformal map w = f(t).

When I know the distance d of two parallel polygon lines that extend both to in�nity

(cf. �g.1) I get a solution for the constant A (whose calculation is usually harder than that

of B) by9

A = ��w

i�

Y
j 6=p

(tp � tj)
+�j (6)

where �w is the distance on the W-plane when changing from one parallel line to the other;

so d = j�wj. tp is the pre-image of the corner at in�nity (cf. corner n of �g.1). When I

choose tp =1 eq. (6) equals

A =
�w

i�
: (7)

The procedure to �nd the remaining tj is similar to the one from above. Here, however, B

still has to be calculated; i.e. eq. (3) does not hold any more.

For polygons with at least two connected edges the function w = f(t) involves elliptic

integrals and functions of which I give a short summary as far as they turn up in the

problems 2.12 - 2.14.

Doubly Periodic Functions: A function f(z) which is holomorphic

in the whole complex plane CI except for some isolated singularities and

ful�ls

f(z) = f(z+n!1+m!2) n;m 2 IN; !1; !2 6= 0 and n!1 6= m!2 (8)

for any combination of integer n andm is called a doubly periodic function

with the periods !1 and !2.

The smallest periods !1; !2 that ful�ll the periodicity condition given

above are called primitive. The set of all periodic elements n!1 +m!2
has no �nite accumulation point unless the function is constant.

9 cf. [wb] or [fl].



We call the domain connecting the points z = 0; z = !1; z = !1 + !2 and

z = !2 without the lines between z = !1 to z = !1 + !2 and z = !2 to

z = !1+!2 and excluding z = !1 and !2 the fundamental parallelogram.

This subdomain of the complex plane contains all information about our

doubly periodic function due to periodicity and to the absence of a �nite

accumulation point for our periodic elements.

Elliptic Functions: An elliptic function is a meromorphic10 doubly

periodic function. The order of an elliptic function is the sum of the

multiplicities of the poles within the fundamental parallelogram.

Theorems for Elliptic Functions:

1) The sum of the residues of the poles in the fundamental parallelogram

is allways zero so there are no elliptic function of zero and �rst order.

2) Every value of an elliptic function of nth order is assumed exactly n

times in the fundamental parallelogram.

The simplest elliptic functions are those of second order :

a) The elliptic function with one pole of second order with a zero residue is Weierstrass's

} function .

b) The elliptic functions with two poles and residues of opposite sign lead to the Jacobi

elliptic functions and others.

Altough any elliptic function can be represented by the Weierstrassian } and its derivative

}0 Jacobi's elliptic functions are a useful tool in mathematical physics and easier to apply

than }. They are the inverse functions of Legendre's �rst elliptic integral for di�erent

arguments.

Elliptic Integrals: An integral of the formZ
R(z; �) dz with R(z; �) a rational function of z and �

and � =
p
a0z4 + a1z3 + a2z2 + a3z + a4

the square root of a polynomial with simple zeros and a0 and a1 not both

zero is called an elliptic integral.

This elliptic integral can allways be separated into an integral of rational

functions and three basic types of elliptic integrals:

Z
dz

�
;

Z
z dz

�
;

Z
dz

(z � c)�
with c a zero of �2.

10 meromorphic = holomorphic except for poles



There are several forms of writing down the three basic elliptic integrals; but the elliptic

integrals in Legendre's normal form only play an important role in physical applications.

Legendre's (Jacobi's) Incomplete Elliptic Integrals:

First kind: F(arcsin y; k) =
yR
0

dzp
(1�z2)(1�k2z2) = F('; k) =

'R
0

d#p
1�k2 sin2 #

Second kind: E(arcsin y; k) =
yR
0

p
1�k2z2p
1�z2 dz = E('; k) =

'R
0

p
1� k2 sin2 # d#

Third kind: �(arcsin y; �2; k) =
yR
0

dz

(1��2z2)
p

(1�z2)(1�k2z2) = �(';�2; k) =
'R
0

d#

(1��2z2)
p

1�k2 sin2 #

The variable k is called themodulus which also appears as one argument of Jacobi's elliptic

functions. Its value is not restricted, though in most problems of mathematical physics k

will be real and even 0<k<1. The complementary modulus is de�ned by k0 =
p
1� k2. So

the complementary modulus of k0 is again the original modulus k. [as] and Mathematica ,

however, use the parameter m = k2 and the complementary parameter m1 = 1�k2 = k02

as an argument.

The variable �2 of the third integral must be real.

The argument y or ' of the elliptic integrals may be complex but they usually are real and

0<y�1 ; 0 < ' � �=2 respectively.

Legendre's (Jacobi's) Complete Elliptic Integrals:

First kind: K(k) = F(�=2; k) =
�=2R
0

d#p
1�k2 sin2 #

Second kind: E(k) = E(�=2; k) =
�=2R
0

p
1� k2 sin2 # d#

Third kind: �(�2; k) = �(�=2; �2; k) =
�=2R
0

d'

(1��2z2)
p

1�k2 sin2 #
[�2 6= 1]

Sometimes K(k) and E(k) are shortened to K and E, the complete elliptic integrals of the

complementary modulus k' are then marked by a prime; i.e K' and E'.

Jacobi's elliptic functions can be obtained by the so called Jacobi amplitude am(u; k)

which is singly-periodic with the period ! = 4iK' and nearly periodic with 2 K since

am(u+ 2K; k) = am(u; k) + � . It is the inverse to the elliptic integral of the �rst kind for

the same modulus

am�1('; k) = F('; k) :



When I wrap a function periodic with 2� as sine and cosine around the Jacobi amplitude I

obtain Jacobi's elliptic functions. Usually three functions sn(u; k),cn(u; k) and dn(u; k) are

de�ned by :

sn(u; k) = sin(am(u; k)), called sine amplitude,

cn(u; k) = cos(am(u; k)), cosine amplitude, and �nally

dn(u; k) = (1 - k2 sn2(u; k))1=2 called the delta amplitude.

All the other Jacobi functions as, for example, sd(u; k) = sn(u; k)/dn(u; k) or

nd(u; k) = 1/dn(u; k) are just ratios of these three.

At the end of this chapter I place a rule which may be useful when you want to change my

Mathematica programs a bit.

Schwarz's Re
ection Principle: Let w = f(z) be holomorphic in the

domain ~D which has a segment of a line or circle as boundary curve C.
Let f(z) be continuous on this curve and map C to a curve C0 which is

again a segment of a line or circle.

The re
ection of the domain ~D at the curve C gives ~D' { the image of

~D { for which the function w� = f�(z�) is again holomorphic. When

C is the real axis w� is given by w = f(z) the bars denoting complex

conjugation.

Condensers that are symmetric with the u-axis can easily be obtained when I apply the

theorem to the condensers in the second chapter one of whose plates is always the u-axis

except for the Sharp Bend Condenser that may also be re
ected at the iv-axis (cf. �gs 9,

12, 17, 22 and 33).



1.2 Conformal Mapping in Electrostatics

This short section points out how the real quantities of electrodynamics can be transformed to

a complex space so that they still describe the physics correctly.

I start my considerations in the three dimensional real space IR3 with the co-ordinates x,

y, z. Imagine a condenser, whose in�nitely thin plates (made of an ideal conductor) are

in�nite in at least one dimension { say z. In this case the electric �eld strength ~E between

the charged plates is independent of this variable z. With that ~E becomes ~E = (Ex,Ey,0).

Without loss of information I reduce the dimension of the real space IR3 by one. The

remaining two components of ~E = (Ex,Ey) can be combined in the following way

E = Ex + iEy (9)

to form the new complex electric �eld strength E whose real (Ex) and imaginary parts (Ey)

are the two components of the real electric �eld ~E. When I choose a holomorphic complex

potential � so that

� = �1 + i�2 (10)

with the real potential �1 and the equipotentials �2 of the real electric �eld ~E = r�1. The

complex electric �eld can then be written in a di�erent form

E(z) = �
�
d�

dz

�
(11)

whereby the bar denotes complex conjugation and z = x+ iy is an element of the complex

Z -plane.

Let z 2Dz be transformed to w 2Rw by the conformal map f(z) = w = u + iv. For the

new complex variable w eqs (10) and (11) are transformed as:

�(z) = �1(x; y) + i�2(x; y)
f(z)

�����! 	(w) = 	1(u; v) + i	2(u; v) ; (12 a)

E(z) = �
�
d�(z)

dz

�
f(z)

�����! E(w) = �
�
d	(w)

dw

�
: (12 b)



Then the old and new real potentials (�1 and 	1) are related to each other by

�w	1 =
1

jf 0(z)j2 �z�1 (13)

whereby �w and �z are the Laplacians of the W- and Z -plane respectively and f 0(z) is
the total derivative of the conformal function f with respect to z. The same equation holds

for the equipotentials; i.e. the subscript 1 may be replaced by 2. To get this formula I

assumed that the old and new complex potential are pointwise equal ( 	(w) = �(z)), but,

in general, � and 	 are not the same functions of their arguments z and w.

For the charged condenser plates I may compute a surface charge density � by adaption of

its de�nition in real vector space to our complex notation using equation (11).

� = �~n � ~E =̂ � "0 <e
�
nz

d�(z)

dz

�
; (14)

with ~n the unit vector normal to the ideally conducting surface pointing to the other plate

and "0 the dielectric constant of the vacuum ("0 = 8:85 � 10�12 As
V m

). nz = nx + iny is the

complex representation of ~n = (nx,ny). The surface charge density transformed to the

W-plane reads:

� = �"0 <e
�
nw

d	(w)

dw

�
= �"0 <e

�
nw

d	(w(z))

dz

dz

dw

�

= �"0 <e
�
nw

d�(z)

dz

1

dw=dz

�
= �"0 <e

�
nw

d�(z)

dz

1

f 0(z)

�
(15)

Here nw is the normal unit vector on the W-plane. The condition f 0(z) 6= 0 { so that �

stays �nite { is ful�lled as f(z) is conformal.

Although the �rst line of the previous equation describes the surface charge density on the

W-plane as a function of w the transformation on the following line makes � a function of

z. To get � in terms of w, z must be expressed by w: i.e. I have to �nd z = f�1(w).
As mentioned in section 1.1 that will normally be very di�cult and laborious. The command

ParametricPlot[ ] which occurs in every Mathematica program and that is described in

the next section will do that for you.



1.3 Application of Mathematica to Conformal Mapping

This diploma thesis was especially written for people who have little experience with

Mathematica although not even that is needed to produce the graphics presented in

chapter 2.

Nevertheless it is usefull to understand how the graphics commands in these Mathema-

tica programs work. At least two of the commands: cm [x ] , ef [x ] , Clear[ ] ,

FindRoot[ ], Needs["Graphics`ComplexMap`"] , CartesianMap[ ] ,

ParametricPlot[ ],

Show[ ] and Show[GraphicsArray[ ]] occur in every program of chapter 2.

So I will explain what they do.

The built-in Mathematica functions as, e.g., sin x (Sin[x]), arccos x (ArcCos[x]) or exp x

(Exp[x]) are named as usual.(Note the capital letters.) Some functions as, e.g., ln x

(Log[x]) or artanh x (ArcTanh[x]) are slightly di�erent.

The argument m used in the elliptic integrals (EllipticK[m], EllipticE[',m], ...), in the

elliptic functions (JacobiSN[u,m], ... , InverseJacobiDN[y,m], ...) and the Jacobi

amplitude (JacobiAmplitude[u,m]) is the square of the modulus k: m = k2 (cf. p.8).

cm [x ] = expression de�nes a pure function named cm (short for conformal map) of

the argument x, which must occur in expression at least once. Expression can be any

expression that contains other Mathematica commands mathematic or not. In our case this

will always be an expression of some built-in mathematic functions.

The argument x is a dummy variable; it need not necessarily be a number but can

be another expression as s = ArcSinh[t]. So cm [s] returns expression from above

replacing all x by ArcSinh[t]. If t is given a value (e.g. a complex number) cm [s]

evaluates symbolically for this value or number. Adding // N calculates the numeric value

for the above expression.

There is another way to de�ne a pure function: expression & [x] is the same as cm [x ]

= expression when you replace all variables x in expression by the sign # .

The command Clear[symb1, symb2, ...] clears the values and/or de�nitions attached to

the symbols symb1, symb2, ... . These symbols may be e.g. variables or pure functions.

FindRoot[lhs == rhs, fx, x1, x2g, options ] numerically searches for a root of the equa-

tion lhs { rhs = 0 near x1 and x2 where lhs is any mathematic function of the argument

x and rhs is a complex number. Specifying x1 and x2 FindRoot[ ] uses a variation

of the secant method; specifying x1 only (and omitting x2) induces Mathematica to use

Newton's method.

If FindRoot[ ] found a root this will be returned as a replacement rule f x {> complex

numberg. This root, however, must not necessarily be the only one of lhs { rhs = 0 ; in

general it is just the closest one to the starting point(s) x1 (and x2).



To replace the value of the variable x by the solution f x {> complex numberg of Find-

Root[ ] I add x = x /. f x {> complex numberg .

In some case the default options for FindRoot[ ] may not be su�cient for Mathematica to

�nd a zero so you can change the maximum number of iterations by MaxIterations {>

number, the working precision and the accuracy of the iteration by WorkingPrecision

{> number and AccuracyGoal {> number ( For further options cf. [ma] p.1088 )

Needs["Graphics`ComplexMap`"] loads the package Graphics`ComplexMap` when it

is not in the kernel yet. The package de�nes two graphics commands CartesianMap[ ]

and PolarMap[ ] of which we will need the �rst one only.

CartesianMap[f , f x0; x1; dx g, f y0; y1; dy g, options ] plots the image of the Carte-

sian coordinate lines in the given range (x0; x1; y0; y1) under function f . f has to be a

pure function of one complex argument z = x + iy. The stepwidth dx and dy of the

variables x (y) between x0 and x1 (y0 and y1) is optional. In case you omit dx and/or

dy CartesianMap[ ] chooses dx and dy so that the number of lines in each direction x

and y is equal to the value of the option PlotPoints of Plot3D[ ]. (On most computers

PlotPoints has the default value 15.)

However, specifying dx and/or dy overrules the option PlotPoints .

The function f must not necessarily be conformal as in our case sinceCartesianMap[ ] can

deal with singularities and extremely high and low values of a complex function f(x+iy)11.

The warning massages, however, are still printed.

The default options, except for the one �xing the number of lines (Options[Plot3D,

PlotPoints ]) are those of Graphics[ ].

You can change the options of Graphics[ ]. (cf. [ma p.1100]) by resetting the local options

inCartesianMap[ ] directly or by resetting the global options using SetOptions[Graphics,

options {> rules ], which is not so good an idea .

The main part of CartesianMap[ ] draws the electric �eld and equipotential lines whereas

the option

PlotRange {> All makes Mathematica plot all calculated points of CartesianMap[ ]

(The default option Automatic includes just those points of the calculation that are not

to far from the "centre" of the picture.);

AxesLabel {> f "textu", "textv" g adds the texts textu, textv to the u- and v-axes re-

spectively;

Axes {> None surpresses the drawing of axes and the option

Epilog {> f Thickness[.011], f Line[ffu1; v1g,..., fuj; vjgg],
Line[ffuk; vkg,..., un; vngg] gg

draws the condenser planes about thrice the thickness of the �eldlines by connecting the

points (ui; vi) in the Line[ ] suboption by lines.

ParametricPlot[ffu; fvg, ft, tmin, tmax g] produces a parametric plot with u and v

11 For further details see [mae] section 1.7 .



co-ordinates fu and fv generated as a function of parameter t ranging between tmin and

tmax. The list ffu; fv g can be exchanged by fffu; fvg; fgu; gvg; : : :g to get several

curves f(t); g(t); : : : together in one picture.

ParametricPlot[ ] is used to plot the electric �eld along the condenser planes, where

fu is the electric �eld of the argument u and fv is the real part <efĈg or =mfĈg of the

curve Ĉ that represents the condenser plane in the complex W-plane as a function of v.

Thus the parametric curve gives the graphical image of the surface charge density/�eld

of the argument u and v in the complex W-plane in the range x = xmin (=tmin) and

x = xmax (=tmax).

The option

PlotRange {> ffumin,umaxg,fvmin,vmaxgg speci�es the range of the graphics to be dis-
played where umin, umax ; vmin, vmax are the minimum/maximum values of the functions

fu and fv that are plotted;

AxesOrigin {> fu0; v0g moves the origin to the point (u0; v0) of the IR
2 ;

the option

AxesLabel {> f "textx", "texty" g is the same as in CartesianMap[ ];

For reference the option

Epilog {> f Text[...], Text[...] g adds some text to the graphics and

PlotLabel {> "text " adds some text heading the picture.

The option

DisplayFunction {> Identity lets Mathematica calculate the curves. However, it does

not display the graphics. In the Mathematica programs of chapter 2 the names given to

these "invisible" pictures have the extension "inv". If you want to change some more

options of ParametricPlot[ ] consult the lists on page 1100, 1162 and 1165 of [ma].

Show[graphics, options] displays the graphics graphics using the new options options.

The option DisplayFunction -> $DisplayFunction makes an "invisible" graphics visi-

ble.

Show[GraphicsArray[f list g, options ], options ] draws an array of all pictures con-

tained in the list list using the options options for the whole array.

One important option of GraphicsArray [ ] is

GraphicsSpacing {> number . This option adds the space number between the graphics

opjects given in f list g . The second options belong to the Show[ ] command which

displays the array of graphics designed by GraphicsArray [ ]. These two options are a

bit di�erent in what they do but to explain their di�erence needs some experience with

Mathematica .

For reference the option

Epilog {> fText[...] g adds some text to the graphics and

PlotLabel {> "text " adds some text to the picture.

Frame {> True frames the graphics array. If you do not want a frame for all sides but just

for, say, the second and third one you can replace True by f False, True, True, False g.
Then FrameLabel {> f "", "text1", "text2", "" g puts the text text1 and text2 to the



second and third frame line. The two quotation marks "" represent an "empty" text printed

to the �rst and fourth frame line. If you chose some "real" text instead Mathematica would

nevertheless ignore this text since it cannot put text to a frame line which does not exist.

The PlotRange {> fvmin, vmax g command cuts the v-range of the picture produced by

GraphicsArray [ ] (default range is ff0, 1g,f0, ratio between the length of the u-

and v-axes in internal Mathematica units gg) leaving the u-range untouched.
To repace old values of options in some or all graphics of the list by new ones you add:
_(option {> old value) {> (option {> new value) to the options of the Show[ ] command.



2 The Mathematica Programs

This is the main chapter which gives you some hints how to execute my programs best.

It is followed by the sections for various conformal maps and graphics. The last section

gives an outlook to the di�culties that arise when one wants to round the corners in a

condenser con�guration treated by the Schwarz-Christo�el transformation.

2.1 How to Use the Programs

The Mathematica programs are designed in a way that even users with no experience in

the computer language Mathematica may have the programs' graphics plotted provided

they run the programs correctly. Before you do that, however, you should read section

2.1 to 2.3 in which many things are explained that occur in the programs later on.

All sections of chapter 2 except for number 2.1 and 2.2 are arranged in the same way. They

contain text and pictures in the following order:

4� about the conformal map w = f(z): poles of f(z); f 0(z) and its zeros , domain Dz

4� the image of the condenser-plates in the W-plane (picture).

4� calculation of the parametric curve Ĉ representing the condenser planes and the

normal unit vectors in W-space.

4� calculation of the complex electric �eld E and the surface charge density � in terms

of x and y.

4� what the electric �eld and the equipotential lines look like

4� how will the electric �eld strength and the surface charge density on the plates

behave

4� Mathematica program (will not be listed any more)

4� coments on and tricks used in this section's Mathematica program

4� tips for variants of the Mathematica program

4� the black & white graphics that can be generated by the Mathematica program



The Mathematica programs are quite similar one to another:

4� At the beginning the package Graphics`ComplexMap is loaded and the dimensions of the

condenser as, e.g., thickness of the plates, their distance and their voltage must be speci�ed

by hand.

4� When the conformal function contains any elliptic functions or integrals FindRoot[ ]

searches for the value of the parameter m belonging to the input data.

4� Then all functions needed in the graphics commands are de�ned.

Values that specify some graphics parameters are calculated.

4� The main part consists of the commandsParametricPlot[ ] andCartesianMap[ ] in

the order:

ParametricPlot(s) for the upper plate , CartesianMap , ParametricPlot(s) for the

lower plate.

When you run the programs you should divide them into these four sequences so that you

do not have to run through the whole program when an error in one of these parts arises.

This will save you a lot of trouble, time and nerves.

However, in my Mathematica programs there is one operation where di�culties may arise.

This is the FindRoot[ ] command followed by the ReplaceAll[ ] =̂ /. command. Even

with Mathematica it is not possible to devise programs which work for any values of the

condenser parameter.

After the dimensions of the condenser in the �rst part of the program have been speci�ed

FindRoot[ ] searches for a solution of its argument that is a function of those new values.

Then the program replaces the value of the variable { say a { by the solution found by

FindRoot[ ] .

For a tested range of condenser diameters a list of parameters for each FindRoot[ ] com-

mand is given at the end of each program.

If you want the graphics for values of parameters outside the ranges listed you have to

�nd out the parameters and options in FindRoot[ ] yourself. Unfortunately one error in

�nding the solution by FindRoot[ ] entails a number (256) of errors when Mathematica

tries to replace the old value of a by the new incorrect one.

To prevent this you have to divide the program right behind the �rst command :

fra = FindRoot[lhs == rhs, fa; amin; amaxg, options] .

So the other part will begin with:

; a = a /. fra ;

Now run the program up to this FindRoot[ ] command and change the parameters and

options within FindRoot[ ] until Mathematica gives you no more warning messages.

Then merge the two parts again and divide after the second FindRoot[ ] command. Do

this until you reach the last FindRoot[ ] and merge the parts. The program should run

without trouble.

This procedure looks very tedious but it is the quickest way to get the wanted results.



As mentioned before the options in ParametricPlot[ ] and CartesianMap[ ] can be

changed too. The following changes will be the most needed:

for ParametricPlot[ ] :

4� The original labeling of the axes done by the option Epilog {> f. . . g should

sometimes be modi�ed by hand when using other "starting values" for your con-

denser. Therefore the numbers within the �rst f g in the Text[ ] suboption must

be changed. These numbers are the co-ordinates of the text "text" in the graphics.

If you want to render any text inoperative as an option you just surround the option

and the preceding comma by (* , option *) in this case (*, Epilog {> f. . . g*). Ma-

thematica disregards everything wrapped by (* *); later on you may use the option

again after erasing the (* *).

4� Some graphics showing the electric �eld are labeled with ticks in SI units using

the speci�cations (thickness, distance, voltage) from above. If you wanted to use

di�erent units instead, you have to change the variable mult to your purpose.

4� If you want to change the range of the plot to look at a certain detail you may do

this by changing the co-ordinates in the PlotRange option. For further details cf.

section 1.3 or [ma, p. 487-90]

for CartesianMap[ ] :

4� Pictures for special parts of the condenser are plotted by changing the PlotRange

option as indicated in section 1.3 and [ma, p. 487-90]

4� When you want to change the number of gridlines you can do this by adding changing

the variables nef and/or neq in the section for the input data at the beginning of

each program.

4� Due to roundo� errors during the calculation the points near the condenser plates

may have wrong values which lead to zigzag lines across the picture. If that is true

you have to modify the y co-ordinates in CartesianMap[ ] so that you add some

tiny number to the lower limit y0 and subtract it from the upper limit y1. The tiny

numbers for the upper and lower limit do not have to be of the same value and these

values must be detemined by trial and error.



2.2 Mathematica Program for the In�nite Plane Condenser

f(z) = Identity(z) = z

The In�nite Plane Condenser is the basis for all other condenser con�gurations since

its electric �eld and all other related quantities are known. These may then be mapped

conformally to the other condensers presented in the following sections.

The In�nite Plane Condenser is a condenser whose two parallel plates run from minus to

plus in�nity for two of the three Cartesian co-ordinates x,y,z. The electric �eld ~E between

these plates is homogenous and can be calculated from the voltage applied to these plates

and for the distance d.
~E = �~r� with � =

�V y

d
(16)

� denotes the potential between the plates and �V is the potential di�erence of the plates.

This expression corresponds to one condensor plane located in the xz-plane and the other

one in a plane parallel to the �rst one at the distance d.

Since the electric �eld is homogenous the surface charge density de�ned in equation (14) is

constant.

� = �"0 �V/d (17)

The minus, plus sign respectively applies to the positively, to the negatively charged plate

respectively.

Up to now in this section I talked about electric quantities in real space IR3. Now I switch

to the complex plane. As in section 1.2 I drop the z component of the IR3 space. The

remaining components x and y become the real (x) and imaginary part (y) of the elements

z (don't confuse it with the third real component z !) in the complex plane.

For many condenser con�gurations conformal maps are known which transform the problem

to that of a two dimensional In�nite Plane Condenser. When you know such a function12

the electric �eld, the potential, the surface charge density and the electric �eld strength on

the surface of this condenser can be computed a lot easier.

The In�nite Plane Condenser which I choose to work with on the complex plane is one

whose plates are located on the x-axis and at z = x+ i�; a line parallel to the x-axis at the

distance d = i�. After this choice I map the In�nite Plane Condenser to the Flat Condenser,

which matter is the content of the next section. To this con�guration in the upper half

of the complex plane I apply the Schwarz-Christo�el formula to get all other condenser

con�gurations treated in this thesis.

The conformal map for the In�nite Plane Condenser is the identity function. It is conformal

in the whole complex plane. The domain for the In�nite Plane Condenser would therefore

12 A standard book for conformal mapping is [ko].



be Dz= CI .

This domain, however, is oversized, since it is larger than the size of the In�nite Plane

Condenser which is the starting-point for all other con�gurations.

That is why I restrict the domain Dz to Did := fzj z = x + iy with x 2 IR ^ y2[0; �]g.
So the domains for further conformal functions can only be subdomains of Did. Moreover

zeros of the �rst derivative of the following conformal maps that are not within this domain

Did will not be mentioned.

Nevertheless you have to be careful when choosing the domain for the computer programs.

You might get false graphics results especially for conformal maps including square roots,

elliptic functions and integrals due to errors arising from numerical calculation.

The potential of equation (16) must be slightly modi�ed when changing to complex co-

ordinates: It must be holomorphic in the domain Did and must ful�ll the boundary con-

ditions. Thus the correct expression for � is

�(z) = �iV0 z
�

: (18)

Since the complex potential for the lower plate (z = x) equals � = �iV0 x� and � = V0 � iV0x�
for the upper plane (z = x + i�) we see that the voltage at the upper plate is V0 and is

zero at the lower plate.
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Figure 2: Curve C and normal vectors of the In�nite Plane Condenser

Figure 2 represents the plane condenser in domain Dz= Did indicated by the caligraphic

Z. Apart from the condenser planes entitled C1 and C2 you see two tiny arrows pointing

upwards and downwards and some triangles giving a direction to the lines that represent the

two dimensional planes (The second dimension was skipped when changing to the complex

plane.).

The arrows are the unit vectors nz normal to the condenser planes. Of course there is a

unit vector for every point on each plane, but since all nz of one plate are the same I plotted

one representative for each plane. They are constructed as follows:

Let C(s) be the parametric representation of a curve C with s the parameter of C(s).

By de�nition the normal vector NC(s0) in the point s0 of the curve C(s) is normal to

the tangent vector TC(s0) in the same point. The tangent vector TC(s0), however, can be



calculated when I know the curve C(s). It is the total derivative of C(s) in the point s0

TC(s0) =
dC(s)

ds

�
s=s0

: (19)

On the Gaussian plane the multiplication of TC with one of the complex numbers ei(2k+1)�=2

(k 2ZZ) leads to a set of normal vectors Nk
C . This is evident when you consider that the

multiplication of a complex number by ei' can be interpreted as the rotation of the corre-

sponding vector by the angle �. I choose k = 013. Thus the normal unit vector in the point

s0 becomes

nC = i

 
dC(s)

ds

,����dC(s)ds

����
!
s=s0

: (20)

The denominator in equation (20) is the modulus of the numerator added to normalize the

normal vector N0
C .

With the knowledge of one parametric representation for the condenser plates I may calcu-

late the normal unit vectors immediately. As you will see all our curves which are closed

loops on Riemann's sphere result clearly from the curve for the in�nite plain condenser14.

For the problem of the In�nite Plane Condenser the parametric curve C(s) consists of two

parts C1 and C2

C1(x) = fxj x2(�1;1)g , C2(x) = f�x+ i�j x2(�1;1)g (21)

where the parameter s of the curve C(s) was replaced by the variable x.

To understand the minus sign inC2(x) you have to look at the image of the in�nite condenser

planes on the Riemann sphere (they have the shape of a deformed �gure eight, crossing at

the north pole) or at �gure 2:

Imagine two lines connecting the two parts C1 and C2 forming a closed loop with these.

I now run along C1 to the point where the �ctious line at the right leaves to C2; I follow
that line up to C2; then I follow C2 in the negative sense to the left auxiliary line; I get

down to C1 again to complete the loop. When you let the two auxiliary lines tend to plus

and minus in�nity you get expressions for C1 and C2 that are equal to equation (21).

If I chose the plus sign instead, I would again get the shape of an eight form on Riemann's

sphere, but I would have to follow the upper loop of the eight form in the unusual sense

so that the normal vector pointed to the outside of the loop. This would mean that the

charge on the plates had the same sign and the two plates would therefore not form a

condenser. Mathematically speaking the loop integral of the surface charge density would

not equal zero. This cannot be correct since the �eld between the plates does not have any

13 Since Did is not the whole complex plane k is restricted to k2f�1; 0g. I choose k = 0 whose

multiplication factor ei�=2 turns TC counterclockwise into NC which is the mathematical direction for

closed loops and of the complex polar angle '. Choosing k = �1 the surface charge density � changes

sign which does not lead to new solutions since V0 in �k=0 can be replaced by �V0 to get the same

results.
14 Which is quite evident since the conformal functions which map the In�nite Plane Condenser to all

others are single-valued. Even for points on the planes that do not belong to the domain the limit

from the condenser's interior is single-valued.



singularities which the Cauchy integration formula would demand. Hence the tangent and

normal (unit) vectors read

Tz =
dC(s)

ds
=

�
1 for part C1(s)

�1 for part C2(s)
(22)

nz = ei�=2 � Tz = i
dC(s)

ds
=

�
i for part C1(s)

�i for part C2(s)
(23)

The subscript z of T and n again indicates the domain Dz wherein the above vectors are

de�ned.

With the help of eqs (23), (18) and (15) the surface charge density of the condenser plates

can be calculated as

� = �"0 <e
�
�i d

dz

�
�iV0 z

�

��
= �"0V0

�
: (24)

As I mentioned before � has a constant value, whereby the plus sign in the equation belongs

to the upper and the minus sign to the lower plate. In physical terms this means that the

charge density is the same all over both planes; yet the densities are oppositely charged.

Since I always use this In�nite Plate Condenser as a basis to calculate all the others except

for those in section 2.13 and 2.14 I insert its potential (eq. (18)) into formula (1.2) of the

surface charge density in the W-plane.

�w(Ĉ) = �"0 <e

0
B@nw d

dz

�
� iV0 z=�

� 1

f 0(z)
.
z2C

1
CA = "0 <e

0
B@nw iV0

�

1

f 0(z)
.
z2C

1
CA

= �"0V0

�
=m

0
B@nw 1

f 0(z)
.
z2C

1
CA = �(Ĉ)(25)

You see that the surface charge density �(Ĉ) = �(Ĉ � RW ) for plates in the W-plane tends

to in�nity for the limit z �! z0 when f 0(z0) = 0. Nevertheless it stays �nite in Rw since

z0 =2Dz. Fortunately all inner points wi 2 Rw on the W-plane have a �nite electric �eld as

f(z) is conformal in Dz.



The electric �eld strength Ew on the W-plane can be obtained by the same procedure. I

have to insert equation (18) into (12 b) and obtain

E = Eu + iEv = �
�
d	

dw

�
= � iV0

�

1

f 0(z)
.
z2C

=
V0

�
=m

8><
>:

1

f 0(z)
.
z2C

9>=
>;� i

V0

�
<e

8><
>:

1

f 0(z)
.
z2C

9>=
>;

= �V0

�
=m

8><
>:

1

f 0(z)
.
z2C

9>=
>;� i

V0

�
<e

8><
>:

1

f 0(z)
.
z2C

9>=
>; : (26)

If the nomal unit vectors nw are simply �1 or � i as in all cases except for the One

Rounded Corner of 90� Condenser the relation between the electric �eld strength and the

surface charge density is quite simple.

�nw=1(v) = "0 Eu(v)

�nw=�1(v) = �"0 Eu(v)

�nw=i(u) = "0 Ev(u)

�nw=�i(u) = �"0 Ev(u) (27)

This equations show that the surface charge density and the electric �eld on the plates are

the same apart from the factor �"0 . This permits one to create one Mathematica program

for both the �eld and charge density (cf. sections 2.1 & 2.2).



Mathematica program 1: for the In�nite Plane Condenser

The �rst Mathematica program consists of just two commands (apart from the options)

and I do not suppose you would like to vary it.

Therefore I show the graphics plotted by the program straight away:

(e
andeqpl1)

Figure 3: Graphics produced by theMathematica program 1 for the In�nite Plane Condenser.

The In�nite Plane Condenser is not very instructive: so we go to the next one.



2.3 Mathematica Program for the Flat Condenser

t = ez

This section as the previous one is more of an explanatory character because it prepares

the foundation for the other problems as indicated in section 2.3. The condenser plates

are located on the r-axis which is the real axis with the one plane extending from minus

in�nity to zero, the other one (oppositely charged) extending from zero to in�nity with a

gap at zero15. The conformal map which does the transformation is: t = ez. The equation

f(t) = A
R t
t0
(t� t0)

�1dt+ B = A ln(t� t0) + B maps the upper half of the T-plane to the

In�nite Plane Condenser . I choose t0 to be t0 = 0. When I let t = �1 be transformed to

z = 0 and z = i� respectively I get 0 = A ln1 +B = B and i� = A ln(�1) = i�A) A = 1.

So the transformation reads z = ln t 16 . Its inverse function f�1(z) = ez = t gives the

conformal map as written above.

The conformal map t = f(z) = ez is holomorphic in the whole complex plain CI . Its �rst

derivative f 0(z) = f(z) gets zero for values z = �1 (m 2ZZ) which is not in Did.

With that the domain Dz is Dz= Did

6

-- -66 r

is

ii Ĉ2 Ĉ1

T

Figure 4: Curve Ĉ and normal vectors of the Flat Condenser

The image Ĉ of the curve C in the T-plane is shown in the picture above. As C it consists

of two parts Ĉ2 and Ĉ1. Ĉ1 is the image of C1 and Ĉ2 the image of C2 in the T-plane since

f(C1) = ex � 0 =) Ĉ1(r) = f(C1) = r for r > 0 ;

f(C2) = e�x+i� = �e�x � 0 =) Ĉ2(r) = f(C2) = r for r < 0 :

15 The derivative of the conformal map f(z) = f 0(z) = ez is zero for z = �1. Therefore t = 0 is

not an element of the domain Dt which �ts our physical purpose well because we can place an ideal

insulator at the zero-point to prevent the charged particles to move from one plate to the other without

spoiling the mathematical description.
16 The function f(t) = ln t = z is multi-valued since its inverse is periodic. To get a unique solution

for ln t I have to cut the range. I choose a new range with Rt = fz = x + iy jx 2 IR; y 2 (��; �]g.
This is a superset of the plane condenser's domane Did. The new function f is therewith Lnt = z the

principal branch of the logarithm.



Here f(Ci) denotes the image of the curve Ci located in the Z -plane under the function f.

Since f(C1) is real and monotonically increasing from 0 to in�nity for increasing x it has to

be aquivalent to the positive branch of the r-axes. The real negative and with x increasing

function f(C2) must therefore be the negative branch of the r-axes. With these parametric

curves for the condenser plates I compute the unit normal vectors in the W-plane.

They are calculated to nt = idr
dr

= i which is the same result as for the lower plate of the

In�nite Plane Condenser . Inserting the derivative for the points of the curve C and the

normal vectors nw into equation (25) I get the surface charge density for the two parts Ĉ1
and Ĉ2 in terms of x:

�Ĉ1(x) = �"0V0

�
=m

�
i
1

ex

�
= �"0V0

�

1

ex
for x 2 IR : Ĉ1(x) = ex ;

�Ĉ2(x) = �"0V0

�
=m

�
i

1

�e�x
�
= +

"0V0

�

1

e�x
for x 2 IR : Ĉ2(r) = �e�x :

In this special case I can even write down the surface charge density as a function of r

when I insert the representations for Ĉ1 and Ĉ2 in terms of x. In all the other problems this

cannot be done by analytic expressions. This is performed by the Mathematica command

ParametricPlot[ ].

�Ĉ1(r) = �"0V0

�

1

r
for r > 0 ;

�Ĉ2(r) = �"0V0

�

1

r
for r < 0 :



Mathematica program 2: for the Flat Condenser

This program like all the following ones consists of a combination ofParametricPlot[ ] and

CartesianMap[ ]. The �rst one draws the surface charge density, the latter one the con-

denser planes with their electric �eld. No special tricks for the design of this program

were needed except for the use of the option AspectRatio which renders the output of

ParametricPlot[ ] as large as the graphics of CartesianMap[ ]. Since I do not suppose

that you will want to change this program no variants are mentioned.

Here are the Graphics:

-3 -2 -1 1 2 3
r [mm]

-3

-2

-1

1

2

3

E [V/m]

(e
andeqpl2)

(ppleftright2)

Figure 5: Graphics produced by the Mathematica program for the Flat Condenser. The

labels indicate that parts of the program which produced the pictures.



2.4 Mathematica Program for the Semi-In�nite Plane Condenser

w = a

�
(1 + z + ez)

This is the �rst realistic problem which deals with the Semi-In�nite Plane Condenser. The

upper plate extends from minus in�nity to zero and ends there. I call this a semi-in�nite

plate to distinguish it from the in�nite plate. The lower plate is at the u-axis. Although

all pictures of this section show only one semi-in�nite plate at u+ ia and an in�nite plate

the problem is compatible with that of two semi-in�nite plates at u � ia as shown in the

variations of the Mathematica program.

The conformal map for this problem is holomorphic for all z 2 CI and the �rst derivative

f 0(z) = a
�
(1 + ez) is zero for z = i�. With that the domain Dzbecomes Dz= Didnfi�g.
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Figure 6: Curve Ĉ and normal vectors of the Semi-In�nite Plane Condenser

The image of the curve C in the complex W-plane is given in the picture above. It consists

of three parts. Ĉ1 is the image of C1, Ĉ2 the image of C2 for x � 0 and Ĉ3 the image of

C2 for x � 0 on the W-plane.

Allthough both curves Ĉ2 and Ĉ3 are at the same distance ia from the u-axis they are drawn

as seperate lines for clarity.

f(C1) =
a
� (1 + x+ ex) =) Ĉ1(u) = f(C1) = u for u 2 IR ;

f(C2) =
a
�
(1� x+ i� � e�x) =)

�
Ĉ2(u) = f(C2(x < 0))

Ĉ3(u) = f(C2(x > 0))

= u+ ia

= �u+ ia

for u < 0 ;

for u > 0 :

The curves f(Ci(x)) can be transformed to the parametric curves Ĉj(u) of the condenser

plate in the W-plane as indicated in the previous section by simply studying their mono-

tonicity for the real and imaginary part. The minus sign in Ĉ3(u) has to be interpreted

similar to the one for the upper plate of the In�nite Plane Condenser .

So the unit normal vectors are calculated to nw(Ĉ1) = nw(Ĉ2) = i and nw(Ĉ3) = �i. With



these the surface charge density in terms of x is

�Ĉ1(x) = �"0V0

�
=m

�
i �

a(1 + ex)

�
= �"0V0

a

1

1 + ex

for x 2 IR : Ĉ1(x) =
a
�
(1 + x+ ex) ;

�Ĉ2(x) = �"0V0

�
=m

�
i �

a(1 + e�x+i�)

�
= �"0V0

a

1

1� e�x

for x < 0 : Ĉ2(x)� ia = a
� (1� x� e�x) ;

�Ĉ3(x) = �"0V0

�
=m

� �i �

a(1 + e�x+i�)

�
= +

"0V0

a

1

1� e�x

for x > 0 : Ĉ3(x)� ia = a
� (1� x� e�x) :

The surface charge density and the electric �eld of the upper plate becomes in�nite in

w = ia for both the top and bottom of this plate.

This pole results from the sudden change of direction in the point w = ia. In this case I

cannot get rid of the in�nite values since the application of the modi�ed Schwarz-Christo�el

formula will not lead to a smooth curve as the plates are in�nitely thin. Their ensuing

singularity is a consequence of the sharp edge. For a plate of �nite thickness (cf. the next

section), however, a mapping function which produces an electric �eld and a surface charge

density that are �nite all over the plates may be constructed.

The asymptotic behaviour of the electric �eld and charge density on the plates for u! �1
can be considered quite easily:

For u ! �1 �eld and charge density at the bottom of the upper as well as at the lower

plate have to approach their values of the In�nite Plane Condenser: these values equal �V0
a

For the �eld and � "0V0
a for the charge density. The plus sign in the last term holds for the

upper, the minus sign for the lower plate.

for u! �1 on the top of the upper plate and for u! +1 on the lower plate the �eld and

charge density tend to zero since the distances between the charges of these plates tend to

in�nity.



Mathematica program 3: for the Semi-In�nite Plane Condenser

Comments:

The �rst pictures (ppuptop3, ppupbot3, e
andeqpl3, ppdown3 except for

ppuptop3inv) are drawn with ticks (ppuptop3inv is calculated but stays invisible). The

following three Show[ ] commands produce pictures without ticks to see the qualitative

behaviour of the curves whereby the �rst i.e. the Show[GraphicsArray[ ]] command

puts the pictures of the upper plate ppuptop3, ppuptop3inv into one picture without

ticks. The image of ppuptop3inv looks like the picture of ppuptop3 with the u-axis

pointing into the other direction. This change of direction is indicated by the reverse arrow

in the FrameLabel option.

Variants:

4� it is possible to change ParametricPlot[ ] and CartesianMap[ ] as described

in section 2.1.

4� since you will normally deal with condensers that consist of two semi-in�nite plates

you can obtain that condenser by replacing the limits for the y co-ordinate: f0,Pig
in CartesianMap[ ] by f{Pi,Pig. In order to avoid confusion by the elec-

tric �eld of the middle plate that is not any more existent, wrap (* *) around

ppdown3 = ParametricPlot[... ] ; and Show[ppdown3, ... ] ;.

To get the line for the lower condenser plate instead of that of the middle plate

replace Line[ffd,0g,fe,0gg] in the Epilog option of e
andeqpl3 by

Line[ffe,{ag,f0,{agg].
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Figure 7: Graphics with ticks plotted by the Mathematica program for the Semi-In�nite

Plane Condenser. The labels indicate the parts of the program which produced the pictures.
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�rst Show[ ]

second Show[ ]

third Show[ ]

Figure 8: Graphics without ticks plotted by the three Show[ ] commands of the Mathe-

matica program for the Semi-In�nite Plane Condenser.



Figure 9: Symmetric Semi-In�nite Plane Condenser without ticks which is produced by the

variant of the Mathematica program for the same condenser parameters as used in the

previous pictures.



2.5 Mathematica Program for the Thick Semi-In�nite Plane Condenser

w = a
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This section contains a variant of the previous problem with a condenser plate of �nite

thickness b which is at a distance a from the u-axis. For thin plates the electric �eld looks

nearly the same as in the previous problem. For thick plates and near the end of the upper

plate, however, the �eld shows some new aspects. The map which is given in [fl, p. 76]

f(z) = a
�
p
p

�p
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p
t+ p + (p+ 1) ln
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t+ p

i
�
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p ln
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� ln(p+ 1)

with t = ez and b
a =

(
p
p�1)2
2
p
p is holomorphic in CI when

p
p 6= 0 (which is always

satis�ed) and real (a > b). The �rst derivative f 0(z) = a
�
p
p

p
1 + ez

p
p+ ez is zero at

z = i� and z = i� + ln p. Therefore the domain Dz becomes Dz= Didnfi�; i� + ln pg.
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Ĉ3

ia+ib

ia W

Figure 10: Curve Ĉ and normal vectors of the Thick Semi-In�nite Plane Condenser

As seen in the picture above the condenser's curve Ĉ on the W-plane consists of four parts:

Ĉ1 is the image of C1 , Ĉ2 of C2(x < � ln p) , Ĉ3 of C2(� ln p < x < 0) and Ĉ4 of

C2(x > 0).
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=) Ĉ4(u) = f(C2(x > 0)) = �u for 0 < u <1 :

Here I used a formula given in [bs, x3.4.4.2.2] to write down the logarithm for complex



arguments as a sum of its real and imaginary part.

Since the images of the cuve C(x) are a lot longer now I plotted the functions f(C) with

Mathematica's Plot[ ] command to �nd out their monotonicity. When the function

increases with x Ĉ follows the positive u or v direction. When it decreases it runs against

those directions.

The unit normal vectors are calculated to nw(Ĉ1) = nw(Ĉ2) = i; nw(Ĉ3) = 1 and nw(Ĉ4) =
�i. The surface charge density in terms of x is
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�Ĉ2(x) = �"0V0

�
=m

(
i

��pp
a
p
e�x � 1

p
e�x � p

)
=

"0V0

a

p
pp

e�x � 1
p
e�x � p

for x < � ln p : Ĉ2(x) = <eff(C2(x < � lnp))g ;
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for x > 0 : Ĉ4(x) = <eff(C2(x > 0))g :

The electric �eld and the surface charge density on the lower, on the top and the bottom

of the upper plate behave as in the previous problem. At the front of the upper plate

they tend to in�nity both for iv = ia and iv = i(a + b) but they are not symmetric since

the points with smaller values of iv are nearer to the oppositly charged lower plate than

those points with larger values. In addition the charge density and the electric �eld tend

to in�nity as ��1=3 (� is the distance from the corner); whereas theses quantities become

in�nite as ��1=2 for the in�nitely thin plate.



Mathematica program 4: for the Thick Semi-In�nite Plane Condenser

Comments:

In the �rst part of the program a new command Solve[ ] is used to solve an equation sym-

bolically; here the equation (sp { 1)^2/(2 sp) { N[b]/a == 0 given above is solved for

the variable sp. A list of solutions for the equation (of two elements for this problem) is re-

turned. Hence the If [ ] command chooses the solution with larger value to work with in the

further program. As in the previous section the �rst pictures (ppuptop4, ppupfront4,

ppupbot4, e
andeqpl4, ppdown4 except for ppuptop4inv) are plotted with ticks.

The following three Show[ ] commands produce pictures without ticks to display the

qualitative behaviour of the curves whereby the �rst, i.e. the Show[GraphicsArray[ ]],

command gathers the pictures of the upper plate ppuptop4inv, ppupfront4, ppupbot4

in one picture without ticks. The pictures, however, can only be obtained for a certain

range of values for the plate distance a and the plate thickness b :

a 10^{4 to 10^{2 10^{2 to .5 .5 to 4 4 to 40 40 to 600 600 to 870 870 to 10^5

a/b 13 to 500 13 to 700 6 to 700 20 to 700 50 to 700 100 to 700 50 to 650

Variants:

4� it is possible to change ParametricPlot[ ] and CartesianMap[ ] as described

in section 2.1.

4� since you will normally deal with condensers that consist of two thick semi-in�nite

plates you can obtain that condenser by replacing the limits for the y co-ordinate :

f0,Pig in CartesianMap[ ] by f{Pi,Pig. In order not to raise confusion by

the electric �eld of the central plate, that is not any more existent, wrap (* *)

around ppdown4 = ParametricPlot[... ] ; and Show[ppdown4, ... ] ;.

To get the line for the lower condenser plate instead of that of the central plate

replace Line[ff1.02 f,0g,f1.02 e,0gg] in the Epilog option of e
andeqpl4 by

Line[ff1.02 e,{ag,f0,{ag,f0,{a { bg, f1.02 e,{a { bgg].
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Figure 11: Graphics with ticks produced by the Mathematica program for the Thick Semi-

In�nite Plane Condenser. The labels indicate the parts of the program that plotted the

pictures.
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Figure 12: Graphics with ticks produced by the Mathematica program for the Thick Semi-

In�nite Plane Condenser. The third picture was plotted using the variant for the same

condenser parameters as before. The labels indicate the parts of the program that plotted

the pictures.
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third Show[ ]

second Show[ ]

�rst Show[ ]

Figure 13: Graphics without ticks produced by the Mathematica program for the Thick

Semi-In�nite Plane Condenser.



2.6 Mathematica Program for the One Corner of 90� Condenser
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This section is about a condenser whose lower plate is the u-axis. The upper plate is parallel

to the positive part of the u-axis located at a distance ia with a 90� corner at w = ia; there

it turns to i1 along the iv-axis. It may be considered as the limiting case of the Thick

Aperture Condenser of section 2.11 for large values of the thickness 2b. As in sections 2.5 and

2.6 one gets a condenser with two unconnected edges by application of Schwarz's re
ection

principle (cf. the variants of the Mathematica program).

The problem is described in [vb, p. 142f] with the di�erence of an additional term ia in

the conformal function to get the two-corner version more easily.

The mapping function for this problem is holomorphic for any z 2CI ; the �rst derivative

f 0(z) = ia
� (e

z � 1)1=2 is zero for z = 0 . With that the domain Dzbecomes Dz= Didnf0g.
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Figure 14: Curve Ĉ and normal vectors of the One Corner of 90� Condenser

The image of the curve C in the W-plane is shown in the picture above. Again it consists

of three parts Ĉ1; Ĉ2 and Ĉ3: Ĉ1 is the image of C1 for x < 0; Ĉ2 the image of C1 for x > 0

and Ĉ3 the image of C2 on the W-plane since :

f(C1(xjx < 0)) =
a

�

(
i� � 2

p
1� ex � ln

"
1�p1� ex

1 +
p
1� ex

#)

=) Ĉ1(u) = f(C1(x < 0)) = �u+ ia : u < 0 ;

f(C1(xjx > 0)) =
ia

�

(
� + 2

p
ex � 1 � arctan

 
2
p
ex � 1

2� ex

!)

=) Ĉ2(v) = f(C1(x > 0)) = iv : v > a ;

f(C2) =
a

�

(
i� � 2

p
e�x + 1 + ln

"p
e�x + 1 + 1p
e�x + 1 � 1

#)

=) Ĉ3(u) = f(C2) = u : u 2 IR ;



The normal unit vectors are calculated to nw(Ĉ1) = �i ; nw(Ĉ2) = �1 and nw(Ĉ3) = i.

The surface charge density in terms of x is

�Ĉ1(x) = �"0V0

�
=m

�
�i �=ap

1� ex

�
= +

"0V0

a

1p
1� ex

for x < 0 : Ĉ1(x) = f(C1(x < 0))� ia ;

�Ĉ2(x) = �"0V0

�
=m

�
�1 i �=ap

ex � 1

�
= +

"0V0

a

1p
ex � 1

for x > 0 : Ĉ2(x) = f(C1(x > 0)) ;

�Ĉ3(x) = �"0V0

�
=m

�
i

�=ap
1 + e�x

�
= �"0V0

a

1p
1 + e�x

for x 2 IR : Ĉ3(x) = f(C2) :

The surface charge density and the electric �eld on the upper plate get in�nite at w = ia.

�Ĉ1 tends to
"0V0
a

(the �eld to �V0
a
) for u!1 and �Ĉ2 and the �eld tend to zero for v !1.

The surface charge density and the �eld on the lower plate both tend to zero for u! �1
and to � "0V0

a ; � V0
a respectively for u! +1.

The singularity on the upper plate is of the order u�1=3 and v�1=3 respectively. To prove

this the function f(C1(x)) has to be inverted for the limit x ! 0. Inserting this into �Ĉ1
and �Ĉ2 proves the edge condition to be valid in this case.

Proof for the horizontal part of the upper plate:

Ĉ1(u) = �u+ ia = f(C1(x < 0)) =
a

�

(
i� � 2

p
1� ex � ln

"
1�p1� ex

1 +
p
1� ex

#) ^
u<0

:

The second approximation of Ĉ1(u) for x! 0� leads to (the �rst one gives a constant for

the variable u and is therefore useless) :

Ĉ1(u! 0+) � a

�

�
i� � 2

p�x + 2
p�x +

2

3
(�x)3=2

�
= ia+

2

3
(�x)3=2 ;

=) Ĉ1 � ia = �u = 2
3(�x)3=2 =)p�x � (�u)1=3 :

Here I used the series expansion of the exponential function

ex = 1 + x+ : : : =)
p
1� ex � p�x > 0

and that of the natural logarithm ([bs, p.33])

ln

�
1� t

1 + t

�
= � ln

�
1 + t

1� t

�
= �2

"
t+

t3

3
+ : : :

#
:



Inserting the approximation of u into the surface charge density gives

�Ĉ1(x) �
"0V0

a

1p
1� ex

� 1p�x � (�u)�1=3 :

Proof for the vertical part of the upper plate:

Ĉ2(v) = iv = f(C1(x > 0)) =
ia

�

(
� + 2

p
ex � 1 � arctan

 
2
p
ex � 1

2� ex

!) ^
v>a

:

The �rst approximation of Ĉ2(v) for x! 0+ leads to:

Ĉ2(v ! 0+) � ia

�

(
� + 2

p
x � 2

p
x

1� x

)
=

ia

�

n
� + 2x3=2

o
;

=) �=mfC1 � iag � x3=2 � v =)p
x � (v)1=3 :

Here I used the series expansion of the exponential function and of the arcus tangent

([bs, p.34])

arctan t = t� t3

3
+ : : :

Inserting the approximation of v into the surface charge density gives

�Ĉ2(x) �
"0V0

a

1p
ex � 1

� 1p
x
� v�1=3 :

Nevertheless for realistic condensers �eld and charge density have to stay �nite. For this

purpose the corner has to be rounded which is shown in the next section.



Mathematica program 5: for the One Corner of 90� Condenser

Comments:

As usual the �rst pictures (ppupvert5, ppuphor5, e
andeqpl5, ppdown5 except

for a5inv) are plotted with ticks. The following three Show[ ] commands produce

pictures without ticks to see the qualitative behaviour of the curves whereby the �rst,

i.e. the Show[GraphicsArray[ ]], command gathers the pictures of the upper plate

ppupvert5inv,ppuphor5 in one picture without ticks.

Variants:

4� it is possible to change ParametricPlot[ ] and CartesianMap[ ] as described

in section 2.1.

4� since you will normally deal with condensers that consist of two corners you can

obtain it by application of the Schwarz re
ection principle. You have to delete the

", Line[ffc,0g,fd,0gg] " suboption (don't forget the comma !) in the Epilog

option of e
andeqpl5 and to add another picture:

e
andeqpl5low = CartesianMap[Conjugate[cm5[#]] &, fe,bg,
f0,Pi { .001g, PlotRange {> All,

Prolog {> ff Thickness[tcb], Line[ff0,{gg,f0,{ag,ff,{agg] gg ] ;

The Prolog option does the same as Epiolg, however, not after but before the

picture is plotted. That is why a second pair of curly brackets is wrapped around

the Thickness and Line suboptions to prevent that all lines are drawn so thick.

To display both the upper (e
andeqpl5) and lower (e
andeqpl5low) part of the

Two Corners of 90� Condenser in one picture you add:

Show[e
andeqpl5, e
andeqpl5low] ; .

If I used the Epilog option in c5low instead of Prolog I would get a Two Corners

of 90� Condenser with just one thick line since Mathematica executes the Epilog

option of the �rst graphics in the list of the Show[ ] command only.

This picture is drawn with ticks. To get the "pure" version add:

", Axes {> None" as an option to the Show[ ] command. In order to avoid

confusion by the electric �eld of the middle plate that is not any more existent wrap

(* *) around ppdown5 = ParametricPlot[...] ; and Show[ppdown5,...] ;.
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Figure 15: Graphics with ticks produced by the Mathematica program for the One Corner

of 90� Condenser. The labels indicate that part of the program which plotted the pictures.

The voltage betwen the plates is 1 V; the distance of the parallel branches is 3 mm.
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Figure 16: Graphics without ticks produced by theMathematica program for the One Corner

of 90� Condenser for the same condenser parameters as for the pictures on the previous page.
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Figure 17: Graphics produced by the variants of the Mathematica program for the One

Corner of 90� Condenser for the same condenser parameters as for the pictures on the

previous pages.



2.7 Mathematica Program for the Rounded One Corner of 90� Condenser

w = 2 iA

�p
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q
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o
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�

1p
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p
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This section deals with a variant of the previous problem. In contrast to the last condenser

this one has a rounded instead of a sharp edge which causes the electric �eld and the surface

charge density to stay �nite all over the plates. The function is calculated in [we, p.373-376].

I multiplied it by the imaginary unit i to rotate the condenser in order to compare it with

the previous one.

Although the conformal map is the same in [we] and this thesis (for " = 1) the conclusions,

however, are a bit di�erent. For a radius b = a=8 of the smoothed edge, [we, p.375] gets

a corresponding � = :787. For the same b I compute � to � = :800845. To get a value of

� = :787 my b has to equal b = a=7:1346.

On page 376 [we] compares the contour of the rounded corner as the image of the conformal

function with a quater circle. The contour looks a bit wavy whereas my contour looks very

smooth (cf. the pictures on p. 57).

Since [we] was published in 1950 the numerical algorithm used then to solve the equation for

� may have been a bit inaccurate which may cause the di�erences I mentioned. Moreover

I found that " should be chosen as " = 0:96.

The map

f(z) = 2 i A

(
p
t� p �pp arctan

s
t� p

p
+ �

 
p
t� q �pq arctan

s
t� q

q

!)
+ ia

with A = a
�

1p
p+�

p
q and t = ez

is holomorphic on the whole Z -plane. The �rst derivative f 0(z) = i A[
p
t� p + �

p
t� q ]

has no zeros. So the domain Dz becomes Dz= Did
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Figure 18: Curve Ĉ and some normal vectors of the Rounded One Corner of 90� Condenser

The picture looks quite similar to the one of section 2.7. Nevertheless there is one important

di�erence: The normal unit vectors for the straight parts of the upper plane are the same as

before. Yet those of the curved part are functions of the variables u and v which complicates

the calculation of the surface charge density a lot.

The curve C in the W-plane consists of four parts. Ĉ1 is the image of C1 for x < ln p; Ĉ2
the image of C1 for ln p < x < ln q; Ĉ3 the image of C1 for x > ln q and Ĉ3 the image of

C2 on the W-plane:

f(C1(xjx < ln p))

= �2A
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=) Ĉ1(u) = f(C1(x < ln p)) = u+ ia : b < u < 1 ;

f(C1(xj ln p < x < ln q))

= 2 i A
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q
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i
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p
q Artanh

q
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q

�o
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=) Ĉ2(u; v) = f(C1(ln p < x < ln q)) = �u+ iv : �b < u < 0 and a < v < (a+ b)

with approximatly u2 + v2 = b2 ;

f(C1(xjx > ln q))

= 2 i A
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ex � p �pp arctan
q

ex�p
p

+ �
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ex � q �pq arctan
q
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=) Ĉ3(u) = f(C1(x > ln q)) = iv : a < v < 1 ;
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q
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=) Ĉ4(u) = f(C2) = u : u 2 IR :



The normal unit vectors are calculated to nw(Ĉ1) = �i ; nw(Ĉ3) = �1 and nw(Ĉ4) = i. The

fourth normal vector nw(Ĉ2) cannot be calculated exactly. To approximate this one I assume

the rounded edge of the upper plate to be a quarter circle ((u� b)2 + (v � (a+ b))2 = b2).

Than the curve Ĉ2(u; v) can be written in the form:

Ĉ2(u; v) = �u+ iv = �u� i
p
b2 � (u� b)2

a+ b
=

p
b2 � (v � (a+ b))2

b
+ iv :

Di�erentiation with respect to u or v respectively and multiplication by the imaginary unit

gives

Nw(Ĉ2(u)) = �i� u� b

(a+ b)
p
b2 � (u� b)2

; nw(Ĉ2(u)) = Nw(Ĉ2(u))=jNw(Ĉ2(u))j ;

Nw(Ĉ2(v)) = �1� i(v � (a+ b))

b
p
b2 � (v � (a+ b))2

; nw(Ĉ2(v)) = Nw(Ĉ2(v))=jNw(Ĉ2(v))j :

Here u is the real and v the imaginary part of the function f(C1(xj ln p < x < ln q)). This

expression is rather lengthy but the simplest one I could �nd. To get a result even more

accurate one must approximate the rounded corner by an ellipse ((u � b)2=� + (v � (a +

b))2=� = 1) with individual � and � for every ratio a=b.

The surface charge density in terms of x is

�Ĉ1(x) = �"0V0
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�Ĉ2(v)(x) = �"0V0

�
=m

(
�1 nw(Ĉ2(v))
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for x 2 IR : Ĉ4(x) = f(C2(x)) :



The electric �eld on the condenser plates is �nite now although the division of the repre-

sentations �eld for the round part of the upper plate is a great disadvantage that cannot

be prevented. To get the electric �eld at this part one has to add these quantities by hand

or again try to approximate the relation between u and v using the equation for circles or

ellipses.

To show that the approximation by a circle should su�ce your purposes the curve of the

upper condenser plate for three values of " is plotted on page 57.

The curves for " = 0:95 and " = 0:96 are very close to a quarter circle, although the point

f(p) moves to the left for smaller values of ". That is why I choose " = 0:96 since f(p) is

closer to the circle than in the " = 0:95 case. For " = 1 the points f(p) and f(q) are located

exactly on the circle. This causes the electric �eld strength at these points to be as close

as possible to the case when the curve were an exact quarter circle.

You can also see that the connections of the curved and the straight parts of the upper

plate are continuous but not smooth. So the graphs for the �eld at the connecting points

(f(p); f(q)) cannot be smooth either. The �eld and charge density in the interior of the

condenser, however, has to be smooth.



Mathematica program 6: for the Rounded One Corner of 90� Condenser

Comments:

The program is structured like the other ones. The pictures (ppupvert6, ppuphor6,

e
andeqpl6, ppdown6) are plotted with ticks. The following four Show[ ] commands

produce these pictures without ticks. In this section, however, no common picture of the

upper plate's components can be plotted since the electric �elds cannot be added by one

or two Mathematica commands only.

Variants:

4� it is possible to change ParametricPlot[ ] and CartesianMap[ ] as described

in section 2.1. The ranges of the v co-ordinate in ppupvert6,ppuphor6 as well as

the starting values in frp, frd vary for di�erent values of b or b/a respectively and

have to be modi�ed by hand:

FindRoot[ ] values of b starting values values of b starting values

frp a/50000 to a/300 f10, 50 g a/300 to a/2 f.1, .5 g
frd a/50000 to a/300 f6, 10 g a/300 to a/2 f2, 5 g
Graphics v coordinates for b = a/50000 v coordinates for b = a/2

ppupvert6 f... , ... Pi/a 2.5 g f... , ... Pi/a g
ppuphor6 f... , ... Pi/a 2.5 g f... , ... Pi/a 2 g

4� since you will normally deal with condensers that consist of two rounded corners you

can obtain that condenser by application of the Schwarz re
ection principle. You

have to delete the ", Line[ffg,0g,fe,0gg] " suboption (don't forget the comma !)

in the Epilog option of e
andeqpl6 and to add another picture:

e
andeqpl6low = CartesianMap[Conjugate[cm6[t[#]]] &, fc,dg,f0,Pig,
PlotRange {> All, Prolog {> ff Thickness[tcb], f Line[ffe,{ag,fb,{agg],
Line[ff0,{a { bg,f0,{fgg], Circle[fb,{a { bg,b,fPi/2,Pig] g gg ] ;

To display both the upper (e
andeqpl6) and lower (e
andeqpl6low) part of the

Rounded Two Corners of 90� Condenser in one picture you add:

Show[e
andeqpl6, e
andeqpl6low] ; .

This picture is drawn with ticks. To get the "pure" version add the option ", Axes

{> None " (don't forget the comma !) to the Show[ ] command. In order to

avoid confusion by the electric �eld of the middle plate that is not any more existent

wrap (* *) around ppdown6 = ParametricPlot[... ] ; and Show[ppdown6,

... ] ; .
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Figure 19: Graphics with ticks produced by the Mathematica program for the Rounded One

Corner of 90� Condenser. The labels indicate that parts of the program which plotted the

pictures. The voltage betwen the plates is 1 V; the distance of the parallel branches is 3

mm.
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Figure 20: Graphics without ticks produced by the Mathematica program for the Rounded

One Corner of 90� Condenser.
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Figure 21: Graphics produced by the variant of the Mathematica program for the Rounded

One Corner of 90� Condenser for the same condenser parameters as on the previous pages.
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Figure 22: Approximation of the rounded corner (as given by the second equation on page

49) by a circle (dashed) for three di�erent values of ". [we] uses an " = 1 but the default

value for my program is " = 0:96.



2.8 Mathematica Program for the One Step Condenser
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This condenser is comparable to the In�nite Plane Condenser with a step in one plate. The

�rst plate is located at the u-axis. The other plate follows the negativ u-axis at a distance

�ia with a corner of 90� at w = �ia, it aproaches the other plane via the negativ iv-axis

and after bending for 90� at �ib follows the positiv u-axes at a distance �ib. So the whole
looks like a roofed step.

The problem is very shortly treated in [fl, p. 76]. I moved the plates down for �ia units

(i mm) so that the One Step Condenser can be re
ected at the real u-axis which is easier

than re
ecting it at the line with z = x+ ia using the Schwarz re
ection principle.

The conformal map
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b2
is holomorphic in CI when a > b > 0 and a; b are positiv.

Its �rst derivative f 0(z) = � a
p
1+ez

�
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has a zero at z = i� and so the domain Dz is

Dz= Didnfi�g.
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Ĉ4
Ĉ1
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Figure 23: Curve Ĉ and normal vectors of the One Step Condenser

The condenser's curve Ĉ consists of four parts:

Ĉ1 is the image of C1 , Ĉ2 that of C2(x < � lnp) , Ĉ3 that of C2(� ln p < x < 0) and

Ĉ4 is the image of C2(x > 0) .



They are given by :
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=) Ĉ4(u) = f(C2(x > 0)) = u� ib for u > 0 :

Again I used [bs, x3.4.4.2.2] to write down the functions for the curve C as the sum of their

real and imaginary parts.



The unit normal vectors are calculated to nw(Ĉ1) = �i; nw(Ĉ2) = nw(Ĉ4) = i and nw(Ĉ3) = �1.
The surface charge density in terms of x is

�Ĉ1(x) = �"0V0
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for x 2 IR : Ĉ1(x) = f(C1(x)) ;
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for � lnp < x < 0 : Ĉ3(x) = f(C2(� ln p < x < 0)) ;

�Ĉ4(x) = �"0V0
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for x > 0 : Ĉ4(x) = f(C2(x > 0)) :

The behaviour of the surface charge density and the electric �eld at the corner at the bot-

tom of the step is opposite to that at the corner of the step's top. Surface charge density

and electric �eld go to minus/plus in�nity at the convex corner and to zero at the concave

one.

Field and charge density of the upper and lower plate tend to � "0V0
a and �V0 =a respec-

tively for u! �1 ; to � "0V0
b and �V0 =b respectively for u!1.

For the limit b! a the step condenser approaches the In�nite Plane Condenser.



Mathematica program 7: for the One Step Condenser

Comments:

The graphics commands named ppup7, e
andeqpl7, ppdownleft7, ppdownstep7,

ppdownright7 plot the pictures of the electric �eld and the �eld distribution with ticks.

The three Show[ ] commands draw the pictures ppup7 to ppdownright7without ticks

whereby the third Show[ ] unites ppdownleft7, ppdownstep7,

ppdownright7 in one picture.

Variants:

4� it is possible to change ParametricPlot[ ] and CartesianMap[ ] as described

in section 2.1.

4� The case of the Two Steps Condenser which is symmetric with the u-axis can be

obtained by replaceing the limits for y: f0,Pi,Pi/20g in CartesianMap[ ] by

f{Pi,Pi,Pi/20g. In order not to arise confusion by the electric �eld strength of

the central plate, that is not any more existent, wrap (* *) around ppup7 =

ParametricPlot[... ] ; and Show[ppup7, ... ] ; .

To get the line for the lower condenser plate instead of that of the central plate

replace Line[ffe,0g,f{e,0gg] in the Epilog option of e
andeqpl7 by

Line[ffe,ag,f0,ag,f0,bg, f{e,bgg].
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Figure 24: Graphics with ticks produced by the Mathematica program for the One Step

Condenser. The labels indicate that parts of the program which plotted the pictures. The

voltage between the plates is 1 V. The distance of the plates is 2, 3 mm respectively.
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Figure 25: Graphics with ticks produced by the Mathematica program for the One Step

Condenser. The labels indicate that parts of the program which plotted the pictures.
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Figure 26: Graphics without ticks produced by the Mathematica program for the One Step

Condenser. The labels indicate that parts of the program which plotted the pictures.



2.9 Mathematica Program for the Sharp Bend Condenser

w =
2

�

 
b ln

"p
t+ 1 +

p
t� qp

q + 1

#
� ai ln

"p
t� q + i

p
q
p
t+ 1p

q + 1

#!
+

ia

�

ln t� ib

with t = ez and q = a2

b2

Unlike most condensers in this thesis this one is not symmetric relative to the u- or iv-axis.

It consists of two plates: one plate at the positive u-axis with an edge to the negative

iv-axis at the origin; and the second plate below the positive u-axis at a distance b with an

edge at z = a � ib and a part that is parallel to the negative iv-axes at a distance a. So

the whole thing looks a bit like a knee of a robot or a street with a very sharp bend (with

edges instead of the curves).

The conformal map
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with t = ezand q = a2

b2
is holomorphic in CI for a � 0 and b > 0.

The �rst derivative f 0(z) = b
p
ez�q

�
p
ez+1

is zero at z = ln q. So the domainDz isDz=Didnfln qg.

The picture of the Sharp Bend Condenser is shown below:
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Figure 27: Curve Ĉ and normal vectors of the Sharp Bend Condenser



The curve Ĉ consists of four parts :

Ĉ1 is the image of C1(x < lnq) , Ĉ2 the one of C1(x > lnq) , Ĉ3 derives from C2(x < 0) and

Ĉ4 from C2(x > 0).
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=) Ĉ4(v) = f(C2(x > 0)) = �iv for 0 < v < 1 :

Again I used the formula Ln z = ln jzj + i arg z to represent the images of the curve C as

sums of real and imaginary terms.



The unit normal vectors are calculated to nw(Ĉ1) = �1; nw(Ĉ2) = i; nw(Ĉ3) = �i and nw(Ĉ4) = 1.

The surface charge density in terms of x is
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for x < ln q : Ĉ1(x) = f(C1(x < ln q)) ;
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for x < 0 : Ĉ3(x) = f(C2(x < 0)) ;
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b

p
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for x > 0 : Ĉ4(x) = f(C2(x > 0)) :

In contrast to the last example the surface charge density and electric �eld are zero in the

corner of the upper and in�nite in the corner of the lower plate. Field and charge density

on the horicontal upper and lower plate tend to the constant values �V0
b
and � "0V0

b
for

u !1. They tend to V0
a

and � "0V0
a

on the vertical part of the upper and lower plate for

v ! �1.



Mathematica program 8: for the Sharp Bend Condenser

Comments:

The graphics commands named ppuphor8, ppupvert8, e
andeqpl8, ppdownvert8,

ppdownhor8 plot the pictures of the electric �eld and the �eld distribution with ticks.

The three Show[ ] commands draw the pictures ppuphor7 to ppdownhor7 without ticks

whereby the �rst and third Show[ ] unites ppuphor8, ppupvert8 and ppdownvert8,

ppdownhor8 in one picture.

Variants:

4� it is possible to change ParametricPlot[ ] and CartesianMap[ ] as described

in section 2.1.

4� This problem can be changed to form a condenser symmetric relative to the u- or v-

or both axes. The condenser symmetric with the u-axis is obtained by erasing the

last term in the list of the �rst Line[ ] suboption in e
andeqpl8's Epilog plus

the preceding comma :

ff0,{1.02 eg,f0,0g,f1.02 e,0gg =) ff0,{1.02 eg,f0,0gg

To get the upper part of the condenser e
andeqpl8up I have to add :

e
andeqpl8up = CartesianMap[Conjugate[cm8[t[#]]] &, fd,c,(c-d)/(2
nef-1)g, f0,Pi-.00001,(Pi-.00001)/(2 neq-1)g,
Prolog {> ff Thickness[tcb], f Line[ff0,1.02 eg,f0,0gg],
Line[ffa,1.02 eg,fa,bg,f1.02 e,bgg] g gg ] ;

and Show[e
andeqpl8, e
andeqpl8up] ; to get both parts in one picture with

ticks.

The condenser symmetric with the v-axis is obtained by erasing the �rst term in

the list of the �rst Line[ ] suboption in the original e
andeqpl8's Epilog plus the

following comma :

ff0,{1.02 eg,f0,0g,f1.02 e,0gg =) ff0,0g,f1.02 e,0gg

To get the left part of the condenser e
andeqpl8left I have to add :

e
andeqpl8left = CartesianMap[{Conjugate[cm8[t[#]]] &,

fd,c,(c-d)/(2 nef-1)g, f0,Pi-.00001,(Pi-.00001)/(2 neq-1)g,
Prolog {> ff Thickness[tcb], f Line[ff0,0g,f{1.02 e,0gg],
Line[ff{a,{1.02 eg,f{a,{bg,f{1.02 e,{bgg] g gg ] ;



and Show[e
andeqpl8, e
andeqpl8left] ; to get both parts in one picture with

ticks.

To get a condenser that is symmetric with both axes I have to add another part

e
andeqpl8leftup to get a condenser that looks like a cross (cf. �g.31):

e
andeqpl8leftup = CartesianMap[{cm8[t[#]] &, fd,c,1/4.4961g,f0,Pig] ;

and one Show[ e
andeqpl8, e
andeqpl8up, e
andeqpl8left,

e
andeqpl8leftup] ; to get the whole condenser with ticks. The ticks can be

omitted by adding Axes {> None.

Obviously I may construct a condenser consisting of three parts but I will not list

all possibilities here (cf. �g.33).



1 2 3 4
u[mm]

Upper Plate: Horizontal

-600

-500

-400

-300

-200

-100

0

E[V/m]

-4 -3 -2 -1 0
iv[mm]

Upper Plate: Vertical

50

100

150

200

250

300

E[V/m]

1 2 3 4
u[mm]

-4

-3

-2

-1

iv[mm]

(ppuphor8)

(ppupvert8)

(e
andeqpl8)

Figure 28: Graphics with ticks produced by the Mathematica program for the Sharp Bend

Condenser. The labels indicate that part of the program which plotted the pictures. The

voltage between the plates is 1 V. The vertical distance between the plates is 1.5 mm, the

horizontal distance is 3 mm.
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Figure 29: Graphics with ticks produced by the Mathematica program for the Sharp Bend

Condenser. The labels indicate that part of the program which plotted the pictures.
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Figure 30: Graphics without ticks produced by the Mathematica program for the Sharp

Bend Condenser. The labels indicate that part of the program which plotted the pictures.
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Bend Condenser.



2.10 Mathematica Program for the In�nitely Thin Aperture Condenser

w = 2ez/2 � a2
8
e{z/2

This problem can be considered as a preliminary to the next one { the Thick Aperture

Condenser { when I let the distance between the corners tend to zero. We get something that

looks like a hole in a screen, in optics simply called an aperture. As in the problems before

only the upper half of the aperture is constructed which can be continued holomorphically

to the lower half by the Schwarz re
ection principle as indicated in section 2.5.

The function

w = f(z) = 2ez=2 � a2

8
e�z=2

maps the In�nite Plane Condenser to one whose one plate extends along the iv-axis with a

hole between 0 and ia. The second plate is the u-axis.

The function is holomorphic in CI . For a = 4 the function f(z) is simply 4 sinh(z/2).

The �rst derivative f 0(z) = ez=2+ a2

16e
�z=2 gets zero at z = ln(�a2

16 ) = i�+2 ln a
4 and so the

domain Dz is Dz= Didnfi� + 2 ln a
4g.
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Figure 32: Curve Ĉ and normal vectors of the In�nitely Thin Aperture Condenser

The picture above shows the images of the condenser planes on theW-plane. The condenser

consists of three parts which read

f(C1) = 2ex=2 � a2

8 e
�x=2 =) Ĉ1(u) = f(C1) = u for u 2 IR ;

f(C2) = 2ie�x=2 + ia2

8 ex=2 =)
�

Ĉ2(v) = f(C2(x < 2 ln a
4 ))

Ĉ3(v) = f(C2(x > 2 ln a
4 ))

= �iv
= iv

for a
4 < v < 1 ;

for a
4 < v < 1 :

The unit normal vectors are calculated to nw(Ĉ1) = i; nw(Ĉ2) = 1 and nw(Ĉ3) = �1.



So the surface charge density in terms of x is
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�Ĉ2(x) = �"0V0

�
=m

(
1

�i
e�x=2 � a2

16e
x=2

)
=

"0V0

�

1

e�x=2 � a2

16e
x=2

for x < 2 ln a
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4
)) :

Surface charge density and electric �eld of this example are very simple since the charge

density for the left side of the upper plate is the same as for the right side. The �eld is of

opposite sign on both sides. For v !1 �eld and charge density tend to zero and for v ! a

they tend to in�nity. The �eld and charge density on the lower plate are given by a bell

shaped distribution.



Mathematica program 9: for the In�nitely Thin Aperture Condenser

Comments:

The program is structured like the other ones but I added a variable chs which does

not occur in the other programs. For a = 170.08433 the lower limit xmin in ppupleft9,

ppupleft9inv, ppupright9 becomes the upper limit xmax and vice versa. At this point

the function changes sign which can be prevented by introduction of the variable chs.

The pictures (ppupleft9, ppupright9, e
andeqpl9, ppdown9) are plotted with ticks.

The following three Show[ ] commands produce these pictures without ticks. The �rst

Show[ ] produces one picture of the left and right upper plate using ppupleft9inv,

ppupright9.

Variants:

4� it is possible to change ParametricPlot[ ] and CartesianMap[ ] as described

in section 2.1. The ranges of the v co-ordinate and the location of the text plotted

by the Epilog option of ppupleft9, ppupleft9inv, ppupright9, the �rst and

thirdShow[ ]as well as the starting values and options in frb, fre, frf vary for

di�erent values of a and have to be modi�ed by hand (the location of the text is

written in brackets behind the co-ordinates' value) :

FindRoot[ ] values of a starting values values of a starting values

frb 7 10^{5 to 1 f{1, {10 g f 1, 10^5 g f1, 10 g
fre 7 10^{5 to 10^2 f{5, {15 g f 10^2, 10^5 g f{5, {15 g
frf 7 10^{5 to 10^{1 f 10, 5 g f 10^{1, 10^5 g f{10, {5 g

Graphics v coordinates for a = 7 10^{5 v coordinates for a = 1 v coordinates for a = 10^5

ppupleft9, ppupleft9inv,

ppright9, �rst Show[ ] f... , ... mult 10^5 g f... , ... mult 10 g f... , ... mult 10^{4 g
ppdown9, third Show[ ] f... , ... mult 10^4 3 (2) g f... , ... mult 2 (1) g f... , ... mult 10^{5 2 (1) g

4� since you will normally deal with condensers symmetric with the u-axis you can

obtain that condenser by application of the Schwarz re
ection principle. I have to

replace the y co-ordinates f0,Pig in the Epilog option of e
andeqpl9 by f{Pi,Pig
and the "Line[ff1.02 d,0g,f{1.02 d,0gg] " suboption by :

Line[ff0,{1.05 ag,f0,{1.02 cgg]

The surface charge density of the lower plate will than be of oposite sign. In order

to avoid confusion by the surface charge density of the middle plate that is not any

more existent wrap (* *) around ppdown9 = ParametricPlot[... ] ; and

Show[ppdown9, ... ] ; .
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Figure 33: Graphics with ticks produced by theMathematica program for the In�nitely Thin

Aperture Condenser. The voltage between the plates is 1 V. The distance between the plates

is 3 mm.
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Figure 34: Graphics without ticks produced by the Mathematica program for the In�nitely

Thin Aperture Condenser.



2.11 Mathematica Program for the Thick Aperture Condenser

w = ai
h
k'2� � 2E(am(�; k); k)� cs(�; k) dn(�; k)

i
=(2E� k'2K)� b

with � = sn{1

s
�ez

k

In this section half of an aperture with �nite thickness is treated. The symmetry plane of

this con�guration is a metallic plate coinciding with the u-axis. The lower plate consist of

three parts of which two are located at both sides of the iv-axis at a distance b. They both

extend from �1 to v = �a. The third part connects these at w = �b � ia making two

corners.

The conformal function for this problem was calculated by N. Davy in the 1940's (cf. [da]).

In this paper the whole problem is also treated numerically for the special thickness to

gapwidth ratio b=a = 1=2 [da, p.824-833]. My Mathematica program can be applied to any

ratio b=a between 0:0003 and 4:71.

The mathematic functions used in this section are not so familiar as those in the previous

sections but they are still quite tractable from the mathematical point of view. In case you

are not intimate with elliptic functions and integrals you should read part two of section

1.1 (anew).

The Mathematica programs, however, are of the same length. Unfortunately the time and

memory space the computer needs for calculating the graphics will become quite long and

large due to the complicated functions used.

Unlike the previous sections the symmetric condenser will be calculated, but Mathematica

will only plot the upper or the lower half. The second half has to be constructed by use of

the Schwarz refection principle.
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Ĉ1

Ĉ4
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Figure 35: Curve Ĉ and normal vectors of the Thick Aperture Condenser.

For the convenience of the reader I show how the conformal map was constructed. Figure 38

shows the two problems that have to be solved: At �rst the mapping function f2(t) which

maps the Flat Condenser to the Thick Aperture Condenser has to be found and integrated.

Then the function f�11 (t) must be constructed and inverted. The coupling of these two

functions f1(t) and f2(t) makes up the conformal function w = f(z) = f2(t)�f1(z) mapping

the In�nite Plane Condenser to the Thick Aperture Condenser.
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Figure 36: Image of the In�nite Plane Condenser in the Z -plane, that of the Flat Condenser

in the T-plane and that of the Thick Aperture Condenser in the W-plane to demonstrate

the application of the Schwarz-Christo�el transformation for this example.

The application of the Schwarz-Christo�el transformation formula to the H-shape of the

Thick Aperture Condenser leads to the equation

w = f2(t) = A

tZ
t0

p
t+ t3

p
t� t3

p
t+ t4

p
t� t4 dtp

t+ t1
p
t� t1

p
t+ t2

p
t� t2

p
t+ t5

p
t� t5

p
t+ t6

p
t� t6

+ B

= A

tZ
t0

q
t2 � t23

q
t2 � t24 dtq

t2 � t21

q
t2 � t22

q
t2 � t25

q
t2 � t26

+ B : (28)

I choose t5 = �1 to remove the term
q
t2 � t25 from the product under the integral; moreover

I let t2 = 0 and t4 = �1. In addition I rename t3 = �k . k will turn out to be the modulus

of the elliptic functions and integrals in f2(t). The variable t1 is given no special value.

To get the wanted form of the Thick Aperture Condenser I let all lines indicated by !1 in

�gure 38 tend to in�nity: w1; w1; w2; w2; w5; w5; w6; w6 !1. With that eq.(28) given above

becomes

w = f2(t) = A

tZ
t0

p
t2 � k2

p
t2 � 1 dt

t
+ B : (29)

I substitute t for t = 1=sn(�; k) to get a form that can be integrated right away:

w = ~f2(�) = �A
�Z

�0

cn2(�; k) dn2(�; k) d�

sn2(�; k)
+ B ; (30)

where I used eqs (731.01),(129.01) and (120.02) of [bf] (In the following I will always use

formulas of [bf] without mentioning the source explicitely. All equations of the form (123.45)

are taken from [bf]). The use of (121.00) to rewrite eq.(30) in terms of sn2(�; k) and

integrating the terms using (311.02) and (310.02) of [bf] leads to the equation

f2(t) = �A �k02� � 2E(am(�; k); k) � cn(�; k) dn(�; k)=sn(�; k)
�
+ B

with � = sn�1(1=t; k) :
(31)



To determine the constants A and B I calculate the values of f2(t) for t = t3 = �k; t = t3 = k;

t = t4 = �1 and t = t4 = 1. Using eqs (122.00), (122.01), (130.02) and (111.09) I get the

corresponding � 's:

�3 = �(K + iK 0); �3 = K + iK 0 and �4 = �K; �4 = K :

After expressing the incomplete elliptic integral of the second kind E(am(�; k),k) in terms

of Jacobi's Zeta function using (140.01) as well as (141.01), (122.02), (122.18) and (122.01)

I obtain

w3 = b+ ia = �A
��
�k02 + 2E

K

�
(K + iK')� i�

K

�
+ B ; (I)

w3 = b� ia = �A
��

k02 � 2E

K

�
(K + iK') +

i�

K

�
+ B ; (II)

w4 = �b+ ia = �A
�
(�k02 + 2E

K
)K

�
+ B ; (III)

w4 = �b� ia = �A
�
(k02 � 2E

K
)K

�
+ B : (IV )

This is a system of four equations for the unknowns A;B. Solving the system of the last

two equations gives

III � IV =) A =
ia

k02K� 2E
and

III + IV =) B = �b :

With that the function which maps the Flat Condenser to the Thick Aperture Condenser is

f2(t) = ~f2(�) = ia
�
k02� � 2E(am(�; k); k) � cs(�; k) dn(�; k)

�
=(2E � k02K) � b

with � = sn�1(t; k) :
(32)

Inserting A and B into eqs (I), (II), application of Legendre's relation (110.10) and solving

for b=a gives the relation between a; b and the modulus k:

b

a
= �(k02 � 2)K' + 2E'

2(k02K� 2E)
: (33)



The plus sign belongs to the solution of (II) and the minus sign to that of (I). When I

choose the plus sign the modulus 0 < k < 1 leads to a ratio 0 < a=b < 1. Choosing the

minus sign would demand a complex k to solve the equation for real ratios a=b. I choose the

plus sign and therefore a given thickness and distance leads to a certain modulus 0 < k < 1

which must be computed before I can insert this modulus into the conformal map.

The function f�11 can be obtained by the Schwarz-Christo�el fomula, too. It is

z = � ln t+ �

with � and � still to be determined. Since z changes by �2i� when t changes by ei� in going

from t2 to t2, � = �2. I let the point z = i� correspond to the point t = �
p
k which becomes

the centre of the line connecting t3 with t4. Therewith � becomes � = i�+2 ln(�
p
k). Using

equation i� = ln(�1) = 2 ln i I get

z = f�11 (t) = ln(
�k
t2

) :

Now I insert the transformation formula t = 1=sn(�; k) into the equation from above, invert

the function obtained and get the modi�ed function ~f1

� = ~f1(z) = sn�1(
q
�ez=k; k) : (34)

With that the relation f(z) = ~f2(�) � ~f1(z) is

w = f(z) = ia
�
k02� � 2E(am(�; k); k) � cs(�; k) dn(�; k)

�
=(2E� k02K) � b

with � = sn�1(
q
� ez

k ; k) :

This is exactly the equation given by Davy. It can be simpli�ed a lot when the relation

(131.01) in [bf] is used. I have to write down sn�1(t; k) as the inverse functions of am(�; k),

cs(�; k) = cn(�; k)/dn(u�; k) and dn(�; k) and insert these into the function w = f(z). The

result looks a lot nicer than before (I have also used (130.02)) :

f(z) =
ia

2E� k02K

"
k02F(arcsin t; k)) � 2E(arcsin t; k)) �

p
1� t2

p
1� k2t2

t

#
� b

with t =
q
� ez

k

(35)

For any ratio of b=a the modulus k is 0 < k < 1; which bounds can be very�ed by a graph

of the above equation. So the function f(z) is holomorphic in CI and the derivative

f 0(z) =
ia

4E� 2k02K

p
1� t2

p
1� k2t2

t
is zero for z = i� � lnk.

With that the domain Dz is Dz= Didnfz = i� � lnkg.



The curve Ĉ on the W-plane consists of four parts : Ĉ1 is the image of C1 , Ĉ2 that of

C2(x < � lnk) , Ĉ3 that of C2(� lnk < x < lnk) and Ĉ4 that of C2(x > lnk).

f(C1) =
ia

2E� k02K

"
k02 F(arcsin(i~t); k) � 2E(arcsin(i~t); k)�

p
1 + e�x=k

p
1 + ke�x

i~t

#
� b

=
�a

2E� k02K

(
(1 + k2)F(�; k0)� 2E(�; k0) + 2 tan

�
� �

q
1� k02 sin2 �

�
�
p
1 + ~t2

p
1 + k2~t2

~t

)
� b

~t =
p
e�x=k ; sinh[ln(�~t+

p
1 + ~t2 )] = tan�

=) Ĉ1(u) = f(C1) = �u for u 2 IR ;

f(C2(x < � lnk)) =
ia

2E� k02K

"
k02 F(arcsin t̂; k)� 2E(arcsin t̂; k)�

p
1� ex=k

p
1� kex

t̂

#
� b

t̂ =
p
ex=k

=) Ĉ2(v) = f(C2(x < � lnk)) = �b+ iv for �1 < v < �a ;

f(C2(lnk < x < lnk)) =
ia

2E� k02K

"
k02 F(arcsin t̂; k)� 2E(arcsin t̂; k)� i

p
ex=k � 1

p
1� kex

t̂

#
� b

= � a

2E� k02K

"
(1 + k2)F(A; k0)� 2E(A; k0) +

p
ex=k � 1

p
1� kex

t̂

#
� b� ia

A = arcsin

"p
t̂2 � 1

k0 t̂

#

=) Ĉ3(u) = f(C2(� lnk < x < lnk)) = u� ia for � b < u < b ;

f(C2(x > lnk)) =
ia

2E� k02K

"
k02 F(arcsin t̂; k)� 2E(arcsin t̂; k)� i

p
ex=k � 1

p
kex � 1

t̂

#
� b

=
ia

2E� k02K

"
k02 F(�; k)� 2E(�; k) +

p
ex=k � 1

p
kex � 1

t̂

#
+ b

� = arcsin

�
1

kt̂

�

=) Ĉ4(v) = f(C2(x > lnk)) = �b� iv for a < v < 1 :

The unit normal vectors are calculated to nw(Ĉ1) = �i; nw(Ĉ2) = �1; nw(Ĉ3) = i and nw(Ĉ4) = 1.



The surface charge density in terms of x is:

�Ĉ1(x) = �"0V0

�
=m

(
�i 4E� 2k02K

ia

i
p
e�x=kp

1 + e�x=k
p
1 + ke�x

)

=
"0V0

a

4E� 2k02K
�

p
e�x=kp

1 + e�x=k
p
1 + ke�x

for x 2 IR : Ĉ1(x) = f(C1) ;

�Ĉ2(x) = �"0V0

�
=m

(
�1 4E� 2k02K

ia

i
p
ex=kp

1� ex=k
p
1� kex

)

= �"0V0

a

4E� 2k02K
�

p
ex=kp

1� ex=k
p
1� kex

for x < � lnk : Ĉ2(x) = f(C2(x < � lnk)) ;

�Ĉ3(x) = �"0V0

�
=m

(
i
4E� 2k02K

ia

p
ex=k

i
p
ex=k � 1

p
1� kex

)

=
"0V0

a

4E� 2k02K
�

p
ex=kp

ex=k � 1
p
1� kex

for � lnk < x < lnk : �C3(x) = f(C2(� lnk < x < lnk)) ;

�Ĉ4(x) = �"0V0

�
=m

(
1
4E� 2k02K

ia

p
ex=k

�pex=k � 1
p
kex � 1

)

= �"0V0

a

4E� 2k02K
�

p
ex=kp

ex=k � 1
p
kex � 1

for x > lnk : Ĉ4(x) = f(C2(x > lnk)) :



Mathematica program 10: for the Thick Aperture Condenser

Comments:

The graphics commands named ppup10, e
andeqpl10, ppdownleft10,

ppdowncentre10, ppdownright10 plot the pictures of the electric �eld or the surface

charge density and the �eld distribution with ticks. The three Show[ ] commands draw

the pictures ppup10 to ppdownright10 without ticks whereby the third Show[ ] unites

ppdownleft10, ppdowncentre10, ppdownright10inv in one picture.

Variants:

4� it is possible to change ParametricPlot[ ] and CartesianMap[ ] as described

in section 2.1. The ranges of the v co-ordinate and the location of the text in Epilog

of ppup10, ppdownleft10, ppdowncentre10, ppdownright10,

ppdownright10inv and the �rst and third Show[ ] as well as the starting values

and options in frksq vary for di�erent values of b/a and have to be modi�ed by

hand (the location of the text is written in brackets behind the co-ordinates' value)

:

value of b frksq starting values WorkingPrecision Max Iterations

.0003 a to a f .01, .05 g
a to 4.71 a f 10^{14, 10^{15 g 25 30

Graphics v coordinates for b = .0003 a v coordinates for b = a v coordinates for b = 4.71 a

a10 f... , ... mult/a 2 (1) g f... , ... mult/a 3.2 (1) g f... , ... mult 3.2 (1) g
c10, e10 f... , ... mult/a 10 g f... , ... mult/a 7 g f... , ... mult 7 g

d10 f... , ... mult/a 1000 g f... , ... mult/a 10 g f... , ... mult 10 g
�rst Show[ ] (f..., ...mult/a g) (f..., ...mult/a 2 g) (f..., ...mult/a 2 g) g

e10inv,

third Show[ ] mult/a 200f...g mult/a 10f...g mult/a 10f...g



4� The case of the Thick Aperture Condenser which is symmetric with the u-axis can

be obtained by application of the Schwarz re
ection principle. I have to delete the

", Line[ff{d,0g,fd,0gg] " suboption (don't forget the comma !) in the Epilog

option of e
andeqpl10 and to add another picture:

e
andeqpl10up = CartesianMap[Conjugate[cm10[#]] &, f{c,cg,
f{Pi + 10^{10, {10^{10g, PlotRange {> All, Prolog {> ff Thick-

ness[.tcb],

Line[ff{b,{eg,f{b,ag,fb,ag,fb,{egg] gg ] ;

The Prolog option does the same as Epiolg, however, not after but before the

picture is plotted. That is why a second pair of curly brackets is wrapped around

the Thickness and Line suboptions to prevent that all lines are drawn so thick.

To display both the upper (e
andeqpl10up) and lower (e
andeqpl10) part of the

symmetric condenser in one picture you add:

Show[e
andeqpl10, e
andeqpl10up] ; .

This picture is drawn with ticks. To get the "pure" version add:

", Axes {> None " as an option to the Show[ ] command. The surface charge

density of the upper plate will than be of opposite sign. In order to avoid confusion

by the electric �eld strength of the middle plate that is not any more existent wrap

(* *) around ppup10 = ParametricPlot[... ] ; and Show[ppup10, ... ] ; .
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Figure 37: Graphics with ticks produced by theMathematica program for the Thick Aperture

Condenser. The potential di�erence between the plates is 1 V. The distance between the

parallel branches of the plates is 3 mm. The thickness of the lower plate is 1.5 mm.
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Figure 38: Graphics with ticks produced by theMathematica program for the In�nitely Thin

Aperture Condenser.
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Figure 39: Graphics without ticks produced by the Mathematica program for the In�nitely

Thin Aperture Condenser.
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Figure 40: These graphics show that the electric �eld of the Thick Aperture Condenser for

large values of the ratio: plate thickness to distance (b/a = 4.71 for a = 3 mm , V =

1 Volt) can be approximated by use of the One Corner of 90� Condenser. The picture a)

shows the �elds of the "thick" upper and that of the "one corner" lower plate (dashed),

where the origin of ppdown5 was shifted by 4.71 a. The picture b) shows the �elds of

the left half of the "thick" horizontal lower and that of the "one corner" horizontal upper

plate (dashed) (the origin of ppuphor5 was shifted). The picture c) shows the �elds of the

right "thick" vertical lower and that of the "one corner" vertical upper plate (dashed) (the

origin of ppupvert5 was shifted).



2.12 Mathematica Program for the Finite Plane Condenser

w = f(z) =
a

�

f(E' { K') F(arcsin t; k) + K' E(arcsin t; k)g with t = sn(z; k)

In section 2.2 I treated the In�nite Plane Condenser, in section 2.3 the in�nitely thin Semi-

In�nite Plane Condenser followed by the �nitely thick version in section 2.4 . In a line with

these problems this chapter deals with the Finite Plane Condenser whose two plates are of

zero thickness but have limited length: This corresponds to two equal and parallel strip

lines17.

The construction of this example's conformal map is published in [od] and very brievely in

[bf, (119.01) and (119.03)].

The function

f(z) =
a

�
f(E' - K') F(arcsin y; k) + K E(arcsin y; k)g with y(z) = sn(z; k)

can again be simpli�ed by the use of equations (130.02) of [bf] and sn(u; k) = sin(am(u; k))

as indicated at the beginning of the previous section.

This yields

f(z) =
a

�
f(E' { K') z +K E(am(z; k); k)g

a function with just one elliptic function as argument of an elliptic integral (the complete

elliptic integrals are constant and therefore don't count). The function is holomorpic in CI

for 0 < k < 1.

As in section 2.9 the ratio of distance a to length b of the planes is directly connected to

the moduli k and k0 by the equation

b

a
=

2

�
(K' E[arcsin(

1

k0
p
1� E'/K'); k0]� E' F[arcsin(

1

k0
p
1� E'/K'); k0]) :

The �rst derivative

f 0(z) =
a

�

h
E'� k2K'sn2(z; k))

i
has an in�nite number of zeros at the points

z + 4mK+ 2n iK' = nd�1(�1

k

q
E'=K'; k)

17 The Schwartz-Christo�el formula for the �nite condenser with �nitely thick plates leads to an equation

which is not even an elliptic integral but something really ugly since it is of the form I =
R p

P=
p
Q dt

where P;Q are 4th order polynomials of the variable t with di�erent coe�cients.



where n and m are integers including zero.

Therefore the domain Dz becomes CI nfnd�1(� 1
k

p
E'=K'; k) + 4mK+ 2n iK'g.

The in�nite number of zeros results from the periodicity ! = 4mK+ 4n iK' of the elliptic

function sn(u; k). Since corresponding points of di�erent period parallelograms on the Z -

plane are mapped to the same points on the W-plane and since sn(u+2K; k) = {sn(u; k)

[bf, (122.04)] the domain for the conformal map will be half18 a period parallelogram. This

implies the domain Dz used here is �nite; so this di�ers from the domains used in the

previous examples. The potential for the "In�nite" Plane Condenser has to be modi�ed too,

since its plates are now located parallel to the iv-axis. It reads � = V0 z

2K
+ V0

2 with V0 the

voltage between the plates. So the left plate is at zero potential and the right one is at the

potential V0 .

With this new potential the eq.(15) for the surface charge density is

� = �"0V0

2K
<e
�

nw

f 0(z)

�
:

Equations (27), however, are still valid.
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Figure 41: Domains and ranges for the Finite Plane Condenser.

The picture above shows in detail how the domain Dz�Z -plane is mapped to the T-plain

by the sine amplitude and from there to the W-plane by the function f(t). The thick lines

denote the parts which become the condenser plates in the upper half of the W-plane. The

dashed lines in the pictures are the boundaries of the lower half of the domain Dz and of

its images. Although the domain Dz is �nite its images are the whole T- and W-plane,

which are both in�nite.

Unlike curves C in the other sections the curve C here is �nite and it consists of two

unconnected parts which are located parallel to both sides of the iv-axis at a distance

K and have a length 2K'. The unconnected parts C1 and C2 in combination with the

18 Consider the sine with a period of 2�. Allthough the function's value after half the period is of opposite

sign its range [{1,1] is already complete. Thus for symmetric problems like ours half the period is

enough.



sine amplitude which maps the (�nite) fundamental periodic parallelogram to the whole

Gaussian plane is the trick which has to be used to get two unconnected plates as the image

of a simply connected domain. The images of the upper half of the curve C in Z -plane are

(the lower half might be gotten by the Schwarz re
ection principle which, as mentioned,

means to apply the conformal map to the lower part of the domain Dz):

f(C1) = a
� f(E' { K')({K� iy) + K' E[arcsin(sn({K� iy; k)); k]g

= �a
2 � ia

�

�
E' y �K' E[am(y; k0); k0] + k02 K' sd(y; k0) cn(y; k0)

	

=) Ĉ1(v) =

8<
:
f(C1(�K' < y < �nd�1( 1

k

p
E'=K' ; k) )) = iv for 0 < v < b

2 ;

f(C1(�nd�1( 1k
p

E'=K' ; k) < y < 0 )) = �iv for � b
2 < v < 0 ;

f(C2) = a
� f(E' { K')(K + iy) + K' E[arcsin(sn(K + iy; k)); k]g

= a
2
+ ia

�

�
E'y �K' E[am(y; k0); k0] + k02 K' sd(y; k0) cn(y; k0)

	

=) Ĉ2(v) =

8<
: f(C2( 0 < y < nd�1( 1

k

q
E'=K' ; k) )) = iv for 0 < v < b

2 ;

f(C2( nd
�1( 1k

p
E'=K' ; k) < y < K' )) = �iv for � b

2 < v < 0 :

Since the left and right sides of the plates have the same co-ordinates it is particularly

important not to mix up the directions of the curves.

The unit normal vectors are shown in the picture above. With these the surface charge

density in terms of y is

�Ĉ1(y) = �"0V0

2K
<e
�
�1�

a

h
E'� k2 K' sn2(�K� iy; k)

i�1�
= �"0V0 �

2aK

h
E'� k2 K' nd2(y; k0)

i�1
for �K' < y < 0 : Ĉ1(y) = the expressions from above ;

�Ĉ2(y) = �"0V0

2K
<e
�
�1�

a

h
E'� k2 K' sn2(K + iy; k)

i�1�
= �"0V0 �

2aK

h
E'� k2 K' nd2(y; k0)

i�1
for 0 < y < K' : Ĉ2(y) = the expressions from above :

The plus sign of the surface charge density given above holds for the left side, the minus

sign for the right side of the plates respectively.

The correct parametric representation Ĉi(y) corresponding to �i(y) can be found by looking

at f(Ci) =) Ĉi(y) : the left sides of the plates belong to Ĉi(y) = f(Ci(:::)) = iv, the right

sides to Ĉi(y) = f(Ci(:::)) = �iv, the dots "..." representing the range of y that has to be

inserted into Ĉi(y).

Again the edges cause in�nities, as those in the case of the Semi-In�nite Condenser. The

electric �eld and surface charge density tend to constant values for the limit v ! 0. These

constants depend on the ratio length to distance. They are larger between the plates than

on the outside.

For long plates the limits at the inside approach �2 "0V0
a

and� 2V0
a
; and at the outside they



approach zero as in the case fo the Semi-In�nite Condenser which is the limit for the length

b tending to in�nity.

Mathematica program 11: for the Finite Plate Condenser

Comments:

The �eld distribution is plotted by c11 where the plates are rotated by 90� in multiplying

the function f(z) by the imaginary unit so that the �eld of the In�nite Plane Condenser, the

Semi-In�nite Condenser, the Thick Semi-In�nite Condenser and the Finite Plane Condenser can

be compared easier. Here the potential for the upper plate is positive for positive voltage

between the plates and zero for the lower plate.

The graphics commands of ppuptop11,ppupbottom11 plot the pictures of the electric

�eld of the upper plate with ticks.

The two Show[ ] commands draw the pictures without ticks whereby the �rst Show[ ] uni-

tes ppuptop11, ppupbottom11inv in one picture. To compare the electric �eld of the

inside to that of the outside it is drawn with positive sign both times (the inside curve is

dashed).

Variants:

4� it is possible to change ParametricPlot[ ] and CartesianMap[ ] as described

in section 2.1. The ranges of the v co-ordinate and the location of the text drawn by

the Epilog option of ppuptop11,ppupbottom11, ppupbottom11inv as well as

the starting values and options in frmprime vary for di�erent values of b/a and

have to be modi�ed by hand (the lokation of the text is written in brackets behind

the co-ordinates' value) :

value of b frmprime starting values WorkingPrecision Max Iterations

10^{3 a to .8 a f 10^{9, 10^{11 g
.8 a to 2.3 a f .99, .999 g
2.3 a to 4.5 a f 1 { 10^{7, 1 { 10^{9 g 25 30

4.5 a to 6.6 a f 1 { 10^{10, 1 { 10^{13 g 60 30

6.6 a to 8.75 a f 1 { 10^{13, 1 { 10^{15 g 60 30

Graphics v coordinates for b = a/1000 v coordinates for b = a v coordinates for b = 8.75 a

ppuptop11,

ppupbottom11,

ppupbottom11inv f... , ... mult 2000 (1500) g f... , ... mult 5 (3) g f... , ... mult .7 (.5) g

4� If you want the correct sign for the electric �eld without ticks you have to replace

the ppupbottom11inv in the �rst Show[ ] by ppupbottom11.



-1 -0.5 0 0.5 1
u[mm]

200

400

600

800

1000

1200

Upper Plate’s Outside

E
[
V
/
m
]

-1 -0.5 0.5 1
u[mm]

-1200

-1000

-800

-600

-400

-200

Upper Plate’s Intside

E
[
V
/
m
]

-4 -3 -2 -1 1 2 3 4
u[mm]

-6

-4

-2

2

4

6

iv[mm]

(ppuptop11)

(ppupbottom11)

(e
andeqpl11)

Figure 42: Graphics with ticks produced by the Mathematica program for the Finite Plane

Condenser. The potential di�erence between the plates is 1 V, their distance is 3 mm, their

length is 2 mm.
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second Show[ ]

Figure 43: Graphics without ticks produced by the Mathematica program for the Finite

Plane Condenser.
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Figure 44: These graphics show that the electric �eld of the Finite Plane Condenser for large

values of the ratio: plate length to distance (b/a = 8.75 for a = 3 mm , V = 1 Volt)

can be approximated by use of the Semi-In�nite Plane Condenser. The picture a) shows the

�elds of the outside of the upper �nite and the top of the upper semi-in�nite plate (dashed),

where the origin of ppuptop3 was shifted by {8.75/2 a. The picture b) shows the �elds of

the inside (just the right half) of the upper �nite and the bottom of the upper semi-in�nite

plate (dashed) (the origin was again shifted).



2.13 Mathematica Program for the Three Plates in Line Condenser

w = �(a+ b) dc(izK'; k) with k =
a

a+ b

The section for this condenser was suggested by Prof. Dr. St. Lindenmeier, FBH-Berlin.

The condenser consists of three parts in a line : two semi-in�nite plates are at both sides of

a �nite plate of the length 2a. The distance from the central plate is b for both semi-in�nite

plates. The problem is symmetric with respect to the two axes.

- -

6 6

-

�

? 6
- -

-

x

iy

u

iv
ih 1+ih

1 �(a+b)
�a a

a+b
C1 C2 Ĉ1 Ĉ2 Ĉ3

w = f(z)
Z

W

Figure 45: Mapping of the Three Plates in Line Condenser.

The inverse conformal map which maps the W- to the Z -plane is treated in [hm, p.2]

(without loss of information I let the variable "a" of [hm] be 1 (the a of this thesis is "w"

in [hm]).):

z =
�ia
kK'

Z
dwp

w2 � (a+ b)2
p
w2 � a2

=
�ia
K'

F

2
4arcsin

s
w2 � (a+ b)2

w2 � a2
; k

3
5

This equation has to be inverted. Use of [bf, (130.02), (121.00)] gives

w = f(z) = �(a+ b) dc(izK'; k) with k =
a

a+ b
and h =

2K

K'
:

I choose the positiv branch of the function.

This function f(z) is holomorphic in CI nf� i4(m+ 1) K + 4in K'
K'

g with n;m 2ZZ.
The singularities of the function are the left/right "ends" of the right/left semi-in�nite

plates.

The �rst derivative



f 0(z) = �i(a+ b) k02K' sn(izK')
cn2(izK')

has zeros at z 2 f2nK+ imK'g.

This would lead to a very complicated domainDz, but as in the other cases I restrict Dz to

Dz= fzjz = x+ iy; x 2 [�1; 1]; y 2 [0; h] n fh=2gg.

The potential has be chosen as : � = V0 z so that the left plate on the Z -plane has zero

potential and the right plate has the potential V0 . The potentials on the W-plane are V0
at the semi-in�nite plates and zero at the central plate.

The curves on the W-plane in terms of y are:

f(C1) = (a+ b) dc(yK'; k) =)
(
Ĉ1 = f(C1(�h < y < �h=2)) = u for �1 < u < �(a+ b) ;

Ĉ3 = f(C1(�h=2 < y < 0)) = u for (a+ b) < u <1 ;

f(C2) = (a+ b) dc(iK'� yK') = a cd(yK') =) Ĉ2 = f(C2) = u for � a < u < a :

For the evaluation of f(C2) I used [bf, (122.07), (122.00)]. The value of the normal unit

vectors is the imaginary unit. So the surface charge density modi�ed for the new potential

is:

�Ĉ1 =
"0V0

�

1

(a+ b)k02K'

(
cn2(yK'; k)

sn(yK')

)

for �h < y < �h=2 : Ĉ1(y) = f(C1(�h < y < �h=2)) ;

�Ĉ2 =
"0V0

�

1

(a+ b)k02K'
<e
(
cn2(iK'� yK'; k)

sn(iK'� yK')

)
=

"0V0

�

1

k02K'

(
dn2(yK'; k)

sn(yK')

)

for �h < y < 0 : Ĉ2(y) = f(C2) ;

�Ĉ3 =
"0V0

�

1

(a+ b)k02K'

(
cn2(yK'; k)

sn(yK')

)

for �h=2 < y < 0 : Ĉ1(y) = f(C1(�h=2 < y < 0)) ;

The electric �eld and the suface charge density for the upper sides of the plate tend to zero

for u! �1 and to in�nity for u! �a and to minus in�nity for u! �(a+ b).



Mathematica program 12: for the Three Plates in Line Condenser

Comments:

The program is structured like the other ones. The pictures (pptopleft12, pptopcent12,

pptopright12, e
andeqpl12) are plotted with ticks. The following two Show[ ] com-

mands produce these pictures without ticks. I do not have to use the combined commands

Show[GraphicsArray[ ]] here to put the pictures pptopleft12, pptopcent12,

pptopright12 together in one picture since the location of the plates is on one line.

Variants:

4� it is possible to change ParametricPlot[ ] and CartesianMap[ ] as described

in section 2.1. The ranges of the iv co-ordinate in pptopleft12, pptopcent12,

pptopright12 and the �rst Show[ ] vary a bit for di�erent values of b/a and

have to be modi�ed by hand :

Graphics v coordinates for b = a/200 v coordinates for b = a v coordinates for b = 2.5 a

pptopleft12,

pptopright12 f... , {7 mult g f... , {mult g f... , {.2 mult g
pptopcent12 f... , 2 mult g f... , .8 mult g f... , .6 mult g

Show[ ] f{7 mult, 2 mult g f{mult, .8 mult g f{.2 mult, .6 mult g
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Figure 46: Graphics with ticks produced by the Mathematica program for the Three Plates

in Line Condenser. The potential di�erence between the plates is 1 V. The central plate has

a length of 2 mm; the gap of 3 mm.
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Figure 47: Graphics without ticks produced by the Mathematica program for the Three

Plates in Line Condenser.



2.14 Mathematica Program for the Circle and Plane Condenser

w = i~a tanh(z
2
)

The Mathematica program of this section was developed after the original paper was writ-

ten. It was commented on in a rather breaf way. Here these comments are put down for

your information without adding any further calculations like in the previous sections.

This section presents the Circle and Plane Condenser. The upper plate is a closed circle with

radius r0 which is at the distance id from the in�nite lower plate located at the u-axes.

The preimage of the u-axes is the x -axes and the preimage of the circle is the line parallel

to the x-axes at the distance ix0 (in both cases the variable y satis�es �� < y � �). The

relation between the variables x0; r0; d and ~a is given by

r0 =
~a

sinh(x0)
; d = ~a coth(x0); ~a = r0 sinh(x0) .

The complex potential of this problem as a function of z is

�(z) = � iV0z
x0

.

The constant ~a is called aa in the Mathematica program.



2.15 Mathematica Program for the Two Circles Condenser

w = i~a tanh(z
2
)

The Mathematica program of this section (like the one before) was developed after the

original paper was written. It was commented on in a rather breaf way. Here these com-

ments are put down for your information without adding any further calculations like in

the previous sections.

This section presents the Two Circles Condenser. The upper plate is a closed circle with

radius r1 which is at the distance id1 from the second circle with radius r2 and at the

distance id2. Actually the condenser of the previos section is a special case of this one

where the radius r2 becomes in�nite. The preimages of the circles are the lines parallel to

the x-axes at the distance ix1 and �ix2 respectively (in both cases the variable y satis�es

�� < y � �). The relation between the variables x1; x2; r1; r2; d and ~a is given by

rj =
~a

sinh(xj)
; dj = ~a coth(xj); ~a = rj sinh(xj) with j = 1; 2 .

Introducing a new variable d = d1 + d2 leads to the coupled system

cosh(x1) + coth(x2) sinh(x1) =
d
r1

cosh(x2) + coth(x1) sinh(x2) =
d
r2

The complex potential of this problem as a function of z is

�(z) = � iV0(z�ix2)
x1�x2 .

The constant ~a is called aa in the Mathematica program.



2.16 Di�culties in Calculating Condensers with Rounded Edges

In the �rst section of this thesis I talked about the Schwarz-Christo�el formula to calculate

conformal functions for condensers with corners whose angles �i are 0 < j�ij � �. Unfortu-

nately the elecric �eld strength in the vicinity of convex corners tends to in�nity. To avoid

this singularity I introduced the modi�ed Schwarz-Christo�el transformation.

I can always apply this modi�ed Schwarz-Christo�el transformation to condensers with

corners of angles: j�ij < �. (examples with j�ij = � are the Semi-In�nite Condenser and

Finite Plate Condenser; their mapping functions cannot be modi�ed so that the �eld at the

edge becomes �nite.)

This application, however, causes serious trouble in calculating some new parameters that

did not appear in the original Schwarz-Christo�el formula. Nevertheless these parameters

have to be computed to get the conformal map for a wanted radius of the curve(s) repre-

senting the edges. Unfortunately Mathematica is no longer a good tool to calculate these

parameters as it was to compute the elliptic moduli k with the FindRoot[ ] command

(section 2.11 and 2.12) or the parameter p in section 2.7 .

Two examples will illuminate the di�culties :

4� rounding the upper corner of the Sharp Bend Condenser

4� rounding both corners of the Thick Aperture Condenser

Rounded Sharp Bend Condenser :

The conformal map for the Sharp Bend Condenser is

w =
2

�

 
b ln

"p
t+ 1 +

p
t� qp

q + 1

#
� ai ln

"p
t� q + ia

b

p
t+ 1p

q + 1

#!
+
ia

�
ln t� ib

with t = ezand q = a2

b2
:

When I want to round the upper convex corner I have to apply the modi�ed Schwarz-

Christo�el transformation:

The start and end points of the curve on the W-plane are denoted by ws and we, the origin

by wq and the cross point of the horizontal lines (crossing at in�nity) by wp (the cross

point of the vertical lines is at in�nity on the W-plane as well as on the T-plane which

reduces the order of the product under the integral by one). The corresponding points on

the T-plane are then ts = �1; te = 1; tq and tp, with tp and tq > tp > 1 to be calculated

later on.

The modi�ed Schwarz-Christo�el formula gives :



dw

dt
= A

p
t+ 1 + �

p
t� 1

(t� tp)
p
t� tq

:

An integral of this form can be found in [gh, p.31, eq. (213.5b)]. This yields :

w = A

(
i

s
tp + 1

tq � tp
ln

"p
t� tq

p
tp + 1 + i

p
tq � tp

p
t+ 1p

t� tq
p
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p
tq � tp

p
t+ 1

#
� ln

"p
t� tq +

p
t+ 1p

t� tq �
p
t+ 1

#

+�
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tp � 1
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ln

"p
t� tq

p
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p
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p
t� 1p
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p
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p
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p
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#
� ln

"p
t� tq +

p
t� 1p

t� tq �
p
t� 1

#!)
+B :

The constant A can be calculated by eq.(6) :

ib = �i�
2
4AY

i6=p
(tp � ti)

��i

3
5 = ��A

p
tp + 1 + �

p
tp � 1p

tq � tp
;

A = � ib

�

p
tq � tpp

tp + 1 + �
p
tp � 1

:

When I choose the variable t = tq; (wq = 0) and insert this symbolical value of t into the

equation from above I get the value for B :

B = A

"
�p

tq � tp

�q
tp + 1 + �

q
tp + 1

�
� i�(1 + �)

#
= �ib+ b

p
tq � tp(1 + �)p

tp + 1 + �
p
tp + 1

with the parameters tp; tq still to be calculated. [we] refers to an older paper that calculated

a best � =
q
(tq + 1)=(tq � 1).



When I insert two speci�c values for t = �1 into the equation this leads to two transcen-

dental equations for tp and tq.

a� i(b+ c) = �A

(
i

s
tp + 1

tq � tp
ln

"
i
p
tp � 1

p
1 + tq �

p
2
p
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i
p
tp � 1

p
1 + tq +

p
2
p
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#
� ln

"p
1 + tq +

p
2p
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p
2

#)
+B

a+ c� ib = A
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i
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"
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#
� ln

"
i
p
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p
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p
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p
2

#)
+B

This sounds all very easy since the conformal function for this problem looks like the sum

of two conformal functions of the Sharp Bend Condenser, but I have to solve these two

coupled transcendental equations for tp and tq. That means I have to �nd solutions for

these parameters at the same time. FindRoot �nds solutions for two polynomials of low

order but not for the equations mentioned above.

I suppose there are very good programs existing in some FORTRAN or C library which

manage the problem in a rather comfortable way.

Rounded Thick Aperture Condenser :

Now I want to round both corners of the Thick Aperture Condenser. Its conformal function

is :

f(z) =
ia

2E� k02K

"
k02F(arcsin t; k))� 2E(arcsin t; k)) �

p
1� t2

p
1� k2t2

t

#
� b

with t =
q
� ez

k

Application of the modi�ed Schwarz-Christo�el formula with t2(w2) and t5(w5) as for the

Thick Aperture Condenser and the start and end points of the left and right smooth



curve wls; wle; wrs; wre(tle = �1; trs = �k; tle < tls < tre < trs) gives :

w = A

tZ
0

�p
t2 � k2 + �1

p
t� t2re

��q
t2 � t2ls + �2

p
t� 1

�
dt

t2
+B

= A

" tZ
0

p
t2 � k2

q
t2 � t2ls dt

t2
+ �2

tZ
0

p
t2 � k2

p
t2 � 1 dt

t2

+�1

tZ
0

p
t2 � t2re

q
t2 � t2ls dt

t2
+ �1�2

tZ
0

p
t2 � t2re

p
t2 � 1 dt

t2

#
+B :

I can again substitute t by t = 1=sn(�i; ki) where �1 = sn�1(tls=t; k1); k1 = k=tls;

�2 = sn�1(1=t; k2); k2 = k; �3 = sn�1(tls=t; k3); k3 = tre=tls; �4 = sn�1(1=t; k4); k4 = tre are

the substitutions for the ith integral.

With the help of [bf, (129.01), (121.00), (120.02)] I get :

w = �A
" �1Z

0

cn2(�1; k1) dn
2(�1; k1) d�1

sn2(�1; k1)
+ �2

�2Z
0

cn2(�2; k2) dn
2(�2; k2) d�2

sn2(�2; k2)

+ �1

�3Z
0

cn2(�3; k3) dn
2(�3; k3) d�3

sn2(�3; k3)
+ �1�2

�4Z
0

cn2(�4; k4) dn
2(�4; k4) d�4

sn2(�4; k4)

#
+B :

As for the original condenser these integrals can be integrated using [bf, (121.00), (310.02),

(311.02)]. There are still three dependent moduli, two �i and the constants A and B to

be calculated. Spending a week I can �nd values for A and B. Inserting these into the

integrated equation and solving for di�erent t = (�1; tle; trs) leads to four equations for the
unknown tle; trs (the �i have to be chosen so that the rounded corners can be approximated

by circles). This is absolutely impossible for standard Mathematica commands.

I chose a very nasty example to demonstrate the di�culties to obtain the values of the

parameters that determine the conformal function f(z).

As soon as the values of the parameters tpi ; tqi and �i are known I can inserte these into the

general form and have the graphics plotted by Mathematica . One way would be to transfer

the parameter values from the FORTRAN j C program via MathLink. For informations

you have to study the Mathematica book [ma] or the MathLink Reference Guide of your

Mathematica version.
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