Kapitel 8

Series and their sums

8.1 Convergence of series
In general, a series comprises an infinity of terms:
o+ ro + r3 + ... :Zrn (8.1)
n=1

The most important question is how to assign a reasonable value to this infinity of numbers or functions.
The standard procedure is to form the partial sums:

N
SN = Zrn (8.2)
n=1

and to investigate the convergence of this sequence of numbers or functions:
81,59, 53,84, ey Spyy eer (8.3)
If this sequence tends toward a limit s, then this is called the sum of the series (8.1):

$1,82,83,84,---9y8n,--- — S

(8.4)
oo
Sy = s
n=1
A means to find out whether a series will tend toward such a limit is the
Ratio Test: If lim, o |[rpnt1/rm] < 1, the series fozl ry, is absolutely convergent.
If limy, oo [Ppy1/mn| > 1, the series > 07 |, is divergent. O
If limy, oo [Tnt1/mn| = 1, a further test must be applied. One such test is the following:
r w
" = 1—|—H—&——Z7 w = const., |w,| <AV n, (8.5)
Tn+1 n n

(where p is a constant and |ws,| is less than a fixed number A for all n), the series Y~ | r,, is convergent
if p > 1 and divergent if p < 1.

8.2 Linear series transformatios for accelerating or inducing
convergence

The definition (8.4) of the sum of a series is by no means the only possibility to assign a reasonable
value to an infinite series. There are definitions of such a value, which may be applicable to a larger
range of series. Of course, they must lead to the same value if applied to series convergent in the sense
of the preceeding section. But they may assign a reasonable finite value to a series, which is divergent
according to the criteria applied in the preceeding section. Series, where this applies, will be termed
summable.

A few such methods will be described now:



8.2.1 Holder means

A new sequence is generated from sequence (8.3) by taking arithmetic averages of the partial sums:

81+ S2 4+ ... + S

Y = ~ (8.6)
If this sequence tends toward a finite limit:
lim hsll) =5
the sequence {h&l)} is called H;-limitable, and s its Hp-sum.
As an example take the geometric series
2 3 1 .
whose circle of convergence is |¢| = 1. For ¢ = —1 one gets in a formal way:
1 o0
L-1+1-1. =2 = ;rn with 7, = (=1)*V,
The sequence of partial sums is:
N N 1
sN = ;rn = nz::l(—l)"*1 = S+ DN s} = {L0,1,0,,1,0,0). (88)
The arithmetic means of the partial sums, eq.(8.6), give:
+ 859+ ...+ s, 1 1—(-1"
p1) = 2 = = . .
" n 2 + 4n (8.9)
The sequence of hg)’s converges towards the limit % For ¢ = —1 the geometric series is not convergent

but H-limitable to the value 3. The same result obtains in Mathematica under the command NSum]].

Hy-means use a new sequence obtained from (8.6) by applying again an arithmetic mean:

(1), ) (1)
h? .= Py Hhy Fethal (8.10)

n

In similar manner still higher everages, H,.-means, are introduced.

8.2.2 Borel summation

8.3 Non-linear series tranformations for accelerating and in-
ducing convergence. The Shanks transform

In the preceeding sections linear combinations of partial sums were considered. In some cases it is more
efficient to find new sequences ¢y from non-linear functions of the partial sums.

ty = f(s1,52,83,84,..., SN)- (8.11)

An example of such a nonlinear transform is the Shanks transform; it is calculated by the followng
algorithm:

) =0, & = s, (8.12)
= D Y 20,12, (8.13)
tr(sn) = o). (8.14)

This scheme involves two chains of indices. The elements with even subscript give the terms of the
Shanks sequence; those with odd subscript are just auxiliary quantities.



This method is equivalent to Padé approximants. The use of this method implies some dangers. Ex-
amples are given in § 9.1.3 .

[8.1] Divergent series, Chap.12 in W.R. Gibbs: Computation in Modern Physics. World Scientific, 2 nd
ed., 2003.

[8.2] K. Knopp: Theorie und Anwendung der uendlichen Reihen. Springer, 5. Aufl. 1964.



