
Chapter 25

Green’s Tensors for the
Electromagnetic Field in
Cylindrical Coordinates

The solutions of the vector Helmholtz equation in three dimensions can be expressed by a
complete set of vector fields denoted as L,M,N. L is a source field, the other two fields
are solenoidal. This set can also be used for Maxwells equations. However, in source-free
regions of space the two solenoidal fields suffice to express all solutions. Green’s tensors of
the electromagentic fields were derived with fields of all three types. But in the last section
of the preceeding chapter it was shown that the source fields may be removed in such a way
that only the solenoidal fields plus a singular term remain. In this chapter the Green’s tensor
of free space is derived in cylindrical coordinates r, θ, φ. It is shown that this removal of the
source field can be done in two ways leading to two differenent representations of the Greens
tensor; the singular term is then proportional either to the dyadic ezez′ or erer′ .

25.1 The vector fields, Hansen Harmonics

The three types of vector fields solving the vector Helmholtz equation in cylindrical coordi-
nates r, θ, φ can be derived from the following set of scalar functions:

ψmhλ(r, θ, φ) = Jm(λr) eimφ eihλz, m ∈ Z, 0 ≤ λ <∞, −∞ < h <∞, (25.1)

which are particular solutions of the scalar Helmholtz equation ∆ψ + k2ψ = 0 provided

k2 = h2 + λ2. (25.2)

These functions form a compete set of solutions if the parameters m,h, λ are allowed to vary
through the full range indicated in the definition (25.1). For an integral representation of a
solution the paths of integration in the complex λ− and h−planes must be suitably chosen
to avoid a vanishing of the denominators of the integrands and to ensure the Sommerfeld
radiation condition. This will be treated in more detail below. The time-dependence e−iωt is
suppressed throughout this chapter.

The solenoidal fields are defined as

Mmhλ(r, θ, φ) = ∇× ezψmhλ(r, θ, φ) := TMψmhλ(r, θ, φ) (25.3)

with the operator

TM = er
1
r
∂φ − eφ∂r; (25.4)

and

Nmhλ(r, θ, φ) =
1√

λ2 + h2
∇× Mmhλ(r, θ, φ) :=

1√
λ2 + h2

TNψmhλ(r, θ, φ) (25.5)
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with the operator

TN = er
1
r
∂zr + eφ∂z phi − ez

(
∂rr +

1
r
∂r +

1
r2
∂φφ

)
. (25.6)

Note that the coefficient of ez becomes λ2 if the operator TN acts on ψmhλ(r, θ, φ).

The irrotational fields are :

Lmhλ(r, θ, φ) = ∇ψmhλ(r, θ, φ) := TLψmhλ(r, θ, φ) (25.7)

with the operator L being equal to the nabla operator in circular cylindrical coordinates.

The vector fields fulfil the following orthogonality relations:∫ ∞
−∞

dz

∫ ∞
0

r dr

∫ 2π

0
dφ

(
Mmhλ(r, θ, φ) ·M∗

m′h′λ′(r, θ, φ)
)

=∫ ∞
−∞

dz

∫ ∞
0

r dr

∫ 2π

0
dφ

(
Nmhλ(r, θ, φ) ·N∗m′h′λ′(r, θ, φ)

)
=

= 4π2 δmm′ δ(h− h′) δ(λ− λ′) λ (25.8)

and ∫ ∞
−∞

dz

∫ ∞
0

r dr

∫ 2π

0
dφ

(
Lmhλ(r, θ, φ) · L∗m′h′λ′(r, θ, φ)

)
=

= 4π2 δmm′ δ(h− h′) δ(λ− λ′) (h2 + λ2)/λ. (25.9)

all integrals containing mixed scalar products as (L ·M), (L ·N), (M ·N), are zero.

25.2 Green’s tensors

Green’s tensors for the electromagnetic field are defined as solutions of the following inhomo-
geneous equation:

∇× (∇× Γ(r; r′)) − k2 Γ(r; r′) = I δ(r− r′). (25.10)

Here only the tensor for free space is considered. Therefore superscripts are omitted. The
wave number k = ω/c has the usual meaning. At infinity the tensor must fulfil the radiation
condition.

The electric field excited by an electric current distribution Jr is given by:

E(r) = iωµ0

∫ ∫ ∫
Γ(r; r′) · J(r′) dr′; (25.11)

the magnetic field due to a magnetic current distribution Mr may be expressed with the help
of the same tensor:

H(r) = iωε0

∫ ∫ ∫
Γ(r; r′) ·M(r′) dr′. (25.12)

In cylindrical coordinates the tensor is given by the following matrix:

Γ(r, r′) =

 Γrr(r, θ, φ; r′, θ′, φ′) Γrφ(r, θ, φ; r′, θ′, φ′) Γrz(r, θ, φ; r′, θ′, φ′)
Γφr(r, θ, φ; r′, θ′, φ′) Γφφ(r, θ, φ; r′, θ′, φ′) Γφz(r, θ, φ; r′, θ′, φ′)
Γzr(r, θ, φ; r′, θ′, φ′) Γzφ(r, θ, φ; r′, θ′, φ′) Γzz(r, θ, φ; r′, θ′, φ′)

 (25.13)

and the electric current density by:

J(r) = (Jr(r, θ, φ), Jφ(r, θ, φ), Jz(r, θ, φ)). (25.14)
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25.2.1 General integral representation of the Green’s tensor in Hansen
harmonics

The completeness relation of the vector fields defined in the second section is:

I δ(r− r′) =
1

4π2

∫ ∞
−∞

dh

∫ ∞
0

dλ

∞∑
m=−∞

[
Mmhλ(r)M∗

mhλ(r′) + Nmhλ(r)N∗mhλ(r′)
λ

+

+
λ

λ2 + h2
Lmhλ(r)L∗mhλ(r′)

]
. (25.15)

A similar expansion with unknown coefficients is set up for the Green’s tensor. This and
the above completeness relation are inserted into (25.10) and coefficients of like terms are
compared. This gives the following representation of the Green’s tensor:

Γ(r; r′) =
1

4π2

∞∑
m=−∞

Γm(r; r′) (25.16)

with

Γm(r; r′) =
∫ ∞
−∞

dh

∫ ∞
0

dλ
∞∑

m=−∞

[
Mmhλ(r)M∗

mhλ(r′) + Nmhλ(r)N∗mhλ(r′)
λ(λ2 + h2 − k2)

−

− λ

k2(λ2 + h2)
Lmhλ(r)L∗mhλ(r′)

]
(25.17)

= lim
ε→0

(
TMTM ′

M (−1)
m + TNTN ′

N (−1)
m −TLTL′

L(−1)
m

)
eim(φ−φ′). (25.18)

The integration paths in the h- and λ− planes must avoid the points where the denominators
become zero; this must be done such that the radiation condition is fulfilled. This is worked
out below (conf. Figs.1 and 2). The integrals occuring in these expressions are defined as:

M (ν)
m =

∫ ∞
−∞

dh

∫ ∞
ε

dλ λν
Jm(λr)Jm(λr′) eih(z−z

′)

(λ2 + h2 − k2)
, (25.19)

N (ν)
m =

∫ ∞
−∞

dh

∫ ∞
ε

dλ λν
Jm(λr)Jm(λr′) eih(z−z

′)

(λ2 + h2)(λ2 + h2 − k2)
, (25.20)

L(ν)
m =

∫ ∞
−∞

dh

∫ ∞
ε

dλ λν
Jm(λr)Jm(λr′) eih(z−z

′)

k2(λ2 + h2)
, (25.21)

The superscript and exponent is an odd integer, ν ≥ −1 for M (ν
m ) and N

(ν
m ); ν ≥ 1 for

L
(ν
m). For convenience, the lower limit ε has been chosen in place of zero, so that all the

integrals exist. This permits one to draw the operators T contained in the vector fields under
the integral in front of the integral. After appropriate transformations and evaluations of the
integrals have been done, these are inserted into eq.(25.18), the operators are again introduced
into the integrals. after the derivations contained in the operators have been done, the limit
ε→ 0 can be done.

25.3 Representations of the Green’s tensor without the irro-
tational Hansen harmonics

There are several ways to remove the Hansen harmonics from the Green’s tensor. We shall
show three methods, each one leading to a different representation.
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25.3.1 Representation with the unit tensor in the singular term

In the same way as in section 23.8 the irrotational Hansen harmonics may be removed by
subtracting the singular term I δ(r − r′)/k2 as given in eq.(25.15) from the representation
given in (25.16) with (25.17). This gives:

Γ(r; r′) =
1

4π2

∫ ∞
−∞

dh

∫ ∞
0

dλ
∞∑

m=−∞

(
Mmhλ(r)M∗

mhλ(r′) + Nmhλ(r)N∗mhλ(r′)
)
×

×
( 1
λ(λ2 + h2 − k2)

+
λ

k2

1
λ2 + h2

)
−

− 1
k2

I δ(r− r′). (25.22)

25.3.2 Representation with the dyadic ezez′

Figure 25.1: Links: a) The complex λ−plane with branch cuts; Rechts b) The complex
h−plane with poles at γ = ±iλ.

One of the essential steps to obtain new representations of the Green’s tensor, in which
the irrotational Hansen harmonics no longer occur and which involve less integrations, is to
do one integration. If this integration is done w.r.t. the longitudinal wave number h then
the resulting integral will have a discontinuous derivative w.r.t. z; and a further derivation
w.r.t. z′ will yield the distribution δ(z − z′). Performing all the derivations required by the
operators bT in (25.18) will lead to some cancellations of terms such that only the solenoidal
Hansen harmonics and a singular term porportional to the dyadic ezez′ remain in the resulting
representation of the Green’s tensor:

Γ(r; r′) =
i

4π

∞∑
m=−∞

∫ ∞
0

dλ
1
λγ

[
M+

mγλ(r)M+∗
mγλ(r′) + N+

mγλ(r)N+∗
mγλ(r′)

]
Θ(z − z′)

+
i

4π

∞∑
m=−∞

∫ ∞
0

dλ
1
λγ

[
M−

mγλ(r)M−∗
mγλ(r′) + N−mγλ(r)N−∗mγλ(r′)

]
Θ(z′ − z)

− 1
k2

δ(r− r′) ezez′ . (25.23)

The Hansen harmonics M,N have been defined above in eqs.(25.3) and (25.5); for M±,N±

the function ψ must be replaced by

ψ±mγλ = Jm(λr) eimφ e±iγz. (25.24)

The function γ is defined as:

γ =
√
k2 − λ2, Imγ ≥ 0. (25.25)
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The path of integration C ′λ is shown in Fig.25.1a. Θ() is the Heaviside unit step function.

In order to find the representation (25.23) the integrals defined in eqs.(25.19) to (25.21) must
be evaluated w.r.t. h. The integral is single-valued. The path of integration in the complex
h-plane is shown in Fig.25.1b). It is closed by a semi-circle of infinite radius in the upper
(lower) ahlf-plane for (z − z′) > 0 (< 0). Then the integral can be evaluated by the residue
theorm. The resulting integrals depend on the modulus |z − z′| :

M (ν)
m = iπ

∫ ∞
ε

dλ
λν

γ
Jm(λr)Jm(λr′) eiγ|z−z

′|, (25.26)

N (ν)
m =

iπ

k2

∫ ∞
ε

dλ λν Jm(λr)Jm(λr′)

[
eiγ|z−z

′|

γ
− e−λ|z−z

′|

iλ

]
, (25.27)

L(ν)
m =

π

k2

∫ ∞
ε

dλ λν Jm(λr)Jm(λr′) e−λ|z−z
′|. (25.28)

L
(ν)
m , ν ≥ 1 cotains only modes evanescent in the z-direction, which result from the poles at

h = ± iλ. Their contribution are cancelled by corresponding terms arising from N
(ν)
m after

the integrals (??) to (??) have been inserted into the representation (??) and the operators T
have been shifted into the integrals. Derivatives w.r.t. z and/or z’ of the exponential function
depending on |z − z′| are:

∂z′ eβ|z−z
′| = − ∂z e

β|z−z′| = β eβ|z−z
′| sign(z′ − z), (25.29)

∂z′∂z e
β|z−z′| = − β2 β|z − z′| − 2 β δ(z − z′). (25.30)

It will suffice to calculate two elements, Gzz′ and Grr′ , to show how this approach works.

Gmzz′ =
[
0 + N (3)

m − 2π
k2

δ(z − z′)
∫ ∞

0
λdλ Jm(λr)Jm(λr′)

]
eim(φ−φ′) (25.31)

=
[
0 + N (3)

m − 2π
k2

δ(z − z′) δ(r − r
′)

r

]
eim(φ−φ′). (25.32)

The zero recalls that the z-component of Hansen harmonics of type M are zero. The last
factor yields the distribution δ(φ−φ′) as soon as the summation over m is done; this completes
the singular term.

Gzz′ =
i

4π k2

∞∑
m=−∞

∫ ∞
0

dλ λ3 Jm(λr)Jm(λr′) eiγ|z−z
′| eim(φ−φ′) − 1

k2
δ(r− r′). (25.33)

Thus this element can be rewritten as given in representation (25.23).

In the element Gmrr′ all terms with evanescent mode contributions cancel as well as terms
containing δ(z − z′).

Gmrr′ = iπ

∫ ∞
0

dλ
1
λγ

(
1
r
∂φ Jm(λr) eimφ

)(
1
r′
∂φ′ Jm(λr′) e−imφ

′
)
eiγ|z−z

′|

+
iπ

k2

∫ ∞
0

dλ
γ

λ

(
1
r
∂r Jm(λr) eimφ

)(
1
r′
∂r′ Jm(λr′) e−imφ

′
)
eiγ|z−z

′|. (25.34)

Using the definitions (25.3) and (25.5) of the operators T the last expression is transformed to
that given in eq.(25.23). The transformation and evaluation of the other elements of (25.18)
required to obtain the representation (25.23) goes along the same lines.
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25.3.3 Representation with the dyadic erer′

In a way similar to that in the preceeding subsection a new representation of the Green’s
tensor can be obtained which consists of solenoidal Hansen harmonics and a singular term
proportional to the dyadic erer′ . But befor the integration w.r.t. the radial wave number λ
can be done the integral must be transformed ionto one over the whole real λ-axis; this implies
that the Bessel functions of the first kind, Jm(λr>), is replaced with the Hankel function of
the first kind, H1

m(λr>).

Figure 25.2: The complex λ−plane with branch cut.

The representation of the Green’s tensor with a radially directed singular term is:

G(r; r′) =
i

8π

∞∑
m=−∞

∫
Ch

dh
Mmhη(r<)M2∗

mhη(r>) + Nmhη(r<)N2∗
mhη(r>)

η2

− 1
k2

δ(r− r′) erer′ (25.35)

with
η =

√
k2 − h2, Im(η) ≥ 0. (25.36)

r>, (r<) is that of the triples (r, θ, φ) and (r′, θ′, φ′) in which the first variable is max(r,r’)
(min(r, r’)). The vector fields M,N,L are defined in eqs.(25.3), (25.5), (25.7). The corre-
sponding fields with a superscript (1) or (2) are obtaind from these definitions by replacing in
(25.1) the Bessel function of the first kind by the Hankel function of the first or second kind.
Note that complex conjugation transforms the Hankel function of the first kind into that of
the second kind and vice versa. The path of integration, Ch in the complex h-plane and the
branch cuts are the same as in Fig.1(a) with λ replaced by h.

In the derivation of the representation (25.35) the integrals M (nu)
m , N

(nu)
m , L

(nu)
m defined in

eqs.() to () must be transformed such that the integration over the radial wave number λ
extends over the whole real λ−axis (cf. Fig.24.2); then this integration can be done by the
residue theorem. The exponent of λ is assumed to be an odd integer ν ≥ −1. We start from
an integral I extending over the whole λ−axis, in which f(λ) is to be identified with one of
the following three functions even in λ.

f(λ) =
(

1
(λ2 + h2 − k2)(λ2 + h2)

;
1

(λ2 + h2 − k2)
;

1
(λ2 + h2)

)
I = 1

2

∫ −ε
−∞ dλ λν f(λ) Jm(λr<)H(1)

m (λr>) + 1
2

∫∞
ε dλ λν f(λ) Jm(λr<)H(1)

m (λr>) =

= 1
2

∫ ε
∞ dλ λν eiπν f(λ) Jm(λeiπr<)H(1)

m (λeiπr>) + ... =

= 1
2

∫∞
ε dλ λν f(λ) Jm(λr<)H(2)

m (λr>) + ... =

=
∫∞
ε dλ λν f(λ) Jm(λr<) Jm(λr>)

(25.37)
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In the first integral of the second line eiπν = − 1 since ν is odd; this sign is used in the next
line to reverse the integration limits. In this integral the half circuit relation of the Bessel
functions

Jm(λeiπr<)H(1)
m (λeiπr>) = (−1)m Jm(λr<)H(2)

m (λr>) (−1)m

is used to simplify the arguments. The connection between the Bessel function of the first
kind and the Hankel functions

Jm(λr<) =
1
2

[
H(1)
m (λr) +H(2)

m (λr)
]

is applied in going to the last line. The denominators of the functions f(λ) require the path
of integration C ′λ to be indented at λ = ±

√
k2 − h2 = ± η as indicated in Fig.24.2. In the

limit ε→ 0 the intgral in athe last line of (25.37) ceases to exist if both m = 0 and ν = − 1.
A careful check of the various terms in eq.(25.18) reveals that there is no term where this
happens; the operators Tproduce either additional factors of λ or a factor m = 0. In the limit
ε → 0 the integral in the first line of (25.37) may be regarded as a Cauchy principal value
integral. In view of the behavior of Bessel functions for small argument
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