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General analytic expressions have been derived for the
summation of doubly infinite sums of terms consisting of
the ratio of two polynomials, or of the product of such

a ratio with trigonometric functions. Although many
special cases of such sums are known, the formalism can
be applied to cases that are difficult, if at all, avail-
able in the literature.
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:INTRODUCTION

The summation of infinite series can become quite time consuming and
eXpensive even with high-speed computers if their convergence is slow. Although
a number of books exist which have cbllections of analytically summable
1-4})

series ¢ there seems to be a 1ack of descrlptlons of general methods which

permlt the summatlon of series which are not llsted

In this contribution we present a few general formulae which appear to
be quite useful in practice, but_could not be found in any of the more common
bocks on series._ Since their de;ivation is quite straightforward from decomposi-
tion into pa;tiei fractions, it is quite possible that these formulae have been
derived before. However, their applications are so numercus that it appears

useful to make them known to a wider audience at the peril of repetition.

1. Infinite series eenSisting of terms which are ratios of two polynomials,
and where the summation index runs from — @ to + ®, can be summed with the help

of the expressions
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where p, are the dlstlnct zerds of the polynomlnal P of order K, and the order of

polynomial Q is less than X for convergence.

2. If the polynomial P has multiple roots, the equations (1) and (2) can

be generalized as shown in the Appendix. However, it is often more convenient

to obtain the result by a limiting process from the expressions for distinct zeros.
Iwayé.ie.eﬁ eveh fﬁnéfiéh of h,‘it is.also pessiﬁle.to:obfein_the sums

from 1 to =.by.splitting off the terms with negative summation index.and inverting

the sign. Some simple examples of the applications of the above equatione“are

shown in Table I° (mos$t or all of these can be found in standard text-books) .

3. A more general expression has been derived which sums trigonometric
series with coefficients consisting of ratios of polynomials, and with the summa-

tion index running from - © to + ®
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where again p, are the (distinct) zeros of the polynomial P of order K, and the

polynomial @ has an order less than K. .

4. The validity of the sine series is restricted to 0 < 8 < 27 but the ‘ ¢
cosine series is also valid for 8 = 0 {or 27), where it yields Eq. {1). (For
8 =m, it yields Eq. (2).) The two trigonometric series can be combined into a

single exponential series

4{0 Q(n) ~ _ind Q(py)  iPn(8-m)
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valid for 0 < 6 < 27. Some simple examples of applications of these formulae are

given in Table II.
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Table I
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for maltiple zeros of the polynomial P(x), the partial fraction representa-
tion of Q(x)/P(x) will contain higher powers of one or more terms
K 2 bn m c
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.where the coefficients aj, b,, c,, etc. are given by quite complicated ex-

pressions in terms of the polynomials P and Q and their derivatives,

evaluted at x.= p,. Limiting our discussion to double rocots, we find
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In practice it is simpler to calculate the coefficients by defining the

polynomials Rp(x} = Q) : Sp(x) = ——ja99—~—-. Then
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With the help of the sum formulae (see Tables I and II)
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we obtain thus
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: Extensioﬂ to multiple roots of higher order is obvious. However, as the

determination of the partial fraction coefficients becomes more complicated

it is then often easier to take the simple expressions for distinct roots by
adding different small gquantities to the multiple roots, and then to take

|
these small quantities to zero by a limiting process.







