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Quantum Simulation and
Quantum Information

Prof. Ivan H. Deutsch
Center for Quantum Information and Control
Department of Physics and Astronomy
University of New Mexico
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Algorithmic (Kolmogorov) Complexity
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Mandelbrot set fractal

® Simply storing the 24-bit color of each pixel
in this image would require 1.62 million bits.

® Computer program to generate the image,
few lines of code requiring WAY fewer than
1.62 million bits.

High-T. Superconducting Cuprate

® Complex many-body system of electrons and nuclei.

® Physicists challenge: Find the simplest possible
description that captures the essence of the observed
phenomenon.

® Mathematical models: analytically solvable or through
computer “simulation”.

® Find the best mathematical approximation to the
physical world.




Models and Simulations

Hubbard model or t-J model
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Challenge: Determine the phase diagram associated
with a given many-body Hamiltonian. |

Hamiltonian ;&S 2 0 ¢, +U2ann
(i:)-s

_ﬁH

State D= & . = ‘l//ground><l/jgmund

Order Parameter: O(A) = Tr( p(/’L)é)
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Complexity of a many-body quantum state

Hilbert Space description: H =~%": dimH =d"

Example state: 4 spin-1/2 particles (16 dim space

\y/):a“\TT’\T>+a3b(\TTT¢>+\TNT>+\NTT>+HTTT>)

+a’b’

+ab3(
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a=cos(0/2), b=sin(0/2)

‘l//) = T9>®4

1) =a|T)+5]L) = cosZ| 1) +sin 2| 1)




Computational Complexity

U@nm
fo solve nf@ matio a

PSPACE problems

NP Problems

NP Complete
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Many-Body Physics and Information

Quantum Information
Using quantum correlations
to solve informationally
complex problems

Many-Body Physics
Strongly correlated many-
body: systems
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Entanglement

Bipartite Pure-State

Wy ®
Entanglement V) %19), @120,

py=1r (“PAB><\PABD’ pp=1r, (‘\PAB><\PABD
Tr(pj)<1, Tr(p§)<1

Entanglement --> Maximal possible information
about the whole (pure state) implies incomplete
information about the parts (mixed state).




Entanglement

Quantifying Entanglement: Entro

p,=1r (‘\PABX\PABDa pp=1r, (‘LPAB><\PAB‘)

N
E=S(p,)=S(py)=-D A, logA,

1 1
p= AL AL -
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1 1:7 ] 1
E=——l]log———log—=1log2 =1 ebit
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Schmidt Decomposifibn

General decomposition
info orthonormal basis

Singular value decomposition

Schmidt
number

Schmidt
coefficients

Schmidt Decomposition
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Schmidt Decomposition

Marginal density
operators

N
Entanglement E=S(p,)=S(p,)=-D A, logA,
u=1

The Schmidt decomposition quantifies the

"complexity” of the state



Many-body Complexity and Entanglement

week endin
VOLUME 91, NUMBER 14 PHYSICAL REVIEW LETTERS 3OCTOBERl§()O3

Efficient Classical Simulation of Slightly Entangled Quantum Computations

Guifré Vidal

Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125, USA
(Received 25 February 2003; published 1 October 2003)

"Clearly, if a quantum device is to offer an exponential
speedup with respect fo classical computations, then it
must involve dynamics that cannot be efficiently
simulated classically.’
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Many-body Complexi’ry and En..,’r,cmglememL

N, d-level systems = 0 9L e

1112 l

d" — parameters: c,

iyl

Schmidt decomposition

N ap
for arbitrary biparite ) — E/ILA’B]‘CI)LA]>®‘CI>LB]>
division A+B =1

Information content

=log(N>), O(nZE) parameters needed to specficy |¥)

C. i Tr(A(ll)[l]A(lz)[Z] A(in)[n])

il -

Matrix for the i, component of k" subsystem: A}’ [k]=U*[k] A,

E < O(logn) = Efficient representation
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Entanglement and Local Systems

Spin chain (Ising-like model)
® Local interactions --> Finite correlations away from
critical point (point of second order phase transition)

So0000s50000005000000




Entanglement and Local Systems

® | ocal interactions --> Short-range correlations away
from critical point (second order phase transition).

® Short-range correlations --> Limited entanglement -->
Simple representation with limited information.

® Critical point --> Diverging correlation length

® Critical point --> Larger entanglement --> Complex
representation --> difficult to simulate.
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Matrix Product States
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Matrix Product States

e

Pap =17, (‘\PABC><\PABC D =~ Py Pg

‘\PACL>®|\PACR>z I, ®U, ®IB‘\PACB>

ACB 2 > ®‘¢ ®|%V>B

Matrix-Product State!
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Matrix product states, projected entangled pair states, and variational
renormalization group methods for quantum spin systems

F. Verstraete®*, V. Murg® and J.I. Cirac®

Advances in Physics
Vol. 57, No. 2, March—-April 2008, 143-224

Matrix Product State:

‘\P>= Z Tr(A(h)[l]A(iz)[z]...A(in)[n])‘il>®‘i2>®...® in>

R

® Variational wave function at the heart of Density-Matrix
Renormalization Group (DMRG).

® For 1D gapped (noncritical) systems, form a faithful
representation with small dimensional matrices (limited
entanglement).

® Generalization to 2D -- Projected Entangled Pairs (PEPS)
® Fermions in 2D? Unsolved whether there exists efficient

re: resentation.
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Area Laws
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® For gapped quantum spin systems,

entanglement scales as the size of boundary.

1D S~cLog(L)
® Higher dimensional critical systems”? Fermions?

® Critical systems:
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Models and Simulations

Hubbard model or t-J model

H = Z _f('j‘s('js + U Z II,"]-H,'l
(2:7).8 l

Large on-site interaction U: t-J model
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Requirements on a Quantum Simulator

® Quantum Simulator: Physical system should be
faithfully described by the desired model.

® Most challenging (not accessible by classical
computation) for "complex quantum states”.

® Complex quantum states (large information
content) have substantial entanglement.

® How robust is a quantum simulator, and how can
we test ITs veracity?
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Quantum Simulation: Analog vs. Digital

Analog: Finding the solution through the laws of physics

e Differential equations of motion of masses on springs with dashpots efc.
equivalent to electrical voltages in circuits with resistors, capacitors eftc.

e Computational complexity of analog computer difficult to assess. As problem
size grows the signal disappears into the noise.
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Models and Simulations

Hubbard model or t-J model

H = Z —f(‘,!s(‘_l'_\. + U Z ni1Ng|
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Emulation

Phase sensitive expts:
Van Harlingen et al. (1893)

Tsuei et al (1994)

Hardy et al (1993)
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Quantum Information Processing: Analog or Digital?

The physical nature of information

Rolf Landauer '
IBM T.J. Watson Research Center. P.O. Box 218, Yorktown Heights, NY 10598, USA

Received 9 May 1996
Communicated by V.M. Agranovich

3. Quantum parallelism: A return to analog
computation

An analog computer can do much more per step
than a digital computer. But an analog computer, in
which a physical variable such as a voltage can take on
any value within a permitted range, does not allow for
easy error correction. Therefore, in the analog com-
puter errors, due to unintentional imperfections in the
machinery, build up quickly and the procedure can go
through only a few successive steps before the errors
accumulate prohibitively. A digital computer, by con-
trast, allows only a 0 or /. That permits us to restore
signals toward their intended values, before they drift

Sunday, March 20, 2011

far away from that. In typical digital logic the signal
1s restored toward the power supply voltage or ground
at every successive stage. This is what permits us to
go through a tremendous number of successive digi-
tal steps, and this has given the digital computer its
power. In quantum parallelism we do not just use 0 and
1, but all their possible coherent superpositions. This
continuum range, which gives quantum parallelism its
power, also gives it the problems of analog computa-
tion, a point first explicitly stated by Peres [16]. If we
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Quantum Information: Analog vs. Digital?

Wave-Particle Duality Analog-Digital Duality




Quantum Error Correction and Fault-Tolerance

® Digital nature of quantum information allows us to
discretize the errors

Quantum error correcting code

(|0000000) + (0001111) 4 |0110011) + |0111100) (|1111111) + [1110000) + |1001100) + [1000011)

+/1010101) + |1011010) + |1100110) + |1101001)) +/0101010) + |0100101) + |0011001) + |0010110))

® Can detect errors without detecting the "quantum
path”.

® Process of error-correction is fault-tolerant when the
errors are below a given threshold. pstcane 107>

but requires extremely large numbers of qubits
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The Common Lore of Quantum Simulation

2 OCTOBER 2009 VOL 326 SCIENCE www.sciencemag.org

in general, quantum simulations do not require

Qu a ntu m S i m u I ato rs either explicit quantum gates or error correction,
and less accuracy 1s needed. Thus, quantum sim-

) 1 12 ulation is typically less demanding than quantum
lulia Buluta™ and Franco Nori™“* computation. Even with tens of qubits (4-6), one

could already perform useful quantum simula-
tions, whereas thousands of qubits would be
required for factorizing even modest numbers
using of Shor’s algorithm.

Question:

Why does Shors factoring algorithm require quantum error
correction, but a useful quantum simulation (i.e., one not
efficiently simulatable on a classical computer) not?
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Robustness of information: What do we measu__l__re?

e Typical quantum algorithm (e.g. Shor): Measure Py in computational
basis to due answer. Requires robustness of 2" probabilities.

P.=|(x[¥)f

e Typical quantum simulation: Measure local correlation function to
determine the order parameter, e.g., quantum magnetism:

"y <0'20'j>

neighbors

Question
When is C not efficiently calculable on a classical
computer, and when it is not, how sensitive is it to
errors in the quantum many-body state?
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Is Nature Quantum Complex?

Question
Does nature make use of exponentialamounts of entanglement
especially at finite femperature and with finite imperfection?
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Fundamental Question

@ Under what condition is the quantum state of a many-
body system sufficiently robust that we can use it fo
perform a useful quantum simulation without digital
encoding for error correction, and when it is that robust,
could we have obtained that information otherwise in an
efficient calculation on a classical computer?

@ Solution 1: An analog quantum simulator is not reliable
and can only capture finite entanglement scales --> Need
to encode digitally in order to correct errors.

@ Solution 2: An analog quantum simulator can solve
classically intfractable problems --> We should take
advantage of this robustness is all possible ways for
quantum computation.

Next Frontier in Complexity Theory!
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