Chapter 9

Mixed States: the density matrix

Up to now, we have always treated a | single particle, with spatial and spin
(or polarization) properties. We have mostly discussed just one of these
properties and ignored the other. This can safely be done when the particle

is in a so-called Eroduct state, é.g.

total state) = |state in coordinate space) ® [state in spin space).

S— -> -

(See also ch. 9.5.2). Often we have only considered the x-direction and im-
plicitely assumed that

W)> = |wz> lwy> |wz> lwspin> = ’w(f,d) = 1/)1(1‘) 1/’2(3/) '1/)3(2) wsmn(a) .

Le. that the state is also a product state with respect to x,y, and z coordina-
tes. However, in general a quantum mechanical states will contain a linear
combination of product states which cannot be factorized. In that case, one
cannot simply treat coordinate space and spin (or polarization) separate-
ly. Such a non-factorizable linear combination is called an entangled state
(see also ch. 10). It appears, for example, in the Stern-Gerlach experiment.
Before the screen, the total state consists of an upper beam with spin-up
particles and a lower beam with spin-down particles. This can be written
as

lv) = —\}—E ([top.1) + |bottom,|) ) .

To what extent can location and spin then still be treated separately ?
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More generally on needs to ask in how far one can describe a subsystem (e.g..

a single particle) separately from the rest of the world, even though it interacts
with the world quantum mechanically.

It turns out that the question of how to describe an unpolarized beam of
particles (e.g. photons) is closely related. This would be an ensemble of
particles whose polarization has not been fixed (prepared, measured). A
measurement of polarization on this ensemble should produce results |e,)
and |e,) with equal probability, with respect to any basis |e,), |e,) of pola-
rizations. One might be tempted to try a state like

T ]
]¢>‘\/§(|m>+|y))- ]

However, this linear combination does not describe an unpolarized state,
but instead a state with a different polarization, rotated by 45 degrees with
respect to |e,). Indeed, a state which is represented by any vector in Hilbert
space (a so-called pure state)is not able to describe an unpolarized state.

The solution to these question requires an extension (re-writing) of the for-
malism of quantum mechanics, from pure states to so-called mixed stateg’.
We shall see that mixed states eccur naturally when one studies a subsy-
stem of a total system', which may itself be in a pure state |¢), whenever
the subsystem is entangled with the rest of the system. This is true for an
arbitrary subset, e.g. the separate consideration of spins, or of a subset of
particles. Mixed states are the most general quantum mechanical states. In
a special case, they are eﬂ/alent to pure states.

Mixed states typically‘éontain parts which cannot interfere with each other
(see below). Then the corresponding probabilities (instead of the probabﬂity
amplitudes) are added, for example the probablities of finding some pola-

rization |e;) or |e,).

Mixed states can also be used to describe a quantum mechanical system
for which one does not know all properties. It turns out that mixed states
have to be described by an operator, the so-called density operator (or by
some matrix representation of this operator, the so-called density matrix),
instead of by a vector in Hilbert space.

le.g. the whole universe (?)

248



Kapitel 9. Mixed States: the density matrix

9.1 Expectation values for subsystems of an entangled

pure state

We shall look at two examples. First we consider a double slit experiment
with particles that all have spin |1). The state of the particles immediately
after the screen is something like

@ . % (|slit1,T) $ |slit2,T)) 9.1)
1 /. .
= 727(|s11t1> * |sht2.)) ® 1), 9.2)

where we have used the notation |[slit 1,1) = [slit 1) ® | 1). The state |¢4)
is a_product state consisting of spatial and spin degrees of freedom. We
calculate the probability |(v1|z)|* = (¢4|z)(z[¢1) of finding the particles at
a location z at the screen. It is equal to the expectation value of the operator
O, := |z){z| :

(W4|Ozlty) =

%( |(<slit1| - (sliti])()z(blitl) + Islit2>)| )
% ((slit1] + (slit2 ) O, (Jslit1) + [slit2) )

because of (1|1) = 1. The result does not contain the spin degree of free-
dom any more, that is we obtain the same result as when we ignore the
spin from the start !

For the location, we will typically find quantum mechanical interference
between the two beams, because of the terms (slit 1| O, [slit 2) and (slit 2| O, |slit 1).

As a second example we consider a Gedanken-experiment, in which the
two beams of a Stern-Gerlach experiment hit the double-slit setup. The
state at the screen is now ’

@ %(blitl,ﬂ + |slit2,¢)). 9.3)

This is an entangled state, between the spatial degree of freedom and the
spin, which cannot be written as a product state |¢space) ® [¥spin) -
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9.2. Density operator, mixed state

The above spatial probability now becomes

(WrlOalton) = 5 ((litL 1] + (slie2,4]) O, (Islitl, 1) + Iskit2,4))

(slit1]| O, [slit1) + (slit2| O, |slit 2)

N =N =

sini (/1) =1and (1|]) = 0. The mixed terms and thus the interference
have vanished with this entangled state ! We obtain the two classical indivi-
dual probablities for particles which have travelled through either the first
or the second slit. This happens since particles at slit 1 (with spin |1)) can-
not interfere with those at slit 2 (with spin | |)) because of the orthogonality

(i - ‘6‘1 thomselves

We see that for the description of subsystems'we need a formalism which
allows both interference as well as classical probabilities. We will come
back to this example in ch. 9.5.4.

9.2 Density operator, mixed state

In order to motivate a suitable formalism, we first rewrite the usual quan-
tum mechanical probabilites for a system in a pure state ;ﬁ;

When measuring a state [¢) with a hermitian operator A =Y, a; |a;)(ail,
the probability to obtain a final state [a;), and thus a measured value a;, is
according to postulate (2.15)

W(a) = [ail¥)

Il
oy,
P
<
S~
N
=

1S
NS

(9.4)

We see that this probability can be expressed with an operator py, = [¥)(¥|.
Different parts of [¢) can interfere here.

In a mixed state such probabilities (9.4) will add up for several contributing
pure states, instead of the probability amplitudes. The proper description
for such mixed states is then a linear combination of operators like py,
namely the so-called
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Kapitel 9. Mixed States: the density matrix

DENSITY OPERATOR (IN ITS SPECTRAL REPRESENTATION)

=Y p lo)el with Y p, =1. 9.5)

>

F)

Here, |p,) are orthonormal vectors, namely the eigenvectors? of the her-
mitian operator p, and the eigenvalues p, € [0. 1] are weights for the con-
tributing pure states |p,). This operator is also called statistical operator
or state operator or mixed state.’

In another basis, {@, }, the operator / will have the generic form

p = Z po | Pv)(@v] (9.6)
v
with a hermitian matrix p,,.. The density operator p contains the complete
probability information of a quantum system. Its representation in some
basis is the corresponding density matrix p,,,, which becomes a diagonal
matrix with entries p, in the eigenbasis.

For a system that was prepared in the mixed state p, we now have the

PROBABILITY FOR OBTAINING THE RESULT a; IN STATE p

W) = (ajlpla;) = Y p [aglen). (9.7)
SRR LA

when measuring with the operator A. Calculation for the 2nd part:

(ajlpla;) = (a;| 32, pv ko) (wullas) = 32, pv (gl leu) (vl lag) = 32, po [{aslen) .
This is inded the weighted sum of probabilites for the individual contribu-
ting pures states |y, ), with weights p,. The p, can therefore be interpreted

_as probabilities for finding the state |¢,) upon examining the mixed state
p, and the state p itself can be interpreted as a stMtze.

We can now use eq.A.25:

The vectors of a spectral representation are non-unique within subspaces of constant
eigenvalues. Within such a subspace they can be transformed by any unitary transforma-
_—
tion.

3Note that the vector [¢) for any pure state is determined only up to an overall phase
factor which cancels in expectation values. Such a phase factor also cancels for p, so that
the density operator does not have a phase ambiguity.

251



9.2. Density operator, mixed state

f““

(0 ) <w| = X.(nlOlg)(¥ln) = 2, (|n)(n|Ol¢) = (¥lOlp)

to obtain the expectation value of the operator A in the state  :
2 9.7 . A25
(4), = Z a; W(a;) = Z aj (aj| pla;) "= ZaJ tr plaj)(a;|
¥ J
n (ﬁ E aj la;)(a;| ) — tr(p/i) :
J

=A

This expectation value can also be expressed with the eigenstates |¢,) of p:
<A>p = Z 9= Z“JZPNII%
Zpu (ol D aslag)aslen) - = D b (ol Al)
PRy .

(_/—w

Thus: A

EXPECTATION VALUE OF AN OPERATOR A IN A STATE p

(A, = u(sd) = Fnlaldla) ©8)

This relation is basis independent because if the invariance of the trace-
operation. The special case A = 1 with (1) = 1 shows that

[wp = 1| 9.9)

9.2.1 Density operator for a pure state

The statistical operator for the special case of a pure state |¢) is like g, in
eq.94,

p=1¥){¥| ; (9.10)

without a linear combination. The expectation value of some observable A
then gets its familiar form again,

(A) = (W|Aly) . (9.11)
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Kapitel 9. Mixed States: the density matrix

How can one decide whether a given densigz operator p represents a pu-

re state ? There are several possibilities. One unique criterion is the form
(9.10), i.e., one of the eigenvalues of p is unity (and all others are zero).
mersely, the density operator for a non-pure state can only be written
as a linear combination of several terms of the form (9.10).

Another necessary and sufficient condition for a pure state is

P =p . (9.12)

This condition is necessary, since it is immediately implied by eq. 9.10. The
spectral decomposition p implies that it is also sufficient. Another neces-
sary and sufficient condition is the weaker looking relation

gfv‘- = tr ﬁ2 = 1. (615(}‘ I)\A?, !/ (9.13)

The matrix representation of p (=density matrix) in a basis in which [¢) is
the first basis vector is simply

1 0 ..
p & (o o,__..) . (9.14)

In another basis, |/) will be a linear combination, e.g.,

V) = all) + cf2). (9.15)

The density operator of this pure state is

(c1l1) + e2(2)) (el (1] + c5(2])
<|c1|2 clcg), 9.16)

ciey |eaf?

po = ) (V]

o~
-

where the last expression is the matrix representation in the basis |1), |2).
Interference can appear in some observable A via mixed matrix elements

like (1|A[2) = tr (A |2)(1|) i.e. via the off-diagonal matrix elements c,c}
— -

and cjcs.
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9.3. Unpolarized state

9.2.2 Schrodinger equation for a mixed state

The time evolution of pure states |¢/) implies the evolution of the mixed
states. We begin with the density operator for a pure state p = |¢) (/| and

use H = HT.
o d L d
(ma Iw>) (w1 + 1) (m@ <wl)

T
4 . d
(Zha |¢)> (V] — [¥) (Zﬁa |1/)>)
T
ﬁ(!w) <wl) — [) (H |w>)

- ﬁ(rw <¢|) . (lw <¢|) a* # sy

= fj-pil = [ﬁ,ﬁ]

L d . L d
ihgep = ih (16) ()

The density operator for a general mixed state is a linear combination of
density operators for pure states. Therefore the Schrodinger equation for
a general density operator has the same form:

TIME EVOLUTION OF A DENSITY OPERATOR p

—_—

ih—pt) = [H,p0)] (9.17)

9.3 Unpolarized state

How can one now describe an unpolarized state ? The proper description
is the mixed state

b= sleedd + leel. 9.18)

The probabilities (9.7) W (z) = (e;|ple;) = 5 and W (y) = (e,|ple,) = 3 are
then indeed equal.
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Kapitel 9. Mixed States: the density matrix

Note that in eq. 9.18 the density operator p for an unpolarized ensemble
is just the (suitably normalized) identity operator ! Therefore one can also
write it in every other basis:

4 1 1
p = 1 = §|em’>(ez'| . §|ey’><ey’|' (9-19)

N =

The polarization in this mixed state is therefore zero with respect to any_
basis.

9.4 Incomplete preparation

A real quantum mechanical system usually has many degrees of freedom.
A typical preparation fixes only some of them (e.g. location at a slit) but
not others (e.g. the polarization of a beam which goes through a double
slit experiment).

In order to simplify the notation, in this section we will concentrate on the
double-slit setup and treat only the degrees of freedom of the slit (basis
vectors |s;),|s2)) and polarisation (basis vectors |e;), |e,)). How can one
describe an ensemble of particles which have passed through slit 1 and
are not polarizeci ? If both slit 1 and a polarization, say |e,), had been mea-

sured, then the system would be in the pure state |e,, s;), equivalently
described by the density operator |e;, 51)(ez, 51/ -

In order to describe the unpolarized situation, we need to sum over po-
larizations like in section 9.3. Thus the unpolarized beam through slit 1 is
represented by the mixed state with density matrix . ﬂ“

P~ e

- 1 /7 K
=52 lesdlensl = 5 (X leded) ® lsi(al ©20

— L —-

This state is a product of a state in the space of polarizations (mixed) and
a state in real space (slit, pure). When one only looks at location and does
not measure polarizations, the this state can be treated as the pure state
;) = |s1) (see also ch. 9.5.2). The same i1s true for a linear combination
of pure states [¢5) = ¢1|s1) + c2|s2), as long as location and spin are not
entangled. This is why we were able to ignore polarisation in the original
treatment of the double slit experiment.
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9.5. Reduced density matrix

9.5 Reduced densitxmatrix

We will now treat the general case, with many degrees of freedom. Let
us describe the total system as consisting of an "environmentﬁ"k with quan-
tum numbers (degrees of freedom) u'V, u?, ... and the actual smaller ” 'sy-
stem” of interest, with degrees of freedom s“ s@, . In order to sunphfy
notation, we shall write u for u'", u'?.... and s { for s s@ ... Note that
the strength of interaction on and entanglement between ’ systern and “en-
vironment” is arbitrary. The most general state of the total system is repre-
sented by the density operator

lsus = ZZ Puu’ss’ |u, 5)<u,v sll C (921)

uu’ 8,8

with |u, s) = |u)|s) and (u, s|u/, s") = dyu dss. We now con51der an
operator A, which only acts on the “system” s, i.e., A[u) |s) = |u) ( Als) ‘)

and A M (3,s Ass|s)(s']). For such an operator, the expectation value
can be simplified. We shall write tr, for the trace in the space of environ-
ment variables u, and similarly tr,, resp. tr,,. Then

(A)s, = truspus A = trg (tru ﬁus/i) = 1r, (tru ﬁus) A.
— e
A = tryp, A. 2 (9.22)

We see: (A) can be written like an expectation value in an isolated ’ slstem " ('),
with a trace only over the degrees of freedom of the system, but with the .

REDUCED DENSITY OPERATOR

ps = trupus, withmatrixelements foy = Y puuer .  (9:23)

which contains the influence of the environment in the matrix elements
pss- Note that this simplification is independent of the strength of inter-
action between system and environment !

We shall now look at some examples of reduced density matrices.

‘When p,, is diagonal in the basis |u,s), i.€. pPuwss = DPusOuu 0ss, then
553’ == Zu pus(sss’-
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Kapitel 9. Mixed States: the density matrix

9.5.1 Heat bath

We consider a system in contact with an external “heat bath” at fixed tem-
perature 7. Often one can neglect the details of the interaction with the
bath, except for the effect of the temperature, which is to weight all states
of the system by

" E;
pi o< exp( _kB_T) (9.24)

(Boltzmann weight) depending on the energy E; of the state. This can
again be interpreted as a statistical mixture.

9.5.2 Independent system

The special situation in which the ”system” and ”environment” are in
completely independent states is describe by weights p,.ss which factori-
ze

Puv'ss = Puw’ Psg’ - (925)

One can normalize them separately, tr,p... = trypse = 1. Then
Pus = Pu lé_s'v (926)
with puw = puw and psy = pse. The environment now has no influence at
all on the reduced density matrix and on expectation values of operators
which act only on the system; it can therefore be ignored. Environment and

system each can be in pure or mixed states. We considered an example in
ch.94.

When the system and environment do not interact, then the Hamilton ope-
rator has the form H = H,®1, + 1,® H,. Then the reduced density matrix

obeys (see eq. 9. 17)

d ~
ih = 5u(t) = [Hapy(0)] 9.27)

and system and environment will remain independent.’ In earlier chapters
we implicitely assumed such an independence.

_°Note,_however, that in general, the reduced density matrix does ot have a simple

unitary time evolution !
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9.5. Reduced density matrix

9.5.3 Product state

A special case of independent systems occurs when the total system is in a
pure state which is a product state between environment and subsystem:

V) = [vu) [¥s) - (9.28)

)

Then the reduced density operator is simply

A

o= tru (W) @l(wal) = (i) ) (el = ) G4l ©0:29)

i.e., the “system” is again independent, and even in a pure state itself.

9.5.4 Entangled state

We will treat once more an example similar to ch. 9.1, this time with a
reduced density matrix.

Let the total system be in a ut entangled state, e.g.
N’

¥) = % (11,00) + [04,1,) ) (9.30)

Then the density operator is

b = 1)@ = 5 (110 + 104,1)) ({0l + 0, ])

and the reduced density matrix for the (sub-)system becomes (using (u|u) =

Oun’) (orthonormality of
.:.‘u_. basis vectors)
= - " 1
Ps = ypus = (ul plu) = 5 (10s) (0s] + [15) (L ) . (9:31)
- 2
u=0y,1y =

The matrix representation is

110 J
Ps =35 \0 1) ;

Thus when the total system is in a pure state, but entangled between en-
vironment and sub-system, then the reduced density operator for the sub-
system is mixed (since p* = %/3 # p), without off-diagonal interference
terms !

-—
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A.12. Erganzungen

A.12.4 Pure states with several degrees of freedom

Real physical systems have many degrees of freedom. In real space each
particle has three coordinates, and may also have spin and other internal
degrees of freedom.

The total Hilbert space is then the tensor product of the individual spaces:
Let{|lea)}, {ler)}, ... be orthonormal basis vectors for the property A, B, . ..

(eg-{l)}, {ly)}....). Then
lea,eB,...) = |ea)®es)... = lea)les) ... (A.188)

are the basis states of the total Hilbert space (as already mentioned in

ch. (4.4)), with the scalar product

(eA,eB,...IeAI,eBI,...) = (€A|6A1> - <€B[€Bl)... = 5A,A’ JB,B’ Sy (A189)
—— O ene—

and a general state in this Hilbert space is a linear combination of these
basis vectors. The operator

lea,es,-..){ea,e€B,--.|

is a projection operator onto one of the basis states. The sum of all such
projection operators is the identity operator in the total Hilbert space:

S 3" leaer, .. Meares,...] = 1. (A.190)
A B

An operator O 4, which acts only in a subspace

OA |6A,63,...> = (OA|6A>) ®|€B) X ... (A.191)

has the matrix elements_

(ea,ep,...|Oalea,em,...) = (ea|Oalea) - (esles) ... . (A192)
. ST T’—/
B,B’'

in the given basis. In general, however, an operator (e.g. the Hamilton ope-
rator) acts on several degrees of freedom, and it can create entanglement
between them, like

1
— (|location;, spin;) + |location,, spin,) ) (A.193)

V2

In this state, space and spin are correlated (entangled), similar to the Stern-
Gerlach experiment.
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