
Kapitel 9

Mixed States: the densit matrix

ro:;°o:¥#;::eTi+i.a:tga;FS=:asg=::::::::::::i.us¥ie:fdg`
propertiesandjg±gred_t|tsqther.Thiscansafelybedonewhentheparticle
is.i|asouledproductStats,e.g.

|total state)  =  |state in coordinate space)  ®  |state in spin space).

(See also ch. 9.5.2). Often we have only considered the x-direction and im-
plicitely assumed that

ldy)    =    Idyc)  Idygr)  ldyz)  Idyqun)       e      dy(5,Cr)     =     dyi(ff)   dy2(gr)   dy3(2;)   dy8p¢n(cr)    ,

i.e. that the state is also a product state with respect to x,y, and z coordina-
tes. However, in
combirration o

eneral a quantum mechanical states will contain a J!.7zcflr
roduct states which carmot be

carmot simply treat coordinate
In that

ly. Such a non-factorizable linear combination is called an entan
(see also ch. 10). It appears, for example, in
Before the screen, the total state consists of

case, one
separate-
led state

the Stem-Gerlach
an upper beam with spin-up

particles and a lower beam with spin-down particles. This can be wiritte-n
as

ldy)  =  ±  ( |top,t)  +  |bottom,I,) )  .

To what extent can location ands in then still be treated
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More generally on needs to
article) s aratel

ask in how far one can dcscr!.Z7c a swZ7s stem (e.
'orn the rest o

with the world quantum mechanically.

It turns out that the question of how to describe

even though it interacts

a_L_n_unpol_a_riz_e4_beaLrm±o£

particles (e®g. photons) j§±±g=s±±Lre_lated. This would be an ensemble of
particles whose polarization has not beeh fixed (prepared, measured). A
measurement of polarization on this ensemble should produce results I ez)
and |€„) with equal probability, with respect to any basis |€c) ,  leer) of pola-
rizations. One might be tempted to try a state like

dy,-±(,ec,+,e„.      ?

However, this linear combination does #of describe an un olarized state,
but instead a state with a different polarization, rotated by 45 degrees with
respect to I eff ) . Indeed, a state which is represented by any zJecfor in Hilbert
space (a so-called pt„ stofcJs not able to describe an unpolarized state.

The solution to these question requires
malism of uantum mechanics, from

an extension (re-writin ) of the for--           I--1'

ure states to so-called mixed states.
We shall see that mixed states e=cur
stem of a total s

when one studies a subs
stem], which rna itself be in a ure state |dy), whenever

the subs stem is c7tf47t Jcd with the rest of__the sy_stelrt. This is true for an

;=iEa=:i::S:ee:,set;gt:sthaer::::I:toes:::iiedrearlaqtiLoanno:ipin::fioi::,::abt:::if
a special case, they are

Mixed states
(see Then the

alent to pure states.

I parts which cannot interfere with each other
robabilities (instead of the robability

added+or example the probablities of finding` some pola-
rization  leg)  Or  leer).

Mixed states can also be used to describe a quantum mechanical system
for which one does not know all properties. It turns out that mixed states
have to be described by an opcrafor,  the so-called cze7cs!.dy opertzfor `(or by
some matrix representation of this operator, the so-called density matrix),
instead of by a vector in Hilbert space.

1e.g. the whole universe (?)
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Kapitel 9. Mixed States: the density matrix

9.1    Expectation values for subsvstems.of an entangledE-
pure state

_,

We shall look at two examples. First we consider a double slit experiment
articles that all have s The state of the

after the screen is something like

( lslitl,t)   +   lslit2,t) )

particles immediately

+   ,slit2,)      ®   ,t,,

where we have used the notation  |slit 1,t)  =  |slit 1)  ®  I |`). The state  Idyl)
is a product state consisting of spatial and spin degrees of freedom. We
calculatetheproblt;bility|(¢t|z)|2=(¢t|z}jgLdyt)offindingtheparticlesat
a location ff at
a.  :-lg)(ff`I

e screen. 1S equa

(dyt,c,€,dyt,   -:J|( (slit

because of (t I t)

e~e*j5ectati6nvalueFtheoperato-i-

=  1. The result does not contain the s

slit2,)JB

lslit2))

ree of free-
dom any more, that is we obtain the same result as when we ignore the
spin from theT¥tart !

For the location, we will typically find quantum mechanical !.7?£cr/cre7t££
between the two beams, because of the terms(slit 1 I 0€ |slit 2) and (slit 2| Oc |slit 1) .

AS a ££Sop_d exaL=p±Le. we consider a Gedanken-experiment, in which the
two beams of a Stem-Gerlach ex eriment hit the double-slit
state at the screen is now

lslitl,1`)    +    lslit2,+)

setup. The-=.-

(9.3)

This is an entanaled sta±g between the spatial degree of freedom and the
spin, which cannot be written as a product state I dyspace) ® |dyspin) .
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9.2. Density operator, mixed state

The above spatial probability now becomes

(dyt+lo®ldyt+)     -

since  (t I 1`)

( (slitl||   +   (slit2,+ I ) Oc  ( |slitl,|`)   +   |slit2,+) )_

(slitl| C)€  |slitl)     +     (slit2| Oz  |slit2)

1 and  (1. I J)

have zJ¢#i.s#cd with

= 0. The mixed terms and thus the interference
this entangled state ! We obtELin the two classical indivi-

dowJ z7rohabJi.fds for particles which have travelled through either the first
or the second slit. This happens since particles at slit 1 (with spin I |`)) can-
not interfere with those at slit 2 (with spin I +) ) because of the orthogonality
(TIT)  -0.

We see that for the description of subsystems
allows both

C!ie::Ti:r!i|5ismwhich
interference -as well as cl-assical probabilities.  We will come

back to this example in ch. 9.5.4.

9.2   . PLensity operatory_ m±Z::±j±±±|e_

In order to motivate a suitable forrhalism, we first rewrite the usual allan-
turn mechanical Drobabilites for a svstem in a pure state ldy).

When
the pr.#
according to postulate (2.15)

qu  =  itctcidy\i2  =  £ng±
E]ill

We see that this probability can be expressed with an
Different Darts of ldy) can interfere here.

In a mixed state such robalilities will add u

operator ¢dy

`    Ic,6)(C,51,

iffi-fs.

(9.4)

-ldy) (dyl.

±uL±for several
pure states, instead of the probability 47HPJ!tndcs. The proper description
for such mixed states is then a linear combination of operators like ¢dy,
namely the so{alled
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Kapitel 9. Mixed States: the density matrix

DENSITY OPERATOR  (IN ITS SPECTRAL  REPRESENTATION)-*

A    =    Z=Py    lapy)(ap„l           with      z=p„=   1.                                  (9.5)---i.,--"
Here,  lapp)  are orthonormal vectors, namely the eigenvectors2 of the her-
mitian operator A, and the eigenvalues are weights for the con-
tributing pure states |ysy). This operator is also called statistical operator

_===

or state ot)erator or mixed state.3

In another basis, {¢„}, the operator A will have the generic form

A   -   Z:  p-,   1¢,)(¢,,I
L/I,,

(9.6)

with a hermitian matrix p„ . The density operator A contains the complete
probabhity information of a quantum system. Its representation in somei-
basis is the corresponding "afr!.x p„;, which becomes a diagonal
matrix with entries p„ in the eigenbasis.

For a system that was prepared in the mixed state A, we now have the

PROBABILITY FOR OBTAINING THE RESULT oj  IN STATE A_-_-

W(a,)    =    (a,|¢)a,)    =    Z:  P„   I(a||ap„)|:6                      (9.7)
I,

when measuring with the operator A. Calculation for the 2nd part:

(cl,.I¢la,.)  =  (ci,.I   z:„p„  |ap„) (ap„|  |a,.)  =  z=„p„  (ci,.I  |ap„) (ap„|  |a,.)  =  z=„p„  I (a,.|q9„)|2.

This is inded the weighted sum of probabilites for the individual contribu-
tingpuresstates|ap„),withweightsp„

robabilities tor findin
The p„ can therefore be inte

the state |apy
.rEEEE

upon examining the mixed state
A, and the state A itself can be interpreted as

We can now use eq.A.25:

a statistical mixture.

2The vectors of a spectral representation are non-unique within subspaces of constant

envalues.WithinsuchasubspacetheycanbetransformedbyanyunitarytransformaT
tion.

3Note that the vector |dy) for any pure state is determined only up to an overall phase

factor which cancels in expectation values. Such a phase factor also cancels for A, so that
the density operator does not have a phase ambiguity.
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9.2. Density operator, mixed state

^.,-.
tro|ap)(dy|     =  Z=n(7t|O|ap)(dy|n)  =  Z=n(dy|7l)(n|C)lap)     =  (dy|O|ap)

to obtain the expectation value of the operator A in the state A :

(A)p    =    Z:  cijw(a,)    9±7   Z=  aj  (ci,|A|ci,)    A±5   Z=

tr'(¢Z=o,|a,)(a,|}     =   tr(¢A)
.'E-

=.-I

a'.  tr  A I c2j) (C,,.I

This expectation value can also be expressed with the eigenstates I q9„) of A:

(A)p

Thus:

Z=  aj W(a,)    9=7   I  ci,  Z=  p„  I(#|p„)i2
J.I

Z=p"  (apJ  Z=ojlaj)(ojlapy)".    =    Z=p„  (ap„lA|ap„)  ."  -.   I,--
A

This relation is basis independent because if the invariance of the trace-
operation. The special case A = fl with (fl) = 1 shows that

tr¢   -1. (9.9)

9.2.1    Density operator for a pure state
)

The statistical operator for the special case of a pure state |dy) is like ¢dy in
eq. 9.4,

A  -lay)(dyl

without a linear combination.

(9.10)

TheexpectationvalueofsomeobservableA
then gets its familiar form again,

(A)  -  (dylAldy)
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Kapitel 9. Mixed States: the density matrix

How can one decide whether a given densitv operator A represents a Du-
re state ? There are several possibilities. Che unique criterion is the jg=±

{2=±2}, i.e., one of the eigenvalues of p is unity (and all others are zero).
Conversely, the density operator for a non-pure state can only be written
as a linear combination of sczJcrflJ terms of the form (9.10).

Another necessary and sufficient condition for a pure state is

(9.12)

This condition is necessary, since it is immediately implied by eq. 9.10. The
spectral decomposition A implies that it is also sufficient. Another neces-
sary and sufficient condition is the weaker looking relation

;'vl  a tr ¢2  -   1 . ( a."``  ,in4  , )  ,91&,

The nt¢fro.x xgrcsc7tf4f!.o7t.of A (=density matrix) in a basis in which lay)  is
the first basis vector is simply

'±`" p=    (:     :---)

In another basis, |dy) will be a linear combination, e.g.,

lay)    =   Ci  |1)   +   c2  |2)

The density operator of this pure state is

¢o   =   lay)(dy|     =     (Ci|1)   +   c2|2))(c;(1|   +   c;(2|)

i    (!c:1!:   icl2ii) ,

(9.14)

(9.15)

(9.16)

vyhere the last expression is the matrix representation in the basis I 1) , |2).
Interference can appear in some observable A
like  (1|A|2)   =

and clc2.

i.e. via the off-dia

via mixed matrix elements
Onal matrix elements ci
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9.3. Unpolarized state

9.2.2    Schr6dinger equation for a mixed state

The time evolution of pure states |dy)  implies the evolution of the mixed
states. We begin with the density operator for a pure state A =  |dy) (dy| and
use il - fit .

¢h3i±p--ihft(,¢)(¢,,--
(fi:,dy,)

(fa:,dy,)

(¢1  +  ldy)

(dyl  -lay)

fr(idy)(dyi)-i¢)(fridy))t

fr(idy)(¢i)-(idy)(dyi)fr+

fr4-¢frt    -[ji,;]

The density operator for a general mixed state

/4--"

is a linear combination of
density operators for pure states. Therefore the Schr6dinger equation for
a general density operator has ri=6 same form:

TIME EVOLUTION OF A DENSITY OPERATOR A__-i'=T-

¢hk±P(t)   --[f i,a(i)l        .                               (9.17)

9.3    Un olarized state

How can one now describe an unpolarized state ? The proper description
is the mixed state

A     =     ±Iec)(eff|   +   ±|egr)(earl.                                             (9.18)

The probabilities (9.7) W(z)  =  (e®|¢|eff)  =  i and W(gr)  =  (€er|¢|eer)  =  i are
then indeed equal.
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Kapitel 9. Mixed States: the density matrix

Note that in eq. 9.18 the density operator A for an unpolarized ensemble
is just the (suitably normalized) I.de#f{.fry opera for.! Therefore one can also
write it in every other basis:

A   -;fl =     ±|e®J)(€eJ|   +   ±|€yJ)(€grJ|.                                (9.19)

olarization in this mixed state is therefore zero with res ect to
basis.

9.4    Incomplete preparation

A real quantum mechanical system usually has
aration fixes onl some of them

rees of freedom.
(e.g. location at a slit) but

not others (e.g. the polarization of a beam which goes through a double
slit experiment).

In order tofi=±p!ify the notation, in this section we will concentrate on the
double-slit setup and treat only the degrees of freedom of the slit Oasis
Vectors  |si) , |s2)) ±±£1 Poli±±i±±itiio.PL@asis Vectors ie£), |€gr)).  How  can  one
describe-inTneemble of particles whicb=have passed through slit 1 and
are not polarized ? If both slit 1 ¢#d a polarization, say leg), had been mT=
sured, then the-system would be in the pure state  |€ff , si), equivalently
described by the density operator leg, si) (e„ si I  .

In order to describe the unpolarized situation, we need to sum over po-
larizations like in section 9.3. Thus the unpolarized beam through slit 1 is
representedbythemixedstatewithdeusitymatriLX}L4j¢.^

tgTir'j   ;  ,sL\tsL,   t9.20,a   -   :  I:  ,€„sl,(€„S1,    -
_,

This state is a rodwcf of a state in the s ace of olarizatious
a state in real s ace (slit, pure).
not measure polarizations, the

When one onl
ffl)i

looks at location and does
this state can be treated as e pure state

(see also ch. 9.5.2). The same is true
states

inear com
|dy3)  =  Ci|Si)  + C2|s2), as long as location and spin are not

entangled. This is why we were able to ignore polarisation in the origina
treatment of the double slit experiment.
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9.5. Reduced deneity matrix

9.5    Reduced densi matrix

We will now treat the eneral case, with many degrees of freedom. Let
us describe the total svstem as consisting of an ''enyiro_r±p_e_n|" with quan-

sTm::#=r±d;#:::gg:Et£:;tt:2:,tLj,s*th.e£¥Lal::#=r;#_
notation, we shall write u for "(1) , u(2) ,...  and s for s(1), s(2) ,.... Note that
the strength of interacti=and entanglement b=tween "system" and "en-
virorment" is arbitrary. The most eneral state of the total s stem is
sented by the density operator

Acts     =    Z=Z=  Pttu'65'    lt/7S)(tt',S'|    .u,u, a,s' - __
with |%7 s)  =  |%) |s)  and  (tt, s|u', s')  =6u„/ 6s3;. We now consider an

operator A, which only acts on the ''system" s, i.e.,Alu)ls)  -lot)

repre-

(9.21)

(Z=s6,4sJ|S)(S'|).Forsuchanoperator,theexpectationvalue
We shall write tr„ for the trace in the space of environ-

ment variables u, and similarly tr„ resp. tr"s. Then

tr"s A"9 A

-tr8f)6A.

=     tr8(trtt¢tt8A)      =     trs(trtt¢tt8)   Ao

can be written like an ex

-
¢8                      (9.22)

ectation value in an isolated "s
with a trace only over the degrees of freedom of the system,

stem"  (I.)i
but with the

REDUCED DENSITY OPERATOR

prs   =   tru¢u„     withmatrixelements  ¢ss/   =   Z=  puussi       (9.23)
u

which contains the influence of the environment in the matrix elements
Note that this sim lification is inde endent of the stren th of inter-

ction between s stem and environment !

We shall now look at some examples of reduced density matrices.
4When   pt,s    is   diagonal   in   the   basis    |u,S),   i.e.   PuaeJs8J

¢ssl    --   Eu Pus68sl.
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Kapitel 9. Mixed States: the density matrix

9.5.1    Heatbath

We consider a system in contact with an external "heat bath" at fixed tern-
perature I. Often one can ne lect the details of the interaction with the___                                 _   _-

bath, exce t for the effect of the ten
of the system by

which is to weight all states

¢8   or   exp(-#)                                       (9.24)

depending on the energy  E¢  of the state.  This can
again be interpreted as a

9.5.2    Independent

statistical mixture.

System

The special situation in which the ''system"  and  "environment" are in
endent states is describe by weights putt;88; which factori-

Ze

pwul8s'     ~-     pun'    p38'  .-I-I
one Can normalize them Separately, trt,PLg3; = tr8P66; =  1. Then

Pus   -     Pu  P8,-  i-I i-

(9.25)

(9.26)

With ¢u„t  = ptt„t and ¢68;  = p99;. The environment now has no influence at
all on the reduced density matrix and on expectation values of operators
which act only on the system; it can therefore be ignored. Environment and

We cousid;redsystem each can be in pure or mixed states.
ch. 9.4.

Vvhen the s stemapden^virorilnen.tdoTotinteraE|=thLen
rator has the form fr = j}„ ® fls + fl„-6 fJs. TJ±e±±Lthe
obeys(seeeq.9.17-)-------

Zh £±~Gsth    -~   lH8i~¢8(t)\

an example in

the Hamilton ope-
r±ddensitymatrix

(9.27)

andsystemandenvironmentwillremainindependent.5Inearlierchapters
we implicitely assumed such an independence.

5Note, however, that in general, the reduced density matrix does 7tof have a simple

time evolution !
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9.5. Reduced density matrix

9.5.3    Product state

ecial case of inde endent systems occurs when the total system is in a
purei±±±±e.which is a product state between environment and subsystem:

ldy)    -    Idyu)   ldy€)

Then the reduced density operator is simply

pro    =   tr„   (|dytt)|dy6)(dy9|(dytt|)    =    (dyuldyu)  Idy8)(dyglr-

(9.28)

=    lays)(dy6|  ,    (9.29)

i.e., the ''system" is again independent, and even in a pure state itself.

9.5.4    Entangled state

We will treat once more an example similar to ch. 9.1, this time with a
reduced density matrix.

Let the total system be in

lay)    =

ut entangled state, e.g.

(  ,1",o6,   +   ,o",18,

Then the density operator is

A"s     -     lay)(dyl =    ±  ( |1u,08)   +  |±,1s))  ( (1t„08|   +  £u718|)

(9.30)

and the reduced density matrix for the (sub-)system becomes (using (tt| u') =
6utt,)
__

69   -trtt¢"8   -     I:   (ttl¢ltt)  -:_                                t`-Oat ,1t,

The matrix representation is

i + qua-,) .  (9.31,

ps-12(1o01).               I.

Thus when the total system is in a pure state, but entangled between en-
vironment and sub-system, then the reduced density operator for the:=±±k
svstem is mi2£ed (since ff  =  ±¢
terns !

±  ¢)' without
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A.12. Erganzungen

A.12.4    Pure states with several degrees of freedom

Real physical systems have many degrees of freedom. In real space each
particle has three coordinates, and may also have spin and other internal
degrees of freedom.

teusorpro±ofThe total Hilbert s ace is then the the individual spaces:
Let { I eA) } ,  { I eB) } ,...  be orthonormal basis vectors for the property A, B,

(e.g.  {|ff)},   {|e/)} ,... ). Then

|€A,eB ,... )    =    |eA)®|€B)...     =     |eA)leg)...                      (A.188)

are the basis states of the total       bert space (as already mentioned in
ch. (4.4)), with the scalar product

(eA,eB ,...  |eAJ,eBJ ,... )   =   (eA|eAJ)  .  (eB|eB/)  .  . .   =   6A,A/ 68,8/   ...,   (A.189)

and a general state in this Hilbert space is a linear combination of these-i__-_- - ._ -
basis vectors. The operator

|eA, eB ,... ) (eA,  €B ,...  I

is a prof ection operator onto one of the basis states. The sum of all such
prc)jection operators is the identity operator in the total Hilbert space:

Z=  Z:  Z=  leA9e;-:-... )(eA,eB ,... I    =    fl.                      (A.190)
AB

erator OA, which acts only in a subspace

OA|eA,eB ,... )   =    (OA|eA))   ®|eB)   ®...                        (A.191)

has the matrix elements

(eA, eB ,... I OA l€AJ, eBJ ,... )   =  I:£Lof_l€A:)   .  {£±j;=:}  ....    (A.192)
68,a,

--J-i--    +

in the given basis. In general, however, an operator (e.g. the Hamilton ope-
rator) acts on several degrees of freedom, and it can create entanglement
between them, like

1

7: ( |locationi,spin[)    +    |location2,spin2) )                 (A.193)

In this state, space and spin are correlated (entangled), similar to the Stem-
Gerlach experiment.
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