W bungs ant gaben

2.1 (i) Verify (14 + 2M >) > = (M -> - LM > - 2 h TX7

(ii) Show in a similar way that the fluctuations in the energy are related to the specific heat at constant volume by

$$(\Delta E)^2 \equiv \langle (E - \langle E \rangle)^2 \rangle = kT^2 C_V.$$

Use this equation to argue that $\Delta E \sim N^{1/2}$ where N is the number of particles in the system.

- 2.2) A paramagnetic solid contains a large number N of non-interacting, spin-1/2 particles, each of magnetic moment μ on fixed lattice sites. This substance is placed in a uniform magnetic field H.
 - (i) Write down an expression for the partition function of the solid, neglecting lattice vibrations, in terms of $\mathcal{F} = \mu H/kT$.
 - (ii) Find the magnetization M, the susceptibility χ , and the entropy S, of the paramagnet in the field H.
 - (iii) Check that your expressions have sensible limiting forms for $x \gg 1$ and $x \ll 1$. Descibe the microscopic spin configuration in each of these limits.
 - (iv) Sketch M, χ , and S as a function of x. and of β [Answers: (i) $\mathcal{Z} = (2\cosh x)^N$; (ii) $M = N\mu \tanh x$, $\chi = N\mu^2/(kT\cosh^2 x)$, $S = Nk\{\ln 2 + \ln(\cosh x) x\tanh x\}$.]
- **2.3** Determine the critical exponents λ for the following functions as $t \to 0$:

(i)
$$f(t) = At^{1/2} + Bt^{1/4} + Ct$$

(ii)
$$f(t) = At^{-2/3}(t+B)^{2/3}$$

(iii)
$$f(t) = At^2 e^{-t}$$

$$(iv) f(t) = At^2 e^{1/t}$$

(v)
$$f(t) = A \ln\{\exp(1/t^4) - 1\}$$

[Answers: (i)1/4, (ii)-2/3, (iii)2, (iv)undefined, (v)-4.]

Show that the following functions have a critical exponent $\lambda = 0$ in the limit $t \to 0$:

(i)
$$f(t) = A \ln|t| + B$$

(ii)
$$f(t) = A - Bt^{1/2}$$

(iii)
$$f(t) = 1, t < 0;$$
 $f(t) = 2, t > 0$

(iv)
$$f(t) = A(t^2 + B^2)^{1/2} (\ln |t|)^2$$

$$(v) f(t) = At \ln|t| + B$$

2.5¹² Consider a model equation of state that can be written

$$H \sim aM(t+bM^2)^\theta; \quad 1 < \theta < 2; \quad a,b > 0.$$

near the critical point. Find the exponents β , γ , and δ

[Answer:
$$\beta = 1/2$$
, $\gamma = \theta$, $\delta = 1 + 2\theta$.]

2.6¹² The spontaneous magnetization per spin of the spin-1/2 Ising model on the square lattice is

$$\langle s \rangle^8 = 1 - (\sinh 2J/kT)^{-4}.$$

Show that this can be written in the form

$$\langle s \rangle = B(-t)^{\beta} \{ 1 + b(-t) \dots \}$$

where $t = (T - T_c)/T_c$ and $\beta = 1/8$. Find B and b and hence estimate the range of temperatures over which it is reasonable to ignore the correction to the leading scaling behaviour. [Answer: $B = (8\sqrt{2}K_c)^{1/8}$, $b = (1 - 9K_c/\sqrt{2})/8$ where $K_c = J/kT_c$.]

· F=4-T5