Dynamics and thermalization in isolated quantum

systems

Marcos Rigol

Department of Physics
The Pennsylvania State University

QCD Hadronization and the Statistical Model
ECT* Trento, ltaly
October 6, 2014

With comments
by H.G. Evertz

Marcos Rigol (Penn State) Dynamics in quantum systems October 6, 2014 1/34


evertz
Typewriter
With comments
by H.G. Evertz

evertz
Rectangle


0 Introduction
@ Experiments with ultracold gases
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Experiments with ultracold gases in 1D

Effective one-dimensional ¢ potential
M. Olshanii, PRL 81, 938 (1998).

Uip(z) = g1pd(x)

where
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91D 1— Ca, %
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Absence of thermalization in 1D?

Density profile Momentum profile
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T. Kinoshita, T. Wenger, and D. S. Weiss, Nature 440, 900 (2006).
MR, A. Muramatsu, and M. Olshanii, Phys. Rev. A 74, 053616 (2006).
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Absence of thermalization in 1D?
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strongly correlated
Tonks-Girardeau regime

ol gamma=1.4

If v < 1 the system is in the
weakly interacting regime
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0 Introduction

@ Unitary evolution and thermalization

Marcos Rigol (Penn State)

Dynamics in quantum systems

Classical physics:
Chaotic evolution --> ergodicity (uniform)
--> thermal description
(Exception: integrable systems:
many conserved quantities
--> orbits in phase space,
not ergodic)

Quantum physics:
NOT ergodic ! (only a tiny part of Hilbert
space is relevant)
Is there thermalization of an isolated system?
In what sense ?

Need to consider states, observables,
matrix elements

(Integrable systems again do not thermalize)

October 6, 2014 7134


evertz
Typewriter
Classical physics: 
   Chaotic evolution --> ergodicity (uniform)
                               --> thermal description
   (Exception: integrable systems:
                      many conserved quantities
                      --> orbits in phase space,
                          not ergodic)

Quantum physics:
   NOT ergodic ! (only a tiny part of Hilbert 
                            space is relevant)
   Is there thermalization of an isolated system?
   In what sense ?

   Need to consider states, observables, 
                               matrix elements 

   (Integrable systems again do not thermalize)


Exact results from quantum mechanics

If the initial state is not an eigenstate of 4
o) # la)  where  Hla) = Eola) and B = (ol H|to),

then a generic observable O will evolve in time following

O(7) = B(N)|Ol(r)) where [3(r)) = e~ A7 |gho).
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Exact results from quantum mechanics

If the initial state is not an eigenstate of 4
[o) # la)  where  Hla) = Eola) and  Eo = (Yol H|vo),
then a generic observable O will evolve in time following
O(r) = ((M)IOf(r)) where [(r)) = e~ " |y).
What is it that we call thermalization? Thermal expectation value

depends only on a few parameters !
O(7) = O(Eo) = O(T) = O(T, ).
"diagonal ensemble" =? microcan. =? canonical =? grand canonical ensemble (in therm.dyn. limit)
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Exact results from quantum mechanics

If the initial state is not an eigenstate of 4
[o) # la)  where  Hla) = Eola) and  Eo = (Yol H|vo),
then a generic observable O will evolve in time following
O(r) = ((M)IOf(r)) where [(r)) = e~ " |y).

What is it that we call thermalization? Thermal expectation value

depends only on a few parameters !
O(71) = O(Ep) = O(T) = O(T, ).
"diagonal ensemble" =? microcan. =? canonical =? grand canonical ensemble (in therm.dyn. limit)
One can rewrite

= Z C*,C, el Fr=EIT0 . where |ig) = ZC(X|04>,

aa

and taking the infinite time averaae (diagonal ensemble) (=definition(!) of "diag. ensemble")
- (could also integrate from some later time)

N 1
— T L — (since all
0(7') TILIEOT/O dT< ( |O|\Ij Z|C | Oaa = >dagoscillating
terms vanish

which depends on the initial conditions through C = (a|vo).

after integral
Many parameters ! inegral)
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Width of the energy density after a sudden quench

Initial state o) = 3°. Ca|e) is an eigenstate of Hy. At 7 = 0 (Example)

"Global

qencn o — H=Ho + W with W=> () and Hla) = Eala).
J

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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Width of the energy density after a sudden quench

Initial state o) = 3°. Ca|e) is an eigenstate of Hy. At 7 = 0 (Example)

vt Ho— H=Ho+W  with W= Zw(]) and Hla) = Eu|a).

The width of the weighted energy density AE is then  Delta E = sqrt( <H2> - <H>%2) =

AE = \/z B2ICal? — (3 EalCal2)2 = / (0ol W2It0) — (ol Wlgo)?,

or

> ol ()i (52) o) — (oltd(d1)]tbo) (ol (52)]¢bo)] Y& VN,
J1,J2€0 - .
(unless terms in the sum are highly correlated!)

where N is the total number of lattice sites.

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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Width of the energy density after a sudden quench

Initial state [0) = >, Cal) is an eigenstate of Ho. At7 =0

vt Ho— H=Ho+W  with W= Zw(]) and Hla) = Ea|a).

The width of the weighted energy density AE isthen Delta E = sart( <H"2> -

AE = \/2 B2ICal? = (3 EalCal?)? = / (w0 W21} — (ol Wl0)?,

or

> ol ()i (52) o) — (oltd(d1)]tbo) (ol (52)]¢bo)] Y& VN,

J1,j2€0 .
e (unless terms in the sum are

where N is the total number of lattice sites.
Since the width W of the full energy spectrum is o« N

Ae = & N L
w VN’
so, as in any thermal ensemble, Ae vanishes in the thermodynamic limit.
MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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9 Generic (nonintegrable) systems
@ Time evolution vs exact time average
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Relaxation dynamics of hard-core bosons in 2D

Hard-core boson Hamiltonian  (Equivalent to spin 1/2 Quantum Heisenberg model)
H=-7Y (bl +He ) +U Y mny, 62 =0 =0
(3,5) (2,9)

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
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Relaxation dynamics of hard-core bosons in 2D
Hard-core boson Hamiltonian  (Equivalent to spin 1/2 Quantum Heisenberg model)

H=-7Y (bl +He ) +U Y mny, 62 =0 =0
MR, V. Dunjko, and M. g;;:lanii, Nature 452, 854 (2%3;).

Nonequilibrium dynamics in 2D

Weak n.n. U = 0.1J

N, = 5 bosons

N = 21 lattice sites

Initial Hilbert space: D = 20349

All states are used!

Initial state: single occupation number state.
During the time evolution, ALL occupation number states occur.
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Relaxation dynamics of hard-core bosons in 2D

Hard-core boson Hamiltonian  (Eauivalent to spin 1/2 Quantum
= —JZ (Ejéj v H.c.) +US amy,  BP=8=0
(2,9)

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

“One can rewrite (quote from page 8)

(1) =) CuCoe!B'=E)T0,,  where |th) =)  Cala),
and taking the infinite time average (diagonal ensemble)

Tl;ngo;/ dr' (U (") |0 (7 Z|c 200 = (

which depends on the initial conditions through C,, = (a|vy).”

Q>

>diag )
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Relaxation dynamics of hard-core bosons in 2D

Hard-core boson Hamiltonian

(Eauivalent to spin 1/2 Ouantum

H=-7Y (bl +He ) +U Y mny, 62 =0 =0
(i,5) (2,9)

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

n_k =< chdagger_k c_k >

Time evolution of n(k,)
T

y
fime average -+
=000 ———

red: time =0

0
kl2m/L, d))

Marcos Rigol (Penn State)

Dynamics in quantum systems

Nonequilibrium dynamics in 2D

Weak n.n. U = 0.1J
N, = 5 bosons
N = 21 lattice sites

Hilbert space: D = 20349

All states are used!
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Relaxation dynamics of hard-core bosons in 2D

Hard-core boson Hamiltonian  (Eauivalent to spin 1/2 Ouantum
H=-7Y (bl +He ) +U Y mny, 62 =0 =0
(i,5) (4,3)
MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).

Nonequilibrium dynamics in 2D

Weak n.n. U = 0.1J
N, = 5 bosons

N = 21 lattice sites

Hilbert space: D = 20349

= relaxation dynamics

— — — time average

41  All states are used!

0 50 100 150 200
tJ
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9 Generic (nonintegrable) systems

@ Statistical description after relaxation
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Statistical description after relaxation

Canonical calculation ,__Momentum distribution
O="Tr {Oﬁ}
1 ~ 1.5+ m
p=Z lexp (—H/kBT> -
\5 /// L N
z =T {exp (~H/ksT) } | ) e N
/// — — = canonical §\
E,,:Tr{zflp} T=197] - S
(T: best match) F m : . >

0
e
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Statistical description after relaxation

Canonical calculation

0= Tr{@ﬁ}

Microcanonical calculation

S (w0,

Nstates = eigenstates
with By — AE < E, < Ey + AFE

Ngiates . # of states in the window

O:

E_0: energy of initial state !
Delta E: energy width of initial state (small!)

Marcos Rigol (Penn State)

n(kX)

0.5
-2

15

Dynamics in quantum systems

Momentum distribution

initial state
— — — time average
— — = canonical

0
e

Fir'1ding same
distribution !
Also in many
other systems,
for many initial
N conditions.
N\. Why?

initial state
— — — time average

+ = — microcanonical

0
k [2m/(L d)]
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9 Generic (nonintegrable) systems

@ Eigenstate thermalization hypothesis
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Eigenstate thermalization hypothesis

Paradox?

2 7 , _ 1
Z |Ca| Oaa - <O>m|crocan.(EO) = Z Oaa (1)

N
Bo,AE |Eo—Eo|<AE

Left hand side: Depends on the initial conditions through C, = (¥, |¢r)
Right hand side: Depends only on the initial energy
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Eigenstate thermalization hypothesis

Paradox?

1

~ Ng,ap
By |Eo—Eo|<AE

Left hand side: Depends on the initial conditions through C,, = (¥, |¢r)
Right hand side: Depends only on the initial energy

Z |Ca|20aa = <O>microcan.(EO) Oaa

. 0) Usually required: C_alpha significant only in a small energy window around E_0
Potential (or suitable cancellations, see e.g. page 16)
i) For physically relevant initial conditio 2 i 0 Nnot (nottypically
flu i true, see
(with Oaa) )

i) Large (and uncorrelated) fluctuations occur in both-Q.. and

|Cal?. i avant initial state performs an unbiased
sampling of O,q. i.e., then the equality (1) is true.
MR and M. Srednicki, PRL 108, 110601 (2012).

or i) The matrix elements O_aa of the observable are almost constant in the relevant energy range.

Then equality (1) is true AND also equal to exp. value <O> in a SINGLE eigenstate within the energy window !!
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0) Usually required:  C_alpha significant only in a small energy window around E_0
    (or suitable cancellations, see e.g. page 16)
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Then equality (1) is true  AND also equal to exp. value <O> in a SINGLE eigenstate within the energy window !! 


Eigenstate thermalization hypothesis

Paradox?

1
Y ICal?Oaa = (O)microcan (Eo) = =—— 3| | Oqa

- N
e" oA |Eo—Eo|<AE

Left hand side: Depends on the initial conditions through C,, = (¥, |¢r)
Right hand side: Depends only on the initial energy

1 T T 1
R 4.62, T=37 “—5
r ’ 1 r
l_.)d [ L_.)d r
r N
10K 107F
r r
3 r
r i
10’8_r 10°F
r r
r r
10-12!— 1 1 I 10-12!—
20 -15 -10 5 0 5 10 20 -15 -10 -5 0 5 10

E Figures show, for two specific initial states: E
MR, PRA 82, 037601 (2010). 1) Distribution of cofficients C_a are smooth and exponential, and peaked at E_0

2) A thermal state with the same <E> (red line) has a very different distribution
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1) Distribution of cofficients C_a are smooth and exponential, and peaked at E_0
2) A thermal state with the same <E> (red line) has a very different distribution
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Eigenstate thermalization hypothesis

Paradox?

1
Z |Ca|20aa = (O)microcan.(Fo) = Z Oaa
= Neo.am |Eo—Eo|<AE

Left hand side: Depends on the initial conditions through C,, = (¥, |¢r)
Right hand side: Depends only on the initial energy

Potential explanations:

i) For physically relevant initial conditions, |C,|? practlcally,dO’not (see p.15
fluctuate. = for

-
-
-

commented
i) Large (and uncorrelated) flu,ctuaﬂons occur in both O,, and Vversion)
|Cal?. A physical y,relevant initial state performs an unbiased
sampling ofO "
_ _MRrafid M. Srednicki, PRL 108, 110601 (2012).
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Eigenstate thermalization hypothesis

Paradox?

1
Z |Ca|20aa = <O>microcan.(EO) = Z Oo‘a

N
Bo,AE |Eo—Eo|<AE

Left hand side: Depends on the initial conditions through C, = (¥, |¢r)
Right hand side: Depends only on the initial energy

Eigenstate thermalization hypothesis (ETH) o
[J. M. Deutsch, PRA 43 2046 (1991); M. Srednicki, PRE 50, 888 (1994);  This is a consequence

MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).] of (ii) on page 15

iii) The expectation value (¥, |O|¥,,) of a few-body observable O in
an eigenstate of the Hamiltonian |, ), with energy E.,, of a large
interacting many-body system equals the thermal average of 9)
at the mean energy E,:

<\I/o¢ |OA|\IIO¢> = <O>microcan‘(Ea)
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Eigenstate thermalization hypothesis

2
Momentum distribution sr ]
Eigenstates a — d are the ones
. . ime average/microcan.
with energies closest to Ej i m— :
— — — eigenstate b
- — - = eigenstate ¢
----- eigenstate d

0.5 . (‘) .
k [2n/L a]
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Eigenstate thermalization hypothesis

2

Momentum distribution "
Eigenstates a — d are the ones
with energies closest to Ey 1

Figures show: the momentum distributions of
(1) ime average, (2) microcan.,and | S . S eeniarel

(3) several eigenstates are very similar (Fig.1) 5 s s

time average/microcan.
— — eigenstate a
— — — eigenstate b
- — - — eigenstate ¢

even though their energy distributions 2 -1 s 7(5)/ 7 1 2
. are VERY different (Fig.2) ] gl

o n(k, = 0) vs energy
= observable O

T T 2

p(E) = P(E) X dens. stat.

—— p(E) exact P(E)pyacy — |Ca|2 ("exact” refers to
----- p(E) microcan. time average)

C_alphg"‘Z not venj peaked, ‘
but contributions to C*O at
larger deviations cancel
approximately

.. E)mic — constant
—— ———— PE)can—)eXp(—E/kBT)

—
; =

— — p(E) canonical 1 =<
’ Q

a

—~~ o~
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Figures show: the momentum distributions of
(1) time average, (2) microcan., and 
(3) several eigenstates are very similar (Fig.1)
even though their energy distributions 
are VERY different (Fig.2)
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One-dimensional integrable case

Similar experiment in one dimension

Initial
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One-dimensional integrable case

Similar experiment in one dimension

Initial

0.6 - T

Time average vs Stat. Mech. o4}

X

n(k )

No thermalization!

—— time average
= = microcan.
- — - canonical

02|

° - 0 5
k (2L a]
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Breakdown of eigenstate thermalization

0.6 I*\ ]
I\
1 \
= 7'—\
Momentum distribution M A% 1
Eigenstates a — d are the ones £
with energies closest to Ey 02| cigenstate a i

— — - eigenstate b
- — - . eigenstate ¢
— — eigenstate d

0 Il Il Il
Observable Oaa is NOT B ’ k [20L a]

" approx. constant for N *
 different eigenstates around E_0

Very different from page 16

n(ky; = 0) vs energy

p(E) = P(E) X dens. stat.

0 15
. —_— exac 2 " "
Contributions to C*O LT ) mercan. |1 S P(E)exact — |Cal Ei;);ag\t/e:z]:é)s o
do NOT cancel outside S6 — — p(E) canonical § P( E)mic — @
of window around E_0 S H0s5 5
r —————— TN~ —— P(E)can — exp (7E/]€BT)
8 -6 4 2 00
ElJ]
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Integrable vs Nonintegrable cases

Correlations between n(k) and C,,

1D (integrable) case 2D (nonintegrable) case
0.8 T y 8x10” 2 T 8x10”
T irocen, n = <Oaa> is approx. const. — eisensae
Lo == microan. |
Hax10? N;" 4x10° N§‘5
02 m 4 2x10° 2x10”
uuf, 1, 0
1230 1235 1240 1245 1250 1105
horizontal axis: @
successive eigenstates
(Green bars: C_alpha) \U/
Conservation laws play a role in Correlations are not relevant,-and
integrable models. they are not present!

Transition between integrability and nonintegrability:
MR, PRL 103, 100403 (2009); PRA 80, 053607 (2009).
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9 Generic (nonintegrable) systems

@ Time fluctuations
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Relaxation dynamics of hard-core bosons in 2D

(not an integrable model)

Hard-core boson Hamiltonian

H=-7% (86, +He) +UD muny, b2 =8 =0
, ) ()
(Same slide as (Equivalent to spin 1/2 Quantum Heisenberg model)
last part of

‘page 17 Nonequilibrium dynamics in 2D

Weak n.n. U =0.1J
N, = 5 bosons

N = 21 lattice sites

Hilbert space: D = 20349

——— relaxation dynamics

12k — — — time average

4  All states are used!

0 50 100 150 200
tJ
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Time fluctuations

Are they small because of dephasing?

A = X e’i(Ea/ —FE. )t
O BB = I CuCue B0, 3 T g,
i Nstates
NOT the time o o o o
avaranal o #a o' #a (When
5 " alnha ic
\Y N, states Otypical Otypical
o ~VYaa

sqrt(N*2) results when the exponential Nstates

is randomly distributed (why should it ?)
Then all phases cancel,
i.e. only alpha=alpha' contributes
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Time fluctuations

Are they small because of dephasing?

A = , ¢ (Bar—Ba)t
OO~ = 3 CuC,eErtroy, ~ 3 L
NOT the time o @ o states
avaranal o #a rom o' #a (When
D] " alnha ic
o V N, states Otypical -~ Otypical
N. a’a o’
sqrt(N~2) results when the - Ystates
exponential

is randomly distributed
Time average of (O)

<O> = Z |Ca|20aa
(when ETH ¢

1 .
typical
~ E Opa ~ OXP
— Nstates
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Time fluctuations

Are they small because of dephasing?

R — o ¢i(Bor—Ea)t
(O = (0F) = Y. CuCaeBr=E)0gq ~ Y ————0Oura
NOT the time average! oo : : e states .
(see page 8) o/;ea e (when C_alpha is
5 sharply peaked)
@ Otypical N Oty/pical
sqrt(N~2) results when the Nstates — * v
exponential
i v k,=0)],,
is randomly distributed Itk =0la
Time average of (O) 15
— 1
(0) = Z |Ca|20aa 0.5
(when ETH is valid): ¢ 0
typical
~ Z - Ooilglca

N, states
Figure shows that indeed

only alpha=alpha' contributes
to the expectation value
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Fluctuation-dissipation theorem (dipolar bosons)

Occupation in the center of the tra P
2 ° P (1;=1/2) Hamiltonian

L=15,N=5 Z=1
integ. 10 H=—-J E (b;bj+1 + HC)
Jj=1

Ay 3.,
+VY ToE te2 el
j<li "'dipolar A" j trap

magnetic atoms, polar molecules

2 . . s . . .
il momint C or Relaxation dynamics
O(t) = C(t)O(t = 0)
where
o) = o(t + t)O(t')
(O@))*
0 5 10 15 0 5 10 15 20 Srednicki, JPA32, 1163 (1999).

E. Khatami, G. Pupillo, M. Srednicki, and MR, PRL 111, 050403 (2013).
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e Integrable systems
@ Time evolution

Marcos Rigol (Penn State) Dynamics in quantum systems October 6, 2014 24 /34



Bose-Fermi mapping

Hard-core boson Hamiltonian in an external potential

H=-7)" (BZBZ»H i H.c.) +> vi rI:|ere_:fn(34 )

Constraints on the bosonic operators

2= =0
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Bose-Fermi mapping

Hard-core boson Hamiltonian in an external potential

interaction !

H=—7J Z (B;[gi+1 + H.c.) + Z v; Ay Here: no density-density
i i

Constraints on the bosonic operators Since n_j = b*dagger i b_i, this Hamiltonian is

212 ~o bilinear in creation and annihilation operators and
bi = b; = Othe eigenstates are products of single particle states.
U, (Special case v_i=const: momentum space states)

Map to spins and then to fermions (Jordan-Wigner transformation)

i—1 i—1
A ot F _ — T
o';' = fj H e lﬂ'f/;f37 o, = H e"ﬂfﬂfﬁfi
p=t U/ =1 (-1)(number of fermions before site i)

Mapping results in ==>in 1d provides for anticommutation

Non-interacting fermion Hamiltonian  Signs cancel as long as fermions cannot hop past each other !

Ap=-13" (fjfm +H.c.) +3 af

(This is an integrable model)
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One-particle density matrix

One-particle Green'’s function

=1 g1l
- el ATMA) ana g T
Gij = (Ynosloy o [Waes) = (Up| [[ ™o fif] T[] e 1wr)
B y=1
For non-neighboring sites i,j
\U/ each interchange of fermions

gives a sign -> need to cancel
by e-factors

N L
U (7)) = e /ML) = T > Pos(r)f] 10)

6=1 o=1

Time evolution
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One-particle density matrix

One-particle Green’s function
=1
Gij = <\I’HCBIU¢_U;_|\I/HCB \I/F|He“rfﬂfﬂff1‘H€_”r '7‘|\I/F>

For non-neighboring sites i,j
\U/ each interchange of fermions

; : i gives a sign -> cancelled
Time evolution from an initial Fock state -
remains a Fock state,

which can be written as: |V 7 (7)) = eiiHFT/hN’I H Z Pos(T fT |0)

Fock state: prod_k (c*dagger_k)"(n_k) /0>
= prod_k sum_x e”\(i k x n_k) c*dagger_x /0>

Exact Green’s function = prod_n (sum_x e(i k_n x) c*dagger_x /0>
. =prod_n sum_x P_(k_n x) c*dagger_x /0>
Gi;(1) = det {(Pl(r)) P’"(T)} Here "k" numbers the
single particle eigenstates
Computation time ~ L2N3 (= momentum states when

v_i=const in Hamiltonian)
3000 lattice sites, 300 particles

MR and A. Muramatsu, PRL 93, 230404 (2004); PRL 94, 240403 (2005).
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Relaxation dynamics in an integrable system

Initial state:

center part of system filled at approx. constant density

Density profile

Momentum profile

0 — 0 —
02 | W 9
03 | 1

0.4 T m T

= & 02f i
0.1 | -
01| g
0 1 1 1 0 1
-300 -150 0 150 300 - —ni2 0 2 n

x/a

ka

MR, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL 98, 050405 (2007).
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Relaxation dynamics in an integrable system

Density profile

State after long time relaxation:

combination of (a few) eigenstates

Momentum profile

L

LA

T
=0 ——

0.24 T T T 2.5
=00 ===
2 -
0.18 - 9
15 -
c 012 | 1 ISy
1 L
0.06 u
0.5 |-
MUUUUUUL L
-20 -10 0 10 20 -

x/a

—T/2

0
ka

/2 T

MR, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL 98, 050405 (2007).
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e Integrable systems

@ Generalized Gibbs ensemble
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Statistical description after relaxation

Thermal equilibrium
p=2Ztexp [— (ﬁ] - uNb> /kBT}
Z =Tr {exp [— (ﬁ — uNb) /kBT]}
E=Tr {f[,@} . Ny=Tr {Nbf)}

MR, PRA 72, 063607 (2005).
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Statistical description after relaxation [T

Thermal equilibrium
p=2Ztexp [— (fl - uNb) /kBT}
Z =Tr {exp [— (ﬁ — uNb> /kBT]}

E=Tr {FI,@} . Ny=Tr {Nbﬁ}

MR, PRA 72, 063607 (2005). 0
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Thermal equilibrium

p=2Zlexp [— (H - uNb) /kBT]

Z=Tr {eXp [— (H _ MN;,) /kBT] }

E= T&r{f[,@} N, = Tr{Nbﬁ}
MR, PRA 72, 063607 (2005).

Integrals of motion

(underlying noninteracting fermions)

Hrp4f0) = En4lf0)
{2} = {438}

Statistical description after relaxation [T

Evolution of nj—q

1.5 T T T
— Time evolution
Thermal
(=)
N 1
N
0.5 7
LA~
00 1000 2000 3000 4000
T
ny, after relaxation
0= — After re‘lax. (Nb:3b) ‘
e |- Afterrelax. (N,=15)
= Thermal (Nb=30)
.- Thermal (N,=15); }
0.25+ A
Many local conserved
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- -1t/2 0 /2 T
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Statistical description after relaxation [T

Thermal equilibrium
p=2Zlexp [— (H - uNb) /kBT]
Z=Tr {eXp [f <H _ uNb) /kBT] }
E= T&r{f[[}} . Ny = H{Nbﬁ}

MR, PRA 72, 063607 (2005). 0

Generalized Gibbs ensemble

R _ A instead of
pom 2o |- S| B |l
m

0.25r+
Z,="Tr {exp [— Z )\mfm] }

Evolution of Nk=0

A<

= Tim‘e evoluti‘on
Thermal
- GGE

0.5

1000 2000 3000

<jm>7—:0 — Tr {fmﬁc} Values of local quantities
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Statistical description after relaxation [T

Density profile

0.18 |

0.06 AAAAAA AN

" 1=2000t ——
GG

vv v =

g

=V

vV VvV

0
-20 -10
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Statistical description after relaxation [T

Density profile

0.24 T T T
1=2000t ——
GGE ——
0.18 | 1
c 012 | 1

0.06 VoW W WA W W o Wa W
VNV VY Yy VvV

o 1 1 1
-20 -10 0 10 20
x/a

Why does the GGE work?
Generalized eigenstate thermalization:

A. C. Cassidy, C. W. Clark, and MR, Phys. Rev. Lett. 106, 140405 (2011).
K. He, L. F. Santos, T. M. Wright, and MR, Phys. Rev. A 87, 063637 (2013).
J.-S. Caux and F. H. L. Essler, Phys. Rev. Lett. 110, 257203 (2013).
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@ Thermalization occurs in generic
isolated systems
% Finite size effects
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° Eigenstqte thermalization hypothesis %"
* <\IJ01’O|\I]0¢> = <O>microcan.(Ea)

@ Thermalization and ETH break down
close integrability (finite system)
% Quantum equivalent of KAM?
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@ Thermalization occurs in generic %
isolated systems thoma X

* Finite size effects e |
@ Eigenstate thermalization hypothesis %"
* <\IJ01’O|\I]0¢> = <O>microcan.(Ea)

@ Thermalization and ETH break down
close integrability (finite system)
% Quantum equivalent of KAM?

Thermal state

Y

time,

dephasing

Initial state

@ Small time fluctuations <— smallness of
off-diagonal elements

° Tlme plays Only an aUX”Iary r0|e ‘ EIGENSTATE THERMALIZATION

@ Integrable systems are different
(Generalized Gibbs ensemble)
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L.F. Santos and MR, PRE 81, 036206 (2010); PRE 82, 031130 (2010).

Marcos Rigol (Penn State) Dynamics in quantum systems October 6, 2014 34 /34



	Introduction
	Experiments with ultracold gases
	Unitary evolution and thermalization

	Generic (nonintegrable) systems
	Time evolution vs exact time average
	Statistical description after relaxation
	Eigenstate thermalization hypothesis
	Time fluctuations

	Integrable systems
	Time evolution
	Generalized Gibbs ensemble

	Summary

