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Abstract

Strongly correlated systems are highly interesting, both because of their properties,
as well as their computational complexity. Recent advances in computational physics,
in particular Matrix Product States (MPS) and the Time Evolving Block Decimation
(TEBD) have made accessible the time evolution of these systems, at least in one di-
mension.

In this work, TEBD is used to simulate the time evolution of the XXZ Heisenberg model
in one and two dimensions. In particular, the scattering of impurities at clusters of
particles is examined. It is shown that scattering is different in 2D compared to 1D and
the dependence of the transmission rate on the coupling energies is simulated.

Kurzfassung

Stark korrelierte Systeme sind von besonderem Interesse, da sie zu neuen Materialeigen-
schaften, beispielsweise Magnetismus und Supraleitung, führen; die Berechnung der Dy-
namik dieser Systeme ist jedoch äußerst komplex. Mit dem Formalismus der Matrixpro-
duktzustände sowie der sogenannten Time Evolving Block Decimation (TEBD) wurde
in den letzten Jahren ein effizienter Algorithmus zur Simulation der Zeitentwicklung
eindimensionaler Systeme gefunden.

In dieser Arbeit wird der TEBD-Algorithmus verwendet, um die Zeitentwicklung des
XXZ-Heisenberg Modell in ein und zwei Dimensionen zu simulieren. Insbesondere wird
die Streuung von einzelnen Teilchen an gebundenen Clustern von Teilchen betrachtet.
Es wird gezeigt, dass im Gegensatz zur eindimensionalen Streuung, bei der einfallende
Teilchen vollständig transmittiert werden, bei der zweidimensionalen Betrachtung ein-
fallende Teilchen nur teilweise transmittiert werden. Die Abhängigkeit dieser Transmis-
sionsrate von den beteiligten Wechselwirkungen wird simuliert.
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1 Introduction

The microscopic dynamics of atoms, and thus the macroscopic properties of materials,
are described by quantum mechanics. Many interesting effects (e.g. BCS supercon-
ductivity) do crucially depend on the interaction between particles [1]. Studying these
strongly correlated systems can provide valuable insight and might for example even-
tually help at understanding high temperature superconductors. The systematic inves-
tigation of the time evolution of such highly correlated systems has recently become
accessible, both experimentally and theoretically.

Experimentally, manipulation and imaging of single ultra cold atoms confined by an
optical lattice has been achieved, which allows to systematically analyze the behavior
and time evolution of such systems. [2, 3].

On the other hand numerical methods which allow efficient simulations have emerged. It
has been shown that at least systems with little entanglement can be efficiently simulated
on classical computers [4] using Matrix Product States (MPS), which has led to the
development of the Time Evolving Block Decimation (TEBD).

Recently MPS and TEBD have been used to investigate the time evolution of strings of
flipped spins on a background of oppositely aligned spins for the 1D Heisenberg model
[5]. It has been shown that at strong interactions, theses strings form bound states that
only decay slowly over time (Fig. 1l). Furthermore similar methods have been used to
observe the dynamics of a single impurity being scattered on such a string of flipped
spins [6].

Fig. 1r shows that on a 1D lattice, an incident particle will be fully transmitted through
the wall, resembling the well known Newton Cradle, but the wall will peculiarly shift by
2 sites.

The aim of this work is to further investigate the scattering of impurities on walls, by
considering a 2D lattice. It is shown that unlike in the 1D case, a 2D barrier obstructs the
movement of an incoming particle depending on the ratio between hopping and bonding
energies.

Sec. 2 defines the Heisenberg Model used throughout this work, while Sec. 3 shows
the need for an efficient way of simulating it. Sec. 4 - 8 give an introduction into the
representation of a system using Matrix Product States and its advantages for simulating
the time evolution of such a system. In Sec. 9 - 10 the algorithm for simulating 1D
systems (TEBD using MPS) is shown and its implementation validated. Sec. 11-13
finally extend the previous work to 2D and discuss the dynamics of scattered particles
in 2D.
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Figure 1: Expectation value of Ŝz for MPS-Simulation of time evolution of flipped spins
(impurities) on a lattice of aligned spins.
Left: Flipping 2 neighboring spins leads to 2 distinct signals: A fast propagat-
ing, free branch and a slower, bound branch. [5]
Right: "Quantum Bowling" in 1D: An incident particle hits a wall and is fully
transmitted as a hole. The wall shifts by 2 sites. [6]

2 The Heisenberg Model

Throughout this work the anisotropic spin 1
2 Heisenberg Model for 1 and 2 dimensions

will be considered. For a one-dimensional chain with closed boundary conditions the
Hamiltonian is given by

Ĥ =
L−1∑
j=1

Jxy
(
Ŝxj Ŝ

x
j+1 + Ŝyj Ŝ

y
j+1

)
+ JzŜzj Ŝ

z
j+1 (1)

One can define the operators

Ŝ+
j := Ŝxj + iŜyj

Ŝ−j := Ŝxj − iŜ
y
j

(2)

which have the property of creating and annihilating |↑〉-states: Ŝ+
j |↓j〉 = |↑j〉, Ŝ−j |↑j〉 =

|↓j〉. Using the equalities 2, one can write the Hamiltonian as:

Ĥ =
L−1∑
j=1

Jxy

2
(
Ŝ+
j Ŝ
−
j+1 + Ŝ−j Ŝ

+
j+1

)
+ JzŜzj Ŝ

z
j+1 (3)

Eq. 3 reveals an alternative way of looking at the Hamiltonian. The first two terms (with
the prefactor Jxy) describe a hopping from position j to position j+1 and vice versa. The
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Jz term describes repulsion/attraction (depending on the sign on Jz) between adjacent
spins. Especially when considering a "background" of spins pointing in one direction
with few spins pointing in the opposite direction it is convenient to speak of the flipped
spins as "particles" that can hop to adjacent sites and form "bonds" with other particles
due to the additional energy Jz. Indeed the model as described by Eq. 3 is equivalent to
a tight binding system of spinless fermions with nearest neighbor attraction or repulsion
by the so called Jordan-Wigner transformation. [8]

The extension of this model to more dimensions is achieved by adding the interactions
with neighboring sites along the additional dimension to the Hamiltonian. Instead of 2
next neighbors, every site has now 4 next neighbors to interact with. For a rectangular
2D grid of spins of shape Lx × Ly the Hamiltonian is

Ĥ =
Lx−1∑
j=1

Ly−1∑
k=1

Jxyq

(
Ŝxj,kŜ

x
j+1,k + Ŝyj,kŜ

y
j+1,k

)
+

Jxy⊥

(
Ŝxj,kŜ

x
j,k+1 + Ŝyj,kŜ

y
j,k+1

)
+

Jzq Ŝ
z
j,kŜ

z
j+1,k+

Jz⊥ Ŝ
z
j,kŜ

z
j,k+1

(4)

As can be seen from Eq. 4, the Hamiltonian has 4 parameters: 2 parameters that
determine hopping of particles along the x and y direction of the system (Jxyq , Jxy⊥ ) and
2 parameters that specify the bond strength between adjacent particles along the x and
y direction (Jzq , Jz⊥). To avoid confusion with the index of orientation of the Spins, the
directions x and y are labeled as parallel q and perpendicular ⊥.

3 Motivation to use MPS

A single spin can be described by 2 complex numbers, e.g. the coefficients for |↓〉 and
|↑〉. To describe a system of 2 spins, 4 coefficients are needed, e.g the coefficients for |↓↓〉,
|↓↑〉, |↑↓〉 and |↑↑〉. To fully describe a system of N spins, 2N coefficients are necessary.
This exponential growth in complexity severely limits the size of systems that can be
treated using full diagonalization of the system’s Hamiltonian.

If the system obeys certain symmetries (e.g. the Hamiltonian in Eq. 1 conserves the
total spin of the System in z direction) one can choose only basis states that obey
that symmetry. Although choosing a clever basis allow significantly larger systems to
be simulated (see Sec. 9), more complex systems are still out of reach using exact
diagonalization of the Hamiltonian.

Matrix Product States (MPS), together with Time Evolving Block Decimation (TEBD)
on the contrary, allow the simulation of the time evolution of significantly larger systems
as long as the entanglement remains small [7].
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4 Matrix Product states in 1D

The chapters 4 to 8 outline the mathematical basis of MPS and follow the presentations
in [7, 9].

A chain of L spins can be described by 2L coefficients cs1s2...sL , where each index sj
has two possibilities, corresponding to |↓〉 or |↑〉 of the spin at position j. In a Matrix
Product State (MPS) each of these coefficients is described as a product of L matrices
M [j]sj .

cs1s2...sL = M [1]s1M [2]s2 ...M [L]sL (5)

4.1 Representation of a single basis state

When describing a product state (only 1 of all 2L coefficients is nonzero) these matrices
are all of dimension [1× 1]. As an example, the state |ψ〉 = |↓↓↑↑↓〉 can be represented
by the following set of [1× 1] matrices:

j 1 2 3 4 5
|ψ〉 ↓ ↓ ↑ ↑ ↓
M [j]↑ 0 0 1 1 0
M [j]↓ 1 1 0 0 1

It is apparent that the only coefficient that is nonzero, is the coefficient of the desired
basis state.

4.2 Representation of an arbitrary linear combination

To describe a general state, which is a linear combination of n basis states, diagonal
matrices of shape [n × n] can be used. The first and last matrices have to be of shape
[1 × n] and [n × 1] respectively, so that the full product will yield a scalar coefficient.
As an example, the state c1 |↓↑↓↓〉+ c2 |↓↓↑↓〉 can be represented by the following set of
matrices:

7
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j 1 2 3 4

M [j]↑
(
0 0

) (
1 0
0 0

) (
0 0
0 1

) (
0
0

)

M [j]↓
(
c1 c2

) (
0 0
0 1

) (
1 0
0 0

) (
1
1

)

Multiplying the matrices, it is obvious that only 2 of the 16 possible coefficients are
nonzero. This can be extended to linear combinations of an arbitrary number of basis
states by using the following scheme:

M
[j]↑
kk =

{
1 if sj at basis state k is ↑
0 if sj at basis state k is ↓

(6)

and vice versa forM [j]↓
kk . [7] shows that by using diagonal block matrices instead of diag-

onal matrices, not only basis states can be added, but also arbitrary states in MPS form.
Such a diagonal representation, however, can be very inefficient, which can immediately
be seen by considering a linear combination of two identical states:

|ψ〉 = 1
2 (|ψ〉+ |ψ〉) (7)

When storing this state in Eq. 7 as a linear combination, it obviously needs an excessive
amount of memory compared to its MPS representation as a product state. In fact
the size of the MPS matrices can often be drastically reduced by compressing them as
described in Sec. 8.4.

4.3 Left-orthonormalization of Matrix Product State

The example in Section 4.2 shows that an MPS representation is not unique. For example
one could shift the coefficients c1 and c2 to any other of the matrices, without changing
the result after performing all matrix multiplications. It is therefore possible to impose
additional constraint on the matrices, with one possible choice being∑

sn

M sn†M sn = 1 (8)

which leads to a left orthonormal state [1]. Any MPS can be left orthonormalized by
the following algorithm [7]:

1. Starting with an arbitrary MPS, the auxiliary row index and the spin index s1 of
the first matrix are combined to form one index (e.g. by concatenating the matrices

8
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corresponding to different spin indices along the first dimension):

cs1s2...sL =
∑
{α}

M
[1]s1
1,α1 M [2]s2

α1,α2 ... M
[L]sL
αL−1,1

cs1s2...sL =
∑
{α}

Θ[1]
(1,s1),α1

M [2]s2
α1,α2 ... M

[L]sL
αL−1,1

(9)

2. Then a singular value decomposition (SVD) of the matrix Θ is performed resulting
in

Θ[1]
(1,s1),α1

=
∑
β

U(1,s1),β Sββ V
†
βα1

(10)

where U and V are unitary matrices and S is a diagonal matrix containing the singular
values. [10]

3. The matrix U is now split back into individual matrices A (one for each value of s1).
The remaining matrix product SV † is multiplied from the left onto the next matrixM [2]

which yields:

cs1s2...sL =
∑
{α}β

A
[1]s1
1,β M̃

[2]s2
β,α2

... M
[L]sL
αL−1,1 (11)

As U is unitary it holds that

U †U = 1∑
αn,sn

U∗β,(αn−1,sn) U(αn−1,sn),β′ = δβ,β′∑
αn,sn

A
[n]sn∗
αn−1,β

A
[n]sn
αn−1,β′

= δβ,β′∑
sn

A[n]sn† A[n]sn = 1

(12)

which is the the property required by Equation (8).

This procedure is now repeated from step 1 with the second Matrix M̃ , up to the last
matrix in the chain. When performing the SVD on the last matrix, the product SV †
will be a scalar containing the norm of the state [7]. Upon dropping it, the state is then
left orthonormalized.

4.4 Right-orthonormalization of Matrix Product State

Similarly to Eq. 8 one could impose the relation∑
sn

M snM sn† = 1 (13)

9
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which leads to a right orthonormalized state. To right orthonormalize an arbitrary MPS
an algorithm similar to Sec. 4.4 is used.

1. Starting from the right end of the MPS, the auxiliary column index and the spin index
are combined to form one index (e.g. by concatenating the matrices corresponding to
different spin indices along the second dimension):

cs1s2...sL =
∑
{α}

M
[1]s1
1,α1 M

[2]s2
α1,α2 ... M

[L]sL
αL−1,1

cs1s2...sL =
∑
{α}

M
[1]s1
1,α1 M

[2]s2
α1,α2 ... Θ[L]

αL−1,(1,sL)

(14)

2. Similar to Sec. 4.3 the resulting matrix Θ is now SV-decomposed: Θ = USV †

3. The Matrix US is multiplied from the right onto the Matrix M [L−1]. After splitting
the column index of V † one obtains the right orthonormalized matrix B.

B
[L]sL
β,αn

= V †β,(αn,sL) (15)

Iterating this procedure from right to left along the chain produces a fully right or-
thonormalized MPS.

5 Schmidt decomposition

Let |ψ〉 be an element of the Hilbert space S, which we divide arbitrarily into two
subspaces A and B so that S = A⊗B. The state |ψ〉 can be represented by

|ψ〉 =
∑
{S}

cS |S〉

|ψ〉 =
∑
{A}

∑
{B}

MAB |A〉 |B〉
(16)

The coefficient MAB can be interpreted as a matrix element. SV decomposing M =
UλV † and inserting it into 16 leads to

|ψ〉 =
∑
{A}

∑
{B}

∑
γ

UA,γ λγ V
†
γ,B |A〉 |B〉

|ψ〉 =
∑
γ

λγ

∑
{A}

U{A},γ |A〉

∑
{B}

V ∗B,γ |B〉

 (17)
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Since U and V are unitary, due to the general properties of the SVD [10], the two braced
expressions in Eq. 17 are basis transformations to a new basis

|α〉γ :=
∑
{A}

UA,γ |A〉

|β〉γ :=
∑
{B}

V ∗B,γ |B〉

|ψ〉 =
∑
γ

λγ |α〉γ |β〉γ

(18)

The new basis functions are called Schmid states for the given partition of S into A
and B and the λγ are the corresponding Schmidt Values. Since they were obtained as
singular values, they are real valued [10]. If the original state was normalized, it holds
that

〈ψ |ψ〉 = 1∑
γγ′

λ2
γ

〈
αγ
∣∣αγ′〉 〈βγ ∣∣βγ′〉 = 1

∑
γγ′

λ2
γ δγγ′ δγγ′ = 1

∑
γ

λ2
γ = 1

(19)

6 Pseudoinverse

The inverse of a matrix M is defined by MM−1 = 1. Using the SVD, the inverse of M
can be calculated by

M−1 = (UλV †)−1 = V λ−1U † (20)

If λjj = 0, the corresponding matrix element λ−1
jj = 1

λjj
is not defined. However, if

λjj = 0 this means that the matrix M does not act upon that subspace, which can be
excluded from the invsere matrix [9]. This leads to the following definition of λ−1:

λ−1
jj =


1
λjj

λjj 6= 0
0 λjj = 0

(21)

The matrix MM−1 is now the identity for all directions M acts upon, and zero for
all others. In any numerical implementation, the decision in Eq. 21 will be taken by
comparing λjj against some small constant ε (e.g. ε = 10−15).

11
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7 Canonical Form of MPS

An extremely useful form of a matrix product state is the so called canonical form [7].
In this representation, the matrices for two consecutive sites are linked by a diagonal
matrix containing the Schmidt values for the partition of the system at this site (see
Fig. 2 for a graphical representation). This representation allows to efficiently evaluate
the action of operators that only act locally, as shown in Sec. 8. When having a matrix
product state that has been left orthonormalized up to site k and right orthonormalized
from the right end up to site k + 1, the matrix combining the two sides will contain the
Schmidt values for a partition at that bond.

Γ[1] λ[1]

s1 

α1 α1 

Γ[2] λ[2]

s2 

α2 α2 

Γ[3] λ[L-1]

s3 

α3 αL-1 

Γ[L]

sL

αL-1

Figure 2: Schematic representation of a canonical MPS. Square matrices represent Γ
matrices for each site, circles the diagonal λ matrices containing the Schmidt
values. Lines represent indices, a closed line indicates that this index is being
summed over.

Every matrix product state can be brought into the canonical form by the following
algorithm:

1. Left orthonormalize the state according to Sec. 4.3.

2. Start right orthonormalizing the state according to Sec. 4.4. At every site the Schmidt
values (i.e. the matrix λ) of the bond are the singular values obtained by the SVD and
are stored.

cs1s2...sL =
∑
{α}

∑
β

A
[1]s1
1,α1A

[2]s2
α1,α2 ... A

[L−1]sL−1
αL−2,αL−1 UαL−1,β λβ,β V

†
β,(1,sL) (22)

3. Like during ordinary right orthonormalization the Matrix Uλ is multiplied onto the
remaining matrices to the left of the chain, forming a new matrix Ã.

4. To explicitly pull out the matrix λ and obtain Γ, the identity is inserted in the form
of 1 = λλ−1 and the inverse is multiplied onto the matrix V † which becomes Ṽ †. In this
operation λ−1 is the pseudoinverse of λ as defined in Sec. 6.

cs1s2...sL =
∑
{α}

∑
β

A
[1]s1
1,α1A

[2]s2
α1,α2 ... Ã

[L−1]sL−1
αL−2,β

λββ
(
λ−1
ββV

†
β,(1,sL)

)
(23)

12
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5. Index splitting of Ṽ †, yields the Γ matrices for that site.

Iterating this procedure across the entire chain from right to left will transform the MPS
into canonical form shown in Eq. 24, where the auxiliary indices were omitted for clarity,
and depicted graphically in Fig. 2.

cs1s2...sL = Γ[1]s1λ[1]Γ[2]s2λ[2] ... λ[L−1]Γ[L]sL (24)

.

From the canonical form a fully left orthonormalized set of matrices A can be obtained
by using A[j] = λ[j−1]Γ[j]. To get the right orthonormalized matrices B the singular
values are factored out on the right side: B[j] = Γ[j]λ[j]. Inserting these expressions into
the orthonormalization conditions Eq. 8 and 13 yield the orthonormalization conditions
for the canonical MPS form: ∑

sj

Γ[j]sj†
(
λ[j−1]

)2
Γ[j]sj = 1 (25)

∑
sj

Γ[j]sj
(
λ[j]
)2

Γ[j]sj† = 1 (26)

These conditions can also be depicted graphically as shown in Eq. 3.

λ[j-1] Γ[j]

λ[j-1] Γ[j]*

αj-1 

αj-1 

αj-1 sj 

m 

n 

==

m 

n 

δmn

λ[j]Γ[j]

λ[j]Γ[j]*

αj-1 

αj-1 

αj-1 sj 

m 

n 

m 

n 

==δmn

Figure 3: Schematic representation of the orthonormalization Equations 25, 26. Squares
represent the Γ matrices, circles the diagonal λ matrices. Horizontal lines are
auxiliary, matrix indices, vertical indices are spin indices. A closed line implies
summation over that index.

8 Operations on MPS

MPS allows for an efficient way of evaluating operators that only act locally. In this
work, operators that act on a single site (e.g. expectation value of Ŝzj ) and operators
that act on two consecutive sites are being used.

13
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8.1 Application of a one-site operator

To evaluate how a system changes under the application of an operator, one needs to
evaluate how the coefficients cj of its basis vectors change.

c′i =
∑
j

Oijcj (27)

Inserting the MPS for the coefficient c gives

c′{s′i}
=
∑
{sj}

O{s′i}{sj}Γ
[0]s0λ[1] ...Γ[L]sL (28)

If the operator only acts on the spin at site n, the operator becomes a δ at every site
but n:

O{s′i}{sj} = δs′1,s1δs′2,s2 ...δs′n−1,sn−1Os′n,snδs′n+1,sn+1 ...δs′L,sL (29)

Inserting the operator in Eq. 28 leads to:

c′{s′i}
= Γ[0]...λ[n−1]

(∑
sn

Os′n,snΓ[n]sn

)
λ[n]...Γ[L]sL (30)

The only matrices that change during the application of the operator are therefore the
matrices Γ[n]:

Γ′[n]s′n =
∑
sn

Os′n,snΓ[n]sn (31)

Note that the new matrix Γ′[n]s′n will usually no longer satisfy the orthonormalization
conditions Eq. 25 and 26.

8.2 Application of two-site operators

Similar to the application of a one-site-operator, also the application of a two-site-
operator (an operator that only acts on two adjacent sites) requires only the matrices
in its vicinity. If an operator acts on site n and n+ 1 only the matrices Γ[n], Γ[n+1] and
the connecting matrix λ[n] are affected (which can be shown in the same way as for the
one-site case), but the evaluation becomes easier if the unaffected matrices λ[n−1] and
λ[n+1] are also included in the calculations.

14
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Again it is of interest to calculate the modified coefficients c′:

c′i =
∑
j

Oijcj (32)

Since not all matrices are affected by this transformation, not the whole matrix product
must be substituted for cj , but only the affected part, which will be called Θ:

Θsnsn+1 := λ[n−1]Γ[n]snλ[n]Γ[n+1]sn+1λ[n+1] (33)

Note that Θ depends on 4 indices: The physical spin indices sn, sn+1 and the auxiliary
matrix indices which shall be called α and γ.

Application of O, according to Eq. 32 yields:

Θ′s′ns′n+1 =
∑

snsn+1

O(s′ns′n+1),(snsn+1)Θsnsn+1 (34)

Now it is necessary to decompose Θ′ into the form of a canonical MPS. A matrix Θ̃ is
defined according to Eq. 35, which combines auxiliary indices and spin indices to form
a matrix which only depends on 2 indices.

Θ̃(α sn),(γ sn+1) := Θ′snsn+1
αγ (35)

Performing the SV-decomposition of Θ̃ gives

Θ̃ =
∑
β

U(α sn),β Sβ V †β(γ sn+1) (36)

The diagonal matrix of singular values can be identified with the transformed matrix
λ′[n]. Since the matrices λ[n−1] and λ[n+1] are unchanged, a comparison of Eq. 36 with
the desired form in Eq. 33 leads to Eq. 37

U = λ[n−1] Γ′[n]

V † = Γ′[n+1] λ[n+1] (37)

The matrices Γ′[n] and Γ′[n+1] can therefore be calculated by multiplying the pseudoin-
verse of λ onto U and V †, which can easily be done since the matrices λ are diagonal.

Note that in Eq. 35 the combining of the indices increases the size of the matrix Θ̃ in
comparison to Θ′. If each index sn has 2 possibilities (as for example in a 1D spin 1

2
chain), the matrix size doubles. If λ[n] contained χ Schmidt values, the new matrix λ′[n]

will contain up to 2χ Schmidt values. Therefore it will in most cases be necessary to
truncate the resulting Schmidt values (see Sec. 8.4).
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8.3 Expectation values of one-site operators

To calculate the expectation value 〈O〉 of a state |ψ〉, represented by the coefficient ci in
the basis |si〉, the following sum must be evaluated.

〈O〉 =
〈
ψ
∣∣∣ Ô ∣∣∣ψ〉

〈O〉 =
∑
{s′i}

∑
{si}

〈
{s′i}

∣∣∣ Ô ∣∣∣ {si}〉 c∗{s′i}c{si} (38)

The coefficients c are expressed as canonical MPS, according to Eq. 24. Since every
coefficient c is a scalar, it holds that c∗ = c†. Furthermore it is convenient to append
the [1× 1] matrices λ[0] = λ[L] = 1 to the ends of the matrix product.

〈O〉 =
∑
{s′i}

∑
{si}

〈
{s′i}

∣∣∣ Ô ∣∣∣ {si}〉 (λ[L]Γ[L]sL† ... λ[1]Γ[1]s1†λ[0]
) (

λ[0]Γ[1]s1λ[1] ... Γ[L]sLλ[L]
)

(39)

If the operator only acts on site n, then all |si〉 with i 6= n can jump over the operator
and combine with 〈s′i| to δs′isi . The remaining sum over s1 can be moved to the center
of the matrix product and be eliminated, since it is 1 due to the orthonormalization
Equation 25.

〈O〉 =
∑
s′n

∑
s2...sL

〈
s′n

∣∣∣ Ô ∣∣∣ sn〉λ[L]Γ[L]sL† ... λ[1]∑
s1

(
Γ[1]s1†λ[0] λ[0]Γ[1]s1

)
λ[1] ... Γ[L]sLλ[L]

(40)

This procedure can be repeated for the product Γ[2]†λ[1]λ[1]Γ[2] and so forth, up to
position Γ[n]. Here Eq. 25 cannot be used, because not only the matrices, but also the
term

〈
s′n

∣∣∣ Ô ∣∣∣ sn〉 depends on sn. But since the product of matrices is a scalar (a [1× 1]
matrix), it is the same as the trace of the matrix product. The trace of a product of
matrices is invariant under cyclic permutation of the matrices, which allows us to swap
c∗ with c, yielding Eq. 41.

〈O〉 =
∑
s′n

∑
sn...sL

〈
s′n

∣∣∣ Ô ∣∣∣ sn〉 Tr
(
λ[n−1]Γ[n]sn ... Γ[L]sLλ[L] λ[L]Γ[L]sL† ... Γ[n]sn†λ[n−1]

)
(41)

Now Eq. 26 for right orthonormalization can be used to decimate the matrices in the
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center of the product yielding the final result:

〈O〉 =
∑
s′n

∑
sn

〈
s′n

∣∣∣ Ô ∣∣∣ sn〉 Tr
(
λ[n−1]Γ[n]snλ[n]λ[n]Γ[n]sn†λ[n−1]

)
(42)

The same result can also be achieved by using the graphical notation as introduced
in Fig. 2. Figure 4 shows a graphical representation of Equation 39, with |ψ〉 at the
bottom, the operator O in between, acting only on site n, and 〈ψ| on top.

Γ[1] λ[1]

s1 

Γ[2] λ[n-1]

s2 

αn-1 

Γ[n] λ[L-1]

sn 

αn

Γ[L]

sL

Γ[1]* λ[1] Γ[2]* λ[n-1]

αn-1 

Γ[n]* λ[L-1]

αn 

Γ[L]*

s'1 s'2 s'n s'L

λ[n]

λ[n]

δ δ δOij

λ[0]

λ[0]

λ[L]

λ[L]

Figure 4: Graphical notation of Eq. 39. The parts enclosed by the dashed rectangles
can be identified as the graphical representation of the orthonormalization
Equations 25, 26, depicted in Fig. 3

.

Both ends of the chain in Fig. 4 correspond to the orthonormalization conditions and
can therefore be replaced by a Kronecker delta, which corresponds to a simple brace
in graphical notation (see 3). This leads to the orthonormalization condition for the
next site which allows to iteratively decimate the chain up to the site n where the
orthonormalization can no longer be used since O[n]

ij 6= δij . The remaining expression,
corresponding to Eq. 42 can thus be depicted by Fig. 5.

λ[n-1]

αn-1 

Γ[n]

sn 
αn

λ[n-1]

αn-1 

Γ[n]*

αn 

s'n 

λ[n]

λ[n]

Oij

Figure 5: Graphical representation of the expectation value of an operator, which only
acts on a single site n. For an analytical expression see Eq. 42
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It is important to note that the evaluation of an operator that only acts on one site, does
not require the evaluation of the whole matrix product, but only requires the matrices
at that position.

8.4 Truncation of Schmidt Values

Up to this point all operations on MPS are, in principle, exact. But when applying 2-site
operators several times the number of Schmidt values potentially grows exponentially,
rendering practical implementation impossible. A way to still approximate the state is
to only keep, at maximum, a number of χ Schmidt values for every bond n and truncate
the matrices Γ[n], λ[n] and Γ[n+1] accordingly.

After truncating, the matrix λ[n] must be renormalized to satisfy Eq. 19.

λ = λtruncated√∑χ
k=1 λ

2
kk

(43)

8.5 Time development

MPS provide an efficient way to apply operators that only act locally. It is therefore
desirable to decompose the time development operator U into parts that only act on two
consecutive sites at most. This can be achieved using the Trotter-Suzuki decomposition
[7]. When assuming ~ = 1, the time development operator U is given by

Û = e−iĤt (44)

where Ĥ is the total Hamiltonian of the system. Ĥ can be written as a sum Ĥe, for
the even numbered bonds and Ĥo for the odd numbered bonds, which only act on every
second bond each (Fig. 6).

Figure 6: Schematic representation of the Trotter-Suzuki decomposition. Spin sites are
depicted by circles, bonds by braces. The total Hamiltonian Ĥ can be split
into Ĥo (red) and Ĥe (blue), which do not commute with each other. The
individual parts of each Hamiltonian, however, commute with each other.

Ĥe and Ĥo are both a sum of Hamiltonians that only act on 2 consecutive sites (=bonds).
Since for Ĥe and Ĥo the bonds never act on the same site, the bonds do commute with
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each other, which allows to easily express the time evolution using Ĥe and Ĥo.

e−itĤe = e
−it
∑

j even Ĥj =
∏
j even

e−iĤjt

e−itĤo = e
−it
∑

j odd Ĥj =
∏
j odd

e−iĤjt
(45)

But since Ĥe and Ĥo do not commute, the total time development operator cannot be
written as a product of these two operators in Eq. 46.

e−itĤ 6= eĤeeĤo (46)

This problem can be solved using the Trotter-Suzuki decomposition. The time t is
divided into smaller steps ∆t. When the system is only developed a small step ∆t, the
time development operator U can be expanded using the Baker–Campbell–Hausdorff
formula:

eAteBt = e(A+B)t+ 1
2 [A,B]t2 +O(t3) (47)

e−iĤe∆te−iĤo∆t = e−i(Ĥe+Ĥo)∆t −
1
2 [Ĥe,Ĥo]∆t2 + O(∆t3)

e−iĤe∆te−iĤo∆t = e−iĤ∆t + O(∆t2)
(48)

Eq. 48 shows that when performing only a small step ∆t, by applying e−iĤo∆t and
e−iĤe∆t consecutively instead of the full operator e−iĤ∆t, the error is of the order
O(∆t2). When performing t

∆t steps the accumulated error is of O(∆t) and can there-
fore be reduced by choosing a smaller step size ∆t during simulation. An even better
decomposition is given by Eq. 49 [7].

ÛTZ = e−iĤ∆t ≈ e−iĤe
∆t
2 e−iĤo∆te−iĤe

∆t
2 (49)

This can again be proven by using the Baker–Campbell–Hausdorff formula:

e−iĤe
∆t
2 e−iĤo∆te−iĤe

∆t
2 = e−i∆t(

Ĥe
2 +Ĥo) − 1

2 [ Ĥe2 ,Ĥo]∆t2 + O(∆t3)e−iĤe
∆t
2

= e−i∆t(Ĥe+Ĥo) + ( 1
4 [Ĥe,Ĥo] + 1

8 [Ĥe,Ĥe] + 1
4 [Ĥo,Ĥe])∆t2 + O(∆t3)

= e−iĤ∆t + O(∆t3)

(50)

Time development to a time t is done by applying the operator UTZ from Eq. 49 t
∆t

times, causing a total error of O(∆t2). In practice this 2nd-order TZ decomposition
requires almost no additional computational effort, compared to the 1st-order decom-
position, because consecutive time developments with Ĥe

2 can be combined to a single
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time development with Ĥe, as long as no measurements are performed in between these
steps. (

ÛTZ
)n

=
(
e−iĤe

∆t
2 e−iĤo∆te−iĤe

∆t
2
)n

= e−iĤe
∆t
2
(
e−iĤo∆te−iĤe∆t

)n−1
e−iĤo∆te−iĤe

∆t
2

(51)

9 Implementation and validation of 1D-Simulation

The following algorithm for simulating systems with MPS and TEBD was used [9]:

1. Choose a starting configuration (in general a linear combination) and bring it into
MPS form (Sec. 4.2).

2. Transform it into canonical form (Sec. 7)
3. Time evolve using TZ decomposition with stepsize dt (Sec. 8.5). During time

development truncate the number of Schmidt values to a maximum of χ.
4. Measure

〈
Ŝz
〉
for every site of the system. (Sec. 8.3)

5. Iterate from 3 until desired time Tend.

To validate the obtained results the following procedure was chosen:

1. Simulate small 1D systems that can be compared to full diagonalization: Sec. 9
2. Simulate larger 1D system to observe "Quantum Bowling" in 1D: Sec. 10
3. Simulate small 2D system and compare to full diagonalization: Sec. 12
4. Simulate "Quantum Bowling" in 2D: Sec. 13

To validate the simulation results of the MPS, exact diagonalization of the Hamiltonian
was used. Because the Hamiltonian conserves the total spin of the system in z direction
Sz , it is possible to only choose basis states that share a given total Sz. To simulate
the time evolution of k flipped spins on a 1D-lattice of length L one needs to consider
all basis states where k spins are ↑ and L− k are ↓.

The number of possibilities to distribute k particles on a lattice of size L, where only at
maximum one particle may exist per lattice site, is given by the binomial coefficient.

nstates =
(
n

k

)
(52)

For the case of L = 20 and k = 2 this gives a total of 190 basis states, which can easily
be treated on any modern computer.

Fig. 7 shows the time development of an excitation of two neighboring particles. Two
distinct propagation speeds can be observed: A small signal that reaches the domain
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Figure 7: Expectation value of particle density n[j] for every position in the chain for
times between 0 and 50 for a 2 spin excitation with Jxy = 1.0, Jz = 2.0,
dt = 0.01, χ = 40.
Left: Obtained by exact diagonalization, Right: Obtained by MPS simulation.
The results are qualitatively indistinguishable, the quantitative difference is in
the order of 1 h.

boundaries at t = 10 and a strong signal that reaches the boundaries at t ≈ 35. The
fast propagating branch is the signal of a free particle as can be seen by comparison
of a single spin excitation. The slowly propagating, stronger signal is the signal caused
by the 2 particles moving together as a bound couple [5]. Increasing the bond energy
Jz leads to a strong bound signal, which propagates slower while the signal of the free
particle becomes weaker. This concept is further noted in Sec. 10.

The simulation error was estimated as the maximum difference between the results
obtained via diagonalization and MPS.

δ = max
j

∣∣∣∣〈Szj 〉diag − 〈Szj 〉MPS

∣∣∣∣ (53)
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Figure 8: MPS simulation error according to Eq. 53 over time for the system of Fig. 7.
Note that the maximum error is smaller than 3 · 10−5 and therefore about 4
magnitudes smaller than the expectation values.

10 Quantum Bowling in 1D

At large bond strengths
∣∣∣ JzJxy ∣∣∣, chains of flipped spins on a background of oppositely

oriented spins will decay only slowly over time. This can be seen both by simulation
results (Fig. 9), and analytical treatment via the Bethe ansatz [1, 5].
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Figure 9: Expectation value of particle density n[j] for every position j in the chain for
times between 0 and 100 for an excitation, where nwall particles are created at
t = 0. Jxy = 1.0, Jz = 4.0, dt = 0.05, χ = 40. Walls of several particles are
almost stationary compared to a single particle (leftmost image).

22



2D Quantum Bowling using MPS Michael Scherbela

At sufficiently high Jz these walls are almost stationary compared to freely moving
particles.

[1] and [6] have studied the behavior of free particles hitting these walls under various
conditions. Some of their results have been reproduced in this work.

Figure 10 shows a particle that is moving towards a wall of 5 particles, which are bound
together by the high bond energy Jz. The particle hits the wall and another particle is
emitted off the wall at the other end, which resembles the well known Newton Cradle.
But a careful examination shows that the wall is shifted by two sites during the process,
as opposed to the newton cradle, where the balls at rest shift by one site (one ball is
added on the left, one ball leaves at the right). The phenomenon becomes clearer when
examining conservation of energy, in particular the bond energy [6].

The easiest way to create an incoming particle is by flipping a single spin (Fig. 10 left),
which will move towards the wall due to the hopping process. But due to the strong
spread of the particle, results are hard to interpret. A linear combination of single flipped
spins, with their coefficients distributed according to a Gaussian distribution, as used in
[6], lowers the spread and yields easier to interpret results (Fig. 10 right).

|ψ〉 =
∑
x

cx
∣∣↑x ↑ws↑ws+1 ... ↑we

〉
cx ∝ e−

(x−x0)2

2σ2 ei(x−x0)k
(54)

where ws and we are the start and end position of the target wall.

Fig. 11 shows in a simplified schematic what happens during the collision. Before
the incoming particle hits the wall, the leftmost particle of the wall hops towards the
incoming particle, forming a bond. This process is repeated until only one particle of the
wall remains. This single particle then propagates further to the right. It is impossible
for the incoming particle to directly reach the wall, since this would form an additional
bond (shown in red), violating the conservation of energy.
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Figure 10: Plot of particle density 〈nj〉 over time, for a particle moving through a wall of
5 particles at Jxy = 1, Jz = 4. Left: Particle is a single flipped spin. Right:
Particle is a Gaussian packet according to Eq. 54 with k = −π

2 and σ = 3

Start

Wrong

Right

Figure 11: Schematic explanation of hole formation. Empty circles represent empty sites,
filled circles occupied sites. When a particle approaches a wall (Start), the
leftmost wall particle hops to the left creating a hole (Right). If the incom-
ing particle hopped towards the wall, an additional bond would be created,
violating energy conservation (Wrong).

11 Extension to 2 dimensions

If one of the two dimensions of the system is small (in the implementation used ≤ 5 sites),
the methods used for 1D simulation can easily be adapted to simulate a 2D system.

To simulate spins on a rectangular 2D-grid of size Lx×Ly we assume without loss of gen-
erality that Ly ≤ Lx. All spins within one column are combined to form a subsystem. As
opposed to a single spin, which can be described by 2 basis states, each subsystem is now
described by 2Ly basis states. The total system is then merely a one-dimensional chain
of subsystems and can therefore efficiently be simulated using the techniques described
in Sec. 4.
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Figure 12: Schematic of 2D MPS-implementation. All spins (circles) along a column are
combined to form a subsystem (rectangle). The total system becomes a 1D
chain of subsystems.

A major problem of this approach is the exponential growth of complexity with the
increase of Ly. While the algorithm scales well with an increase of Lx, only small
system widths Ly can be treated. One of the limiting factors of this approach is the
Hamilton operator Hbond, which describes the interaction of 2 adjacent subsystems and
the corresponding time development operator U , which are both of size [22Ly×22Ly ]. The
total number of matrix elements of U is thereby proportional to 16Ly . On a personal
computer, systems up to width Ly = 5 could be simulated. To simulate a system of
width Ly = 10, a ≈ 106 fold increase in computational power would be needed.

When calculating the time evolution of the 2D system a Trotter-Suzuki decomposition
can be used just as in the 1D case.

Figure 13: Schematic of the Trotter-Suzuki-Decomposition in 2D. Red and blue represent
the time evolutions due to Heven and Hodd. Note that at the end of the chain
a time evolution on a single subsystem remains.

The time evolution can be achieved using two types of operators: A 2-site operator and
a 1-site operator. As introduced in Eq. 4, for the 2D case, the Hamiltonian does in
general depend on 4 parameters: Jxyq , Jxy⊥ which describe hopping along the horizontal
and vertical direction respectively, and Jzq , Jz⊥ which describe the bond strength along
the corresponding axes.
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12 Validation of 2D implementation

As in Sec. 9 the output of the MPS algorithm was validated by comparing it to exact
diagonalization for initial conditions of 2 particles on a system of size [4 × 6]. The
resulting time evolution is partially displayed in Fig. 14. Figure 15 shows the simulation
error over time. The error estimate was calculated by Eq. 55 in correspondence to Eq.
53 by taking the maximum difference between both simulation results.

δ = max
x,y

∣∣∣〈S[x,y]
z,diag

〉
−
〈
S

[x,y]
z,MPS

〉∣∣∣ (55)

0 1 2 3 4 5

0

1

2

3

t = 0.0

0 1 2 3 4 5

0

1

2

3

t = 4.0

0 1 2 3 4 5

0

1

2

3

t = 8.0

0 1 2 3 4 5

0

1

2

3

t = 12.0

0 1 2 3 4 5

0

1

2

3

t = 16.0

0 1 2 3 4 5

0

1

2

3

t = 20.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 14: Expectation value of particle density nx,y for every position at selected times
after a 2 spin excitation at t = 0 with Jxyq = Jxy⊥ = 1.0, Jzq = Jz⊥ = 4.0,
dt = 0.02, χ = 40.
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Figure 15: Simulation error of the simulation displayed in Fig. 14, estimated by Eq. 55.
The maximum error is smaller than 9 · 10−4

.

13 Quantum Bowling in 2D

13.1 2D Quantum-Bowling at high Jz

Just as in the 1D case (Sec. 10) one can prepare a "wall" of particles bound together by
high Jz and a single particle that hops towards that wall. A simulation of one possible
initial condition is shown in Fig. 16. Unlike in the 1D case the single particle does not
penetrate the wall, but bounces off it. This can be explained by conservation of energy
as displayed in Fig. 17.
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Figure 16: Expectation value of nx,y for every position at selected times, for a single
flipped spin hopping towards a wall of depth 2. Jxyq = Jxy⊥ = 1.0, Jzq = Jz⊥ =
4.0, dt = 0.01, χ = 40. The single particle bounces off the wall.
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Start Additional Bond Missing Bonds

Figure 17: Schematic representation of Jz-bonds. Empty circles represent empty
sites, filled circles occupied sites, connecting lines represent bonds by Sz-
interaction. When a single particle approaches a wall (Start) it cannot hop
towards the wall, because this would create an additional bond, similar to the
1D-case. But in contrast to the 1D case a wall particle cannot leave the wall
and hop towards the incoming particle, since this would break two vertical
bonds which are not replaced.

13.2 Transmission of a single particle through a 2D wall

Sec. 13.1 demonstrates that due to energy conservation, at high vertical bond energies
Jz⊥ incoming particles do not penetrate the wall, but are reflected. To allow the incom-
ing particle to be (at least partially) transmitted, anisotropic coupling was introduced.
Instead of using the same hopping term Jxy for both horizontal and vertical hopping,
a separate hopping Jxyq for horizontal hopping and Jxy⊥ for vertical hopping were intro-
duced. In similar fashion different values Jzq and Jz⊥ for vertical and horizontal bond
energies were allowed.

To simulate the effect of the coupling energies on the transmission, the impact of a single
particle onto a wall of depth 3 and height 3 from position xstart = 14 to xend = 17 was
simulated on a grid of size 30 x 3. As a first attempt, the incoming particle was a single
flipped spin, as seen in Fig. 16, but this proved to be inadequate due to its spread in both
horizontal and vertical direction, complicating the interpretation of obtained simulation
results. Therefore a linear combination of states with a Gaussian distribution along the
x-axis was used in later simulations, similar to the 1D-case (Eq. 54, Fig. 10r). While
this solves the issue of the unwanted spread in the x-direction, the particle still spreads
vertically. To prevent this, the incoming particle is chosen to be a an eigenstate along
the y-axis and normally distributed along the x-Axis. Since the problem is symmetric,
all eigenstates are symmetric or antisymmetric, and the corresponding spin expectation
value of the eigenstates is therefore always symmetric. For the simulations the eigenstate
with the lowest energy was chosen, since it has a single particle density peak in the center
and drops towards the edges.

Fig. 18 shows the impact of a particle at Jxy⊥ = 0.1, Jz⊥ = 0. Since there is almost no
coupling between the rows of the system, the particle is almost fully transmitted and the
wall partially shifts by 2 sites as observed in the 1D case. When the coupling between
the rows rises, energy conservation starts to obstruct the movement through the wall
(Fig. 19).
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Figure 18: 〈nx,y〉 for every position at selected times.
Jxyq = 1.0, Jxy

⊥ = 0.1, Jzq = 8.0, Jz
⊥ = 0.0, dt = 0.05, χ = 30.

The rows are almost independent, the particle is nearly fully transmitted.
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Figure 19: 〈nx,y〉 for every position at selected times.
Jxyq = 1.0, Jxy

⊥ = 0.6, Jzq = 8.0, Jz
⊥ = 0.0, dt = 0.05, χ = 30.

Only a fraction of the particle is transmitted.

13.3 Transmission rate of a single particle through a 2D wall

Fig. 16 shows that in the limit of high vertical bond energies an incoming particle
is fully reflected. On the other hand, in the special case that Jz⊥ = 0 and Jxy⊥ = 0
(i.e. there is no vertical coupling), the 2D system becomes a stack of independent 1D
systems, all of which will show the transmissive behavior seen in Fig. 10. It is therefore
of interest to observe the transmission rate of particles at intermediate values of vertical
bond energies.

For each configuration of energy parameters, two simulations were performed: First one
simulation, featuring only the wall as a starting configuration to get a background level
of spin density nB. Then a second simulation with the wall and a particle as described
above to obtain the transmitted particle density. After t = 24 (the time required for the
incoming particle to pass through the wall and reach the end of the simulation domain)
the particle density nP on the right of the wall was summed up and the sum over the
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background particle density nB subtracted (Eq. 56).

T =
∑

x>xend+1

∑
y

〈nx,yP 〉 − 〈n
x,y
B 〉 (56)

Fig. 20 shows the dependence of the transmission rate on the vertical hopping and bond
parameters Jxy⊥ and Jz⊥, for a fixed set of horizontal parameters.
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Figure 20: Graph of integrated, transmitted particle density (Eq. 56) of a single particle
hitting a wall of thickness 3, simulated on a 30× 3 grid with χmax = 30, with
Jxyq = 1 and strong horizontal bond strength Jzq = 8.
For an error estimation see Sec. 13.4.

At Jxy⊥ = 0, Jz⊥ = 0 the rows are fully decoupled and transmission is almost 100 %.
Increasing vertical bond strength Jz⊥ leads to a decrease in transmission due to the
conservation of energy (see Sec. 13.1). As Jz⊥ rises, the transmission peak shifts to
higher values of Jxy⊥ . To further refine the configuration of the transmission maxima, for
each Jz⊥, additional simulations were performed in the range of Jxy⊥ = Jz⊥ ± 10%. Fig.
21 shows the hopping parameter Jxy⊥ of maximum transmission for different vertical
interaction strength Jz⊥.

The data from Fig. 21 suggest that the maxima lie on the line Jxy⊥ = Jz⊥, which
corresponds to the isotropic Heisenberg model. The deviations from the line might be
caused by simulation error, since at the number of Schmidt values χmax = 30 used, the
simulation has not yet fully converged to its solution.
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Figure 21: Vertical coupling at maximum transmission for fixed values of horizontal
coupling Jxyq = 1, Jzq = 8.
Markers indicate the transmission maxima, the line is the model Jxy⊥ = Jz⊥.

13.4 Error estimation of transmission rate

When describing a general quantum state exactly, the maximum number of Schmidt
values grows exponentially with the distance from the chain’s ends. For the simulated
grid of size 30× 3, the maximum number of Schmidt values is

χmax = 815 ≈ 4 · 1013 (57)

To be able to simulate this system on a contemporary PC, the Schmidt values need to be
heavily truncated. In the case of Fig. 20, χmax = 30 was chosen. It is rather remarkable
that despite this extreme truncation (only 10−12 of the Schmidt values are considered),
the maximum discarded weight per timestep is of the order of 10−4. To examine the
choice of χmax = 30, a few selected configurations were simulated with different values
of χ, and their results compared.

Figure 22 shows that the systems have not yet fully converged at χ = 30, which was used
for the simulations. In particular for the cases Jz⊥ = 0.5 and Jz⊥ = 1.0 the remaining
slope at χ = 100 indicates that a significantly higher number of Schmidt values might be
necessary to achieve quantitative results. However, considering the absolute variation of
the transmission over the the tested range of χ, the results will most likely not change
qualitatively at higher simulation accuracy.
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Figure 22: Convergence of particle transmission for Jxyq = 1, Jzq = 8 in the case of vertical
isotropic coupling, for different maximum number χ of Schmidt values used.
The left graph shows the absolute value of transmission, the right graph the
difference to the result simulated with the highest χ = 100.

14 Summary

A simulation of the spin 1
2 Heisenberg model was implemented using TEBD and validated

in the 1D case by comparison with full diagonalization (Sec. 9) and by simulating
"Quantum Bowling" in 1D. In agreement with [6] nearly full transmission of an incident
particle was observed in the 1D case.

The simulation was extended to 2D by using full diagonalization along the second axis
which proved to be not very scaleable for systems with a large second dimension, but
sufficient to observe the behavior of incident particles on a 2D wall. Verification of the
obtained simulation results was again performed using full diagonalization (Sec. 12).

The dependence of the transmission rates on the coupling energies was investigated in
Sec. 13.2. For high bond strengths Jz � Jxy, the incoming particle was found to be fully
reflected, which can be explained by conservation of energy (Sec. 13.1). For lower bond
strenghts the incoming particle is partly transmitted and its maximum transmission was
found to occur when the couplings along the axis perpendicular to the incident direction
are isotropic: Jxy⊥ = Jz⊥ (Fig. 21).

The impact of the number χ of Schmidt values used was examined in Sec. 13.4. For
the simulated systems a maximum number of χ = O(100) was found to be sufficient for
qualitatively correct results.
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