
1 Time-dependence for a quantum quench

See also [1, 2] for alternative derivations

Dyson equation (left and right)

G = g + g ◦ Σ̃ ◦G = g +G ◦ Σ̃ ◦ g
g−1 ◦G = I + Σ̃ ◦G G ◦ g−1 = I +G ◦ Σ̃ (1)

retarded component

Gr = gr + gr ◦ Σ̃r ◦Gr (2)

or, equivalently
g−1
r ◦Gr = I + Σ̃r ◦Gr (3)

We will considered the problem of a central region consisting of several levels
described by an Hamiltonian

H = c†εc . (4)

We try to keep results valid for N levels, so that c = (c1, c2, · · · , cN)T , and ε
is a matrix .

Some de�nitions

We are working in time space, so we need to specify the meaning of objects
there:

• Convolution

A = B ◦ C ↔ A(t1, t2) =

∫
dt B(t1, t)C(t, t2) (5)

• Identity
I(t1, t2) = δ(t1 − t2) (6)

• It follows: inverse

A = B−1 ↔ A ◦B = I ↔
∫
dt A(t1, t)B(t, t2) = δ(t1 − t2) (7)
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Unperturbed retarded Green's function

We start with the unperturbed (Σ̃ = 0) retarded Green's function.

gr(t1, t2) = −iθ(t1 − t2) < {c(t1), c†(t2)} >

It satis�es the equation of motion (we consider for the moment still a time-
dependent ε)

∂t1gr(t1, t2) = −iδ(t1 − t2) + θ(t1 − t2) < {[H(t1), c(t1)], c†(t2)} >

= −iδ(t1 − t2)− θ(t1 − t2)ε(t1) < c(t1), c†(t2) >

i.e.

(i∂t1 − ε(t1)) gr(t1, t2) = δ(t1 − t2) (8)

in this way, one immediately recognizes the inverse of g:

g−1
r (t1, t2) = (i∂t1 − ε(t1))δ(t1 − t2) (9)

the solution of 8 with the corresponding initial conditions gr(t
+
1 , t1) = −i is

given by

gr(t1, t2) = −iθ(t1 − t2) T exp

(
−i
∫ t1

t2

ε(t)dt

)
(10)

where T is the time-ordered product necessary because ε is a time-dependent
matrix.

From here on, we consider a time-independent ε.

Retarded Green's function after a Quantum quench

We now introduce the coupling (hybridisation) to a bath which is switched
on at some time, say t = 0 (quantum quench) V (t) = V θ(t). We have
already evaluated the bath self energy 1 (matrix). Schematically it can be

1This is sometimes called hybridisation function in order to distinguish it from the one
originating from the interaction. But we have no interactions here
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written as

Σ̃(t1, t2) = V (t1)gbath(t1 − t2)V †(t2) = θ(t1)θ(t2)V gbath(t1 − t2)V †

≡ θ(t1)θ(t2)Σ̃(t1 − t2) (11)

It is thus time-translation invariant when both t1, t2 > 0.

(2) can be written explicitly

Gr(t1, t2) = gr(t1 − t2) +

∫
dt3 dt4 gr(t1 − t3)θ(t3)θ(t4)Σ̃r(t3 − t4)Gr(t4, t2)

(12)
Consider the case t2 ≥ 0. Since all quantities are retarded, we have t1 > t3 >
t4 > t2 ≥ 0 so that the θ are redundant in (12). Therefore, all quantities
in (12) are time translation invariant and the solution is easily obtained by
Fourier (Laplace) transform, whereby the convolution becomes a product.
With abuse of notation, the solution is (z = ω + i0+)

Ḡr(z) =
(
gr(z)−1 − ¯̃

Σr(z)
)−1

=
(
z − ε− ¯̃

Σr(z)
)−1

. (13)

To avoid misunderstanding, we indicate by
¯̃
Σr and Ḡr the time-translation

invariant versions of Σ̃r and Gr, valid when both times are positive:

Ḡr(t1, t2) = Ḡr(t1 − t2) = Gr(t1, t2) t1, t2 ≥ 0 (14)

When the argument is z, then it means a Fourier (Laplace) transform.

For 0 ≥ t1 ≥ t2, obviously Gr = gr. For t1 > 0 ≥ t2 the solution is obtained
in the following way: We take for convenience (3) with (9), which reads for
this case (here, δ(t1 − t2) = 0):

(i∂t1 − ε) Gr(t1, t2) =

∫
dt3 Σ̃r(t1 − t3) θ(t3)Gr(t3, t2) (15)

For �xed t2, this has the form 2 (28) with f(t1) ≡ Gr(t1, t2) and h = 0.
Following the procedure in Sec. A, we get the solution (33), which in this
case translates to

Gr(t1, t2) = i Gr(t1, 0)Gr(0, t2) = i Gr(t1, 0)gr(0, t2) t1 ≥ 0, t2 ≤ 0 . (16)

2The upper limit of the integral is in fact limited to t1, since Σ̃r is a retarded function
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In fact, (16) can be easily generalized (the procedure is the same as in Sec. A)
for t1 ≥ t2 ≥ t3

Gr(t1, t3) = iGr(t1, t2)Gr(t2, t3) (17)

For the advanced Green's function we have

Ga(t1, t2) = G†r(t2, t1) (18)

(Ex. 9.1) : calculate the time dependent Gr for a bath with a
Lorentzian density of states.

Keldysh Green's function

The Keldysh components of the left and right Dyson equations (1) become,
respectively (as usual, we can neglect g−1

k )

g−1
r ◦Gk = Σ̃r ◦Gk + Σ̃k ◦Ga ⇒ G−1

r ◦Gk = Σ̃k ◦Ga

Gk ◦ g−1
a = Gk ◦ Σ̃a +Gr ◦ Σ̃k ⇒ Gk ◦G−1

a = Gr ◦ Σ̃k (19)

The �rst one, for t1 > 0, t2 = 0 reads((
g−1
r − Σ̃r

)
◦Gk

)
(t1, 0) =

∫
dt3 Σ̃k(t1, t3) Ga(t3, t2)

The integral on the r.h.s. vanishes because t3 must be < 0 due to the ad-
vanced Ga, but then Σ̃k = 0 (cf. (11)), so we have 3

(i∂t1 − ε)Gk(t1, 0)−
∫ ∞

0

dt3 Σ̃r(t1, t3) Gk(t3, 0) = 0 , (20)

which is of the form (28) with f(t1) = Gk(t1, 0) and h = 0. The solution is,
thus, cf. (33)

Gk(t, 0) = iGr(t, 0) gk(0, 0) = Gr(t, 0)(1− 2n0) . (21)

We have used that the initial value Gk(0, 0) = gk(0, 0) since V = 0 for
negative times, and gk(0, 0) = −i(1− 2n0), with nt the occupation (matrix)
at time t. This is the equilibrium Keldysh Green's function at equal times.

3t3 is restricted to positive values because of (11)
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However, we need Gk(t1, t2) for arbitrary t1, t2 > 0. This is obtained by
starting from (21) and propagating the second time via the second of (19).
It is convenient to take the hermitian conjugate of that equation (which
includes switching the time arguments), and using G†a = Gr:

G−1
r ◦G

†
k = Σ̃†k ◦Ga

which becomes

(i∂t1 − ε)G
†
k(t1, t2)−

∫ ∞
0

dt3 Σ̃r(t1, t3)G†k(t3, t2) =

∫ t2

0

dt3 Σ̃†k(t1, t3)Ga(t3, t2)︸ ︷︷ ︸
h(t1,t2)

.

(22)
We need this for t1 > t2 > 0, so in this case the integral on the r.h.s. does
not vanish. 4

However, since we know already Σ̃k and Ga, we can evaluate it. Let us call it
h(t1, t2). (22) has the form (28) with f(t1) = G†k(t1, t2) and h(t1) = h(t1, t2).
The solution (33) becomes here

G†k(t1, t2) = iGr(t1, 0)G†k(0, t2) +

∫ ∞
0

dt3 Gr(t1 − t3)h(t3, t2) t1, t2 > 0

or taking the hermitian conjugate and exchanging t1 ↔ t2 yields:

Gk(t1, t2) = −iGk(t1, 0)Ga(0, t2) +

∫ ∞
0

dt3 h
†(t1, t3)Ga(t3 − t2)

combining with (21), inserting the explicit expression for h from (22), and
taking Ga(t1, t2) = Gr(t2, t1)† yields

Gk(t1, t2) = −iGr(t1, 0)(1−2 n0)Gr(t2, 0)†+

∫ t2

0

dt3

∫ t1

0

dt4 Gr(t1 − t4)Σ̃k(t4 − t3)︸ ︷︷ ︸
h†(t1,t3)

Gr(t2−t3)† ,

(23)
which has a more symmetric form, and we have exploited the fact that the
involved times are positive.

4The integration limits are given by (11) and by the advanced Green's function.
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Wide-band limit

We consider several baths α in the wide band limit, where their contribution
to Σ̃r is ω-independent: Σ̃rα(ω) = −iΓα. The total Σ̃r:

Σ̃r(z) = −iΓ Γ =
∑
α

Γα (24)

Thus, taking the Fourier transform of (13) yields (Ex.:9.2)

Ḡr(t) = e−iεt−Γt (25)

and, for example for t1 > 0, t2 < 0 we get from (16)

Gr(t1, t2) = e−iε(t1−t2)−Γt1

The corresponding Keldysh components Σ̃kα(ω) = −2iΓαsα(ω) is less trivial.
Taking for simplicity baths with T = 0 and chemical potentials µα, we have
sα(ω) = sign (ω − µα). The Fourier transform gives (CHECK: Ex. 9.3):

¯̃
Σkα(t1 − t2) = −2Γα

π

1

t1 − t2
e−iµα(t1−t2) , (26)

and again the total
¯̃
Σk is just the sum of these contributions.

Interesting is the time-dependent occupation n(t) of the central region given
in terms of the equal-time Keldysh Green's function (here for t > 0)

−i(1−2n(t)) = Gk(t, t) = −ie−2Γt(1−2n0)+e−2Γt

∫ t

0

dt3

∫ t

0

dt4 e
Γ(t3+t4) e−iε(t4−t3)

∑
α

¯̃
Σkα(t4−t3)

(27)
The �rst term gives the contribution from the initial occupation of the central
site, which decays with a rate 2Γ, while the second part provides the tendency
to reach a steady-state occupation with the baths.
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A Solution of the integro-di�erential equation

We need the solution of (in-)homogeneous integro-di�erential equations (cf.
(15), (20), (22)) of the form

(i∂t1 − ε)f(t1)−
∫ ∞

0

dt3 Σ̃r(t1 − t3)f(t3) = h(t1) t1 > 0 (28)

This is not truly a convolution since the integral starts at 0. (28) can also
be written ∫ ∞

0

dt3 G
−1
r (t1 − t3) f(t3) = h(t1) (29)

with given initial conditions at t1 = 0

f(0) = f0 (30)

To solve this equation, one introduces the function

F (t1) ≡ θ(t1)f(t1) ,

coinciding with f in the region of interest. 5 This satis�es a similar equation

(i∂t1 − ε)F (t1)−
∫ ∞
−∞

dt3Σ̃r(t1 − t3)F (t3) = iδ(t1)f0 + h(t1) . (31)

The crucial point is that now the integral extends from −∞ to ∞, so this is

a true convolution with the function Σ̃r(t1− t3) =
¯̃
Σr(t1− t3) which is trans-

lation invariant. So this can can be solved by Fourier transform. Formally,
we write (31), see also (14), as

(g−1
r −

¯̃
Σr) ◦ F = Ḡ−1

r ◦ F = iIf0 + h ⇒ F = iḠrf0 + Ḡr ◦ h . (32)

So in real time (32) has the simple solution

F (t) = i Gr(t, 0) f0 +

∫ ∞
0

dt3 Gr(t− t3, 0)h(t3) (33)

where, since all the involved times are > 0, we replaced Ḡr(t)→ Gr(t, 0).

5This procedure is similar in spirit to the Laplace transform.
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