
Summary Sec. 1.4:

The concept of quasiparticles

From Sec. 1.2.1: Remember the Fourier coefficient of the
non-interacting Green’s function:

G0(k, ω) =
Θ(k − kF )

ω − ω0
k

+ iη
+

Θ(kF − k)

ω − ω0
k
− iη

.

Starting from this, one can prove the following statement:

The singularities of G(k, ω) determine the energies and the decay
rates (= lifetimes) of the corresponding electron states.

In case of G0(k, ω), one gets
[

G0(k, ω)
]−1

= ω − ω0
k

+ iη sign(k − kF ) = 0 .

Here, the limitation η → 0 is trivial, and one obtains

ω = ω0
k

→ h̄ω = ǫ0
k

=
h̄2k2

2m
.

[

G0(k, ω)
]−1

leads to the ǫ(k) dispersion of a free particle.

In case of an interacting electron, the Green’s function looks like

G(k, ω) =
1

[G0(k, ω)]−1 − Σpr(k, ω)
,

giving the singularity condition
[

G0(k, ω)
]−1

− Σpr(k, ω)
!
= 0 → ω − ω0

k
− Σpr(k, ω)

!
= 0 .

Taking into account that the solutions of the above equation will
generally lie on the complex ω plane (ω = ν − iγ), one obtains

ν − iγ − ω0
k
− Σpr(k, ω = ν − iγ)

!
= 0 .

”Experience teaches us” that - in most cases - the zeros lie close
to the real ω axis, i.e.

|γ| << |ν| ,

and the selfenergy function can be linearly Taylor-expanded:

ν − iγ − ω0
k
− Σpr(k, ν) + i

∂Σpr

∂ω
|ν γ = 0
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With Σ = ℜΣ + iℑΣ, one gets

ν − iγ − ω0
k
− Σpr(k, ν) +

∂Σpr

∂ω
|ν iγ = 0 ,

and a separation of this equation in its real and imaginary part
yields

ν − ω0
k
−ℜΣpr(k, ν) −

∂ℑΣpr

∂ω
|ν γ

!= 0

and

γ + ℑΣpr(k, ν) −
∂ℜΣpr

∂ω
|ν γ

!= 0 .

Taking into account only the leading terms (written in red), one
obtains the following important results:

• The real part of the proper selfenergy function Σpr describes
the ǫ(k) dispersion of an interacting electron (the energy
states of quasiparticles):

ǫk = h̄νk =
h̄2

2m
k2 + h̄ℜΣpr(k, νk) ≈

h̄2

2m
k2+h̄ℜΣpr(k,

h̄k2

2m
) .

Generally, this equation can only be solved iteratively. How-
ever, in many cases, it might be sufficient to perform only
the first iteration step.

• The (negative of the) imaginary part of the proper self-
energy function Σpr describes the decay constant (= the
inverse lifetime) of the corresponding quasiparticle state:

γk =
1

τk

= −ℑΣpr(k, νk) .
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The quasiparticle condition:

According to Heisenberg’s uncertainty condition, the finite life-
time τ of a particle causes an uncertainty of its energy ∆ǫ such
that

τ ∆ǫ ≥ h̄ .

Therefore, for a precise measurement of the energy difference
between the excited electron state and the Fermi energy ǫk− ǫF ,
the condition

∆ǫ << ǫk − ǫF

must be fulfilled.

Combining the last two equations, one gets the quasiparticle
condition

h̄

τk

<< |ǫk − ǫF | .

A discussion of the simplest selfenergy function:

A numerical evaluation of the ”simplest” approximation of the
selfenergy function [Eq. (1.37) in my lecture notes]

h̄Σpr(c)(k) =
i

(2π)4

∫

d4q V (q) ei(ω−ω1)η G0(k − q)

leads to the result (see appendix 2):

Σpr(c) (k, ω) = −
e2

2π2h̄

∫

|k′|≤kF

d3k′

|k − k′|2
.

The calculation of this integral is elementary and one gets

Σpr(c) (k, ω) = Σpr(c)(k) = −
e2kF

2πh̄



2 +
k2

F − k2

kkF
ln |

kF + k

kF − k
|



 .

This approximation of the selfenergy is obviously
real and not dependent on ω.
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The consequences:

• The ǫ(c)(k) dispersion reads precisely

ǫk =
h̄2k2

2m
−

e2kF

2π



2 +
k2

F − k2

kkF
ln |

kF + k

kF − k
|



 ,

and we learn ”from earlier lectures” (...) that this result
is exactly the energy dispersion of electrons including the
Fock or exchange term.

• The lifetime of these ”quasiparticle states” is infinite:

τk = ∞ .

The deviation of the energy function from the free-electron parabola
is due to exchange interactions inside the Fermi sphere. In fact,
no electrons are scattered out, and no quasiparticles outside and
holes inside the Fermi sphere with finite lifetimes are created.

The calculation of the electronic selfenergy by means of Feyn-
man diagrams of first order with respect to the Coulomb poten-
tial is equivalent to the (Hartree-)Fock ansatz.

Especially, for the homogeneous electron gas, one has

. (1)

and

Is this the most complete Hartree-Fock representation

a la Feynman?
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A more careful investigation, especially in connection with inho-
mogeneous electron gases, shows that a more realistic diagram-
matic solution of the Hartree-Fock gas looks like

(In fact, you will easily find the last graph above in the list of
diagrams given on page 12 of my lecture notes.)

Obviously, the HF proper selfenergy insertion is enlarged as
shown in the following:

. (2)

The problem is now: is the solution (2) better than the ”old”
solution (1)?

This is hard to believe because - as it already has been shown -
the solution (1) leads exactly to the correct Hartree-Fock energy
dispersion of the homogeneous electron gas.

The problem’s solution: For jellium - and only for jellium,
the additional terms of the selfenergy (2) do not contribute, and
one has
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