The One-particle Green's function of an ElectronSummary

The wavefunction of the ground state of a system consisting of N interacting electrons \rightarrow a complicated function of N coordinates in the real and spin space:

$$
\Psi_{0}^{(N)}=\Psi_{0}\left(x_{1}, x_{2}, \ldots, x_{N}\right) \quad \text { with } \quad x_{i}=\left(\mathbf{r}_{i} ; \chi_{i}\right)
$$

Application of field operators $\hat{\psi}(\mathbf{r})$ or $\hat{\psi}^{\dagger}(\mathbf{r})$ annihilates or creates an electron with spin α at the point \mathbf{r}, respectively:

$$
\hat{\psi}_{\alpha}(\mathbf{r}) \Psi_{0}^{(N)} \rightarrow \Psi^{(N-1)} \quad \text { bzw. } \quad \hat{\psi}_{\alpha}^{\dagger}(\mathbf{r}) \Psi_{0}^{(N)} \rightarrow \Psi^{(N+1)} .
$$

A transformation of this problem from the real space representation ("first quantization") into the so-called particle number representation ("second quantization"):

$$
\Psi_{0}^{(N)}=\mid n_{1}, n_{2}, \ldots, n_{j}, \ldots, n_{\infty}>\quad \text { mit } \quad \sum_{i=1}^{\infty} n_{i}=N
$$

with $n_{i}=0$ or 1 (according to Pauli's principle).
Application of the c operators \hat{c}_{j} or \hat{c}_{j}^{\dagger} annihilates or creates the electronic single-particle quantum state $\mid j>$:

$$
\hat{c}_{j}\left|\Psi_{0}^{(N)}>=\left|\Psi^{(N-1)}>\propto\right| n_{1}, n_{2}, \ldots, n_{j}-1, \ldots, n_{\infty}\right\rangle
$$

or

$$
\hat{c}_{j}^{\dagger}\left|\Psi_{0}^{(N)}>=\left|\Psi^{(N+1)}>\propto\right| n_{1}, n_{2}, \ldots, n_{j}+1, \ldots, n_{\infty}>.\right.
$$

A connection between the field operators and the \hat{c} operators by the use of the one-particle basis $\psi_{i}(x)$ is given by

$$
\hat{\psi}_{\alpha}(\mathbf{r})=\sum_{i} \psi_{i}(x) \hat{c}_{i} \quad \text { bzw. } \quad \hat{\psi}_{\alpha}^{\dagger}(\mathbf{r})=\sum_{i} \psi_{i}^{*}(x) \hat{c}_{i}^{\dagger} .
$$

Definition of a one-particle Green's function for an interacting system of electrons (see Eq. (1.1)):

$$
i G_{\alpha, \beta}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)=<\Psi_{0}^{(N)}\left|\hat{T}\left[\hat{\psi}_{H \alpha}(\mathbf{r} t) \hat{\psi}_{H \beta}^{\dagger}\left(\mathbf{r}^{\prime} t^{\prime}\right)\right]\right| \Psi_{0}^{(N)}>
$$

\hat{T} means the time-ordening operator which guarantees that the time arguments in this equation fulfill the condition $t>t^{\prime}$. In case of $t<t^{\prime}$, this operator causes a commutation of the both field operators, leading (in case of electrons) to a negative sign of the matrix element.
The " H " in the field operators means that they are used in the Heisenberg representation instead of the Schrödinger representation.

For $t>t^{\prime}$ one gets

$$
i G_{\alpha, \beta}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)=\left(<\Psi_{0}^{(N)} \mid \hat{\psi}_{H \alpha}(\mathbf{r} t)\right)\left(\hat{\psi}_{H \beta}^{\dagger}\left(\mathbf{r}^{\prime} t^{\prime}\right) \mid \Psi_{0}^{(N)}>\right)
$$

and, further,

$$
i G_{\alpha, \beta}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)=\underbrace{\left(\hat{\psi}_{H \alpha}^{\dagger}(\mathbf{r} t) \mid \Psi_{0}^{(N)}>\right)^{\dagger}}_{\left[\Psi_{\alpha}^{(N+1)}(\mathbf{r} t)\right]^{*}} \underbrace{\left(\hat{\psi}_{H \beta}^{\dagger}\left(\mathbf{r}^{\prime} t^{\prime}\right) \mid \Psi_{0}^{(N)}>\right)}_{\Psi_{\beta}^{(N+1)}\left(\mathbf{r}^{\prime} t^{\prime}\right)}
$$

Interpretation of a Green's function:

The Green's function describes the overlap between a multiparticle function of ($N+1$) electrons, when the additional electron at $\left(\beta \mathbf{r}^{\prime} t^{\prime}\right)$ has propagated to $(\alpha \mathbf{r} t)$,
or, alternatively,
the Green's function gives the probability that an electron of spin β which has been at \mathbf{r}^{\prime} at time t^{\prime} appears with spin α at the position \mathbf{r} at the later time t.

What is such a Green's function good for?
As it shall be evident in the following, a Green's function leads us (directly or indirectly) to a great number of - partly measurable! - informations about the physics of electrons in an electron gas.

How do we calculate a Green's function?
In case of a system of mutually interacting electrons, the Green's function $G_{\alpha, \beta}$ cannot be written down by a compact formula, but it can - in principle - be obtained with high accuracy by the use of perturbation theory.

Starting points of a perturbation expansion:

(1) an operator \hat{H}_{1} that describes the interaction,
(2) the non-interacting Green's function $G_{\alpha, \beta}^{0}$.

Some details of this perturbation expansion are described in Sec. 1.2.1 of this textbook. The formal connection between the interacting and the non-interacting Green's functions G and G_{0} reads as

$$
\begin{aligned}
& i G_{\alpha, \beta}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)=<\Psi_{0}^{(N)}\left|\hat{T}\left[\hat{\psi}_{H \alpha}(\mathbf{r} t) \hat{\psi}_{H \beta}^{\dagger}\left(\mathbf{r}^{\prime} t^{\prime}\right)\right]\right| \Psi_{0}^{(N)}>. \\
& i G^{0}{ }_{\alpha, \beta}\left(\mathbf{r} t, \mathbf{r}^{\prime} t^{\prime}\right)=<\Phi_{0}^{(N)}\left|\hat{T}\left[\hat{\psi}_{I \alpha}(\mathbf{r} t) \hat{\psi}_{I \beta}^{\dagger}\left(\mathbf{r}^{\prime} t^{\prime}\right)\right]\right| \Phi_{0}^{(N)}>.
\end{aligned}
$$

In the last expression, $\Phi_{0}^{(N)}$ means the ground-state wave function of a system of N non-interacting electrons, and $\hat{\psi}_{I}$ indicates that the field operators have to be taken in the interaction representation [compare with Eqs. (1.10) and (1.11) in this textbook].

