Appendix 1:

The calculation of integrals using Cauchy's formula

Lit.: S. Flügge, Mathematische Methoden der Physik I, SpringerVerlag, Heidelberg, 1979, S. 1ff.

The basis of all following statements is Cauchy's formula

$$
\begin{equation*}
\oint_{C} d z f(z)=0 . \tag{1}
\end{equation*}
$$

f is a complex function of the complex argument z, and the integration is performed on the closed loop C (in anti-clockwise direction):

The above simple form of Cauchy's formula is only valid if the function f has no sigularities within C and on the boundary of C .

What happens if $f(z)$ does have such a singularity (a pole of $n^{\text {th }}$ order) within C?
In this case, the integrand can be written as

$$
f(z)=\frac{F(z)}{\left(z-z_{0}\right)^{n}} \quad(n=1,2, \ldots)
$$

where $F(z)$ means an analytical function.
A possibility to attack the problem is to deform the closed path C according to the following diagram:
$\operatorname{Im}(z)$

C is now a sum of four elements:

$$
C=C^{\prime}+A+K+A^{\prime}
$$

Obviously, the contributions to the path integral along A and A^{\prime} cancel, and one gets (note the contrary directions of C^{\prime} and K)

$$
\int_{C^{\prime}} d z \frac{F(z)}{\left(z-z_{0}\right)^{n}}=-\int_{K} d z \frac{F(z)}{\left(z-z_{0}\right)^{n}} .
$$

Defining polar coordinates for the circle K with center at z_{0} and radius r, namely

$$
z=z_{0}+r \mathrm{e}^{i \varphi} \quad \text { and } \quad d z=i \mathrm{re}^{i \varphi} d \varphi
$$

one obtains

$$
\int_{K} d z \frac{F(z)}{\left(z-z_{0}\right)^{n}}=-i r \int_{\varphi=0}^{2 \pi} d \varphi \mathrm{e}^{i \varphi} \frac{F(z)}{r^{n} \mathrm{e}^{i n \varphi}} .
$$

Due to the regularity of $F(z)$ at $z=z_{0}$, this function can be Taylor-expanded as

$$
F(z)=\sum_{k=0}^{\infty} \frac{F^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k}=\sum_{k=0}^{\infty} \frac{F^{(k)}\left(z_{0}\right)}{k!} r^{k} \mathrm{e}^{i k \varphi} .
$$

A combination of the last three equations leads to
$\int_{C^{\prime}} d z \frac{F(z)}{\left(z-z_{0}\right)^{n}}=i \sum_{k=0}^{\infty} \frac{F^{(k)}\left(z_{0}\right)}{k!} r^{k-n+1} \underbrace{\int_{0}^{2 \pi} d \varphi \mathrm{e}^{i(k-n+1) \varphi}}_{=2 \pi \delta_{k, n-1}}=2 \pi i \frac{F^{(n-1)}\left(z_{0}\right)}{(n-1)!}$.

We call this Cauchy's formula or Cauchy's residua statement, because

$$
\operatorname{Res}_{f}\left(z_{0}\right) \equiv \frac{F^{(n-1)}\left(z_{0}\right)}{(n-1)!}
$$

means the residuum of the function $f(z)$ for the pole of $n^{\text {th }}$ order at z_{0}.

According to the last diagram, Eq. (1) can be generalized as follows: the integral of $f(z)$ with respect to a closed loop C on the z plane (direction $=$ anti-clockwise) is given by

$$
\begin{equation*}
\oint_{C} d z f(z)=2 \pi i \sum_{j} \operatorname{Res}_{f}\left(z_{j}\right), \tag{2}
\end{equation*}
$$

what means that the integral is only determined by the sum of the residua at the poles at z_{1}, z_{2}, \ldots :

In Solid State Physics, formula (2) is frequently used for the evaluation of integrals like

$$
I(t)=\int_{-\infty}^{+\infty} d \omega \frac{F(\omega) \mathrm{e}^{i \omega t}}{\left(\omega-\omega_{0}\right)^{n}} \quad n=1,2, \ldots
$$

where ω_{0} means a real number, i.e., the singularity lies on the real ω axis.

In such a situation, the best way to choose an integration path on the complex ω plane is one of the following ones:

The integration from $\omega=-\infty$ to $+\infty$ can be realized by drawing a semicircle of radius R either on the upper or the lower half plane (UHP or LHP), including the limit $R \rightarrow \infty$. By doing so, one gets in case of an integration over the UHP ${ }^{1}$

$$
\int_{C} d \omega f(\omega)=\int_{-\infty}^{+\infty} d \omega f(\omega)+\int_{U H C} d \omega f(\omega)=2 \pi i \operatorname{Res}_{f}\left(\omega_{0}\right)
$$

and over the LHP

$$
\int_{C} d \omega f(\omega)=-\int_{-\infty}^{+\infty} d \omega f(\omega)+\int_{L H C} d \omega f(\omega)=2 \pi i \operatorname{Res}_{f}\left(\omega_{0}\right) .
$$

One further obtains

$$
\int_{-\infty}^{+\infty} d \omega f(\omega)=-\int_{U H C} d \omega f(\omega)+2 \pi i \operatorname{Res}_{f}\left(\omega_{0}\right)
$$

or

$$
\int_{-\infty}^{+\infty} d \omega f(\omega)=\int_{L H C} d \omega f(\omega)-2 \pi i \operatorname{Res}_{f}\left(\omega_{0}\right) .
$$

Now, what's about the semicircle integrals concerning the function to be integrated?

$$
f(\omega)=\frac{F(\omega) \mathrm{e}^{i \omega t}}{\left(\omega-\omega_{0}\right)^{n}}
$$

[^0]By using the transformation $\omega=R \mathrm{e}^{i \varphi}$, one gets for the integral over the UHC

$$
i R \int_{0}^{\pi} d \varphi \frac{F\left(R \mathrm{e}^{i \varphi}\right)}{\left(R \mathrm{e}^{i \varphi}-\omega_{0}\right)^{n}} \mathrm{e}^{i t R \cos \varphi} \mathrm{e}^{-t R \sin \varphi}
$$

or for the integral over the LHC

$$
i R \int_{0}^{\pi} d \varphi \frac{F\left(-R \mathrm{e}^{i \varphi}\right)}{\left(-R \mathrm{e}^{i \varphi}-\omega_{0}\right)^{n}} \mathrm{e}^{-i t R \cos \varphi} \mathrm{e}^{+t R \sin \varphi}
$$

What concerns the limits of these integrals for $R \rightarrow \infty$, one yields for an integration over the upper (lower) half-plane

$$
\lim _{R \rightarrow \infty} \int_{0}^{\pi} d \varphi \ldots \frac{\mathrm{e}^{-t R \sin \varphi}}{R^{n-1}} \quad \text { or } \quad \lim _{R \rightarrow \infty} \int_{0}^{\pi} d \varphi \ldots \frac{\mathrm{e}^{+t R \sin \varphi}}{R^{n-1}}
$$

The consequences of this behavior are as follows:

- In case of a pole of first order ($n=1$):
- For $t>0$: the integral over the half circle is zero (∞) if the integration is performed over the UHP (LHP): For $t>0$, the integration has to be done over the UHP.
- For $t<0$: the integral over the half circle is zero (∞) if the integration is performed over the LHP (UHP): For $t<0$, the integration has to be done over the LHP.

This rule called Jordan's lemma is of great importance for practical calculations.

- In case of a pole of higher order $(n>1)$:

In that case, the integral goes to zero for any t, without taking into account over which half plane the integration is performed.
If the above rules are obeyed, all "half-plane integrals" disappear and one gets for $t>0$

$$
\int_{-\infty}^{+\infty} d \omega \frac{F(\omega) \mathrm{e}^{i \omega t}}{\left(\omega-\omega_{0}\right)^{n}}=+2 \pi i \operatorname{Res}\left[\frac{F(\omega) \mathrm{e}^{i \omega t}}{\left(\omega-\omega_{0}\right)^{n}}\right]\left(\omega_{0}\right)
$$

and for $t<0$

$$
\int_{-\infty}^{+\infty} d \omega \frac{F(\omega) \mathrm{e}^{i \omega t}}{\left(\omega-\omega_{0}\right)^{n}}=-2 \pi i \operatorname{Res}\left[\frac{F(\omega) \mathrm{e}^{i \omega t}}{\left(\omega-\omega_{0}\right)^{n}}\right]\left(\omega_{0}\right)
$$

A last problem is still open: it is technically disadvantageous if the singularity lies exactly on the real ω axis. For this reason, this pole is shifted into the UHP (LHP) by the factor $+(-)$ i (with η as a real positive number $\ll 1$):

After the integration, the limit $\eta \rightarrow 0$ has to be performed:

$$
I(t)=\lim _{\eta \rightarrow 0} \int_{-\infty}^{+\infty} d \omega \frac{F(\omega) \mathrm{e}^{i \omega t}}{\left(\omega-\omega_{0} \mp i \eta\right)^{n}}
$$

Finally, the application of Cauchy's formula is demonstrated in connection to the integral representation of the Heaviside step function (see Sec. 1.2.1 on the non-interacting Green's function):

$$
\Theta(\tau)=-\int_{-\infty}^{+\infty} \frac{d \omega}{2 \pi i} \quad \frac{\mathrm{e}^{-i \omega \tau}}{\omega+i \eta}
$$

Obviously, the singularity lies at $\omega=-i \eta$, i.e., within the LHP. For this pole is of first order, Jordan's Lemma has to be obeyed.

- Evaluation of the integral for $\tau>0$: the integration has to be performed over the LHP, and the residuum of the integrand

$$
f(\omega)=-\frac{1}{2 \pi i} \quad \frac{\mathrm{e}^{-i \omega \tau}}{\omega+i \eta}
$$

reads

$$
\lim _{\eta \rightarrow 0}\left[-\frac{1}{2 \pi i} \quad \mathrm{e}^{-\eta \tau}\right]=-\frac{1}{2 \pi i}
$$

Consequently, the integral has the value $\Theta(\tau>0)=1$.

- Evaluation of the integral for $\tau<0$: the integration has to be performed over the UHP, and in this region,there is no singularity at all. Consequently, the integral has the value $\Theta(\tau<0)=0$.

[^0]: ${ }^{1}$ UHC means "upper half-circle", LHC means "lower half-circle".

