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IMPORTANT FORMULAS |

-

o (Fo‘F';lectrons; note how each formula scales with mass and charge.)

4mne? \172 —
Plasma Frequency: w,(s™') = ( p ) = 27 9000/ n(cm™3)

e

T 1/2 _ . .

Debye Length: A, (cm) = ( y ,;’ez ) = 740/ T (eV)/n{cm™3) The purpose of this book is to teach the basic theoretical principles of plasma

™ physics. It is not intended to be an encyclopedia of results and techniques. Nor is it

i : B L intended to be used primarily as a reference book. It is intended to develop the
e :

) -1y — = 7 B(Gauss basic techniques of plasma physics from the beginning, namely, from Maxwell's
Gyroirequency: [(,|(s™") 2 X 1078 ) "3 equations and Newton’s law of motion. Absolutely no previous knowledge of
plasma physics is assumed. Although the book is primarily intended for a one year .
course at the first or second year graduate level, it can also be used for a one or
two semester course at the junior or senjor undergraduate level. Such an under-
graduate course would make use of that half of the book which assumes a knowl-

: edge only of undergraduate electricity and magnetism. The other half of the book,
‘Thermal Speed: ve(cm/s) = (7'9/I7’19)1/2 =4 X 107 Te‘/z(eV) suitable for fhe graduate lew{gl, requires fam'iliarity with complex variables, Fourier

transformation, and the Dirac delta function.

The book is organized in a logical fashion. Although this is not the standard
organization of an introductory course in plasma physics, 1 have found that
students at the graduate level respond well to this organization. After the intro-
ductory material of Chapters 1 and 2 (single particle motion), the exact theories of
Chapters 3 to 5 (Klimontovich and Liouville equations), which are equivalent to
Maxwell’s equations plus Newton’s law of motion, are replaced via approxima-
tions by the Vlasov equation of Chapter 6. Further approximations lead to the

: fluid theory (Chapter 7) and magnetohydrodynamic theory (Chapter 8). The book
“concludes with two chapters on discrete particle effects (Chapter 9) and weak
turbulence theory (Chapter 10). Chapter 6, and Chapters 7 and 8, are meant to be
self-contained, so that the book can easily be used by instructors who wish the
standard organization. Thus, the introductory material of Chapters 1 and 2 can be
immediately followed by Chapters 7 and 8. This would be enough material for a

myc

Plasma Parameter: A = nA 2 = 4 X 108 T,¥?(eV)/n'2(cm™3)

Speed: v(cm/s) = (2E/m )2 = 6 X 107 E'2(eV)

Gyroradius: rolem) = v, /0 = 3E,"2(eV)/B(Gauss)

vii




viii Preface

one semester undergraduate course, while the first half of a two semester graduate
course could continue with Chapter 6 on Viasov theory, followed in the second
semester by Chapters 3 to 5 on kinetic theory and then by Chapters 9 and 10.

It is a pleasure to acknowledge the help of many individuals in writing this
book. My views on plasma physics have been shaped over the years by dozens of
plasma physicists, especially Allan N. Kaufman and Martin V. Goldman. The
students in graduate plasma physics courses at the University of Colorado and the
University of lowa have contributed many useful suggestions (Sun Guo-Zheng
deserves special mention). The manuscript was professionally typed and edited by
Alice Conwell Shank, Gail Maxwell, Susan D. Imhoff, and Janet R. Kephart. The
figures were skitlfully drafted by John R. Birkbeck, Jr. and Jeana K. Wonderlich.
The preparation of this book was supported by the University of Colorado, the
University of Towa, the United States Department of Energy, the United States
National Aeronautics and Space Administration, and the United States National

Science Foundation.

Dwight R. Nicholson
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CHAPTER

Introduction

1.1 INTRODUCTION

A plasma is a gas of charged particles, in whlch the potentlal energy of a typical
particle due to its nearest neighbor is much smaller than its kinetic energy. The
plasma state is the fourth state of matter: heating a solld makes a liquid, heating a
liquid makes a gas, heating a gas makes a plasma (Compare the ancient Greeks’
earth, water, air, and fire.) The word plasma comes from the Greek pldsma,
meaning “‘something formed or molded.” It was mtroduced to describe ionized
gases by Tonks and Langmuir [1]. More than 99% of the known univesse is in the
plasma state. (Note that our definition excludes certam configurations such as the
electron gas in a metal and so-called “strongly coupled” plasmas which are found,
for example, near the surface of the sun. These.née be treated by techmques
other than those found in this book.)

In this book, we shall always consider plasma hav ng roughly equal numbers of
singly charged ions (+e) and electrons (—e), each w1th average density n, (particles
per cubic centimeter). In nature many plasmas: have more than two species of
charged particles, and many ions have more than one electron missing. It is easy to
generalize the results of this book to such plasmas

EXERCISE Name a well-known proposed source of energy that mvolves plasma
with more than one species of ion. =

12 DEBYE SHIELDING

In a plasma we have many charged particles flying éro_llnd at high speeds. Consider
a special test particle of charge ¢, > 0 and infinite ‘mass, located at the origin of a
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.three—dimeﬁéiohval coordinate system containing an infinite, uniform plasma. The

test charge repels all other ions, and attracts all electrops. Thus, around our t.est
charge the electron density n, increases and the ion density decrgases. The test ion
gathers a shielding cloud that tends to cancel its own chafge (Fig. 1.1). .

Consider Poisson’s equation relating the electric potential ¢ to the charge densi-
ty p due to electrons, ions, and test charge,

Vi = —4mp = 4me(n, — n;) — 4mwqr &(r) (LD

where 8(r) = 8(x)8(y)8(2) is the product of three Dirac de‘lt.a functions. After the
introduction of the test charge, we wait for a long enough.tlme that the electrons
with temperature 7, have come to thermal equilibrium .wnh t‘hemselves, and the
ions with temperature T, have come to thermal equilibrium Wlt.h- th'emsel\'/es, but
not so long that the electrons and ions have come to therma! ¢-3qu.|llbnum‘ W.lth each
other at the same temperature (see Section 1.6). Then equilibrium statistical me-
chanics predicts that

—ep
n, = ny exp (T ), n; = ng exp ("i“) (1.2)

where each density becomes n, at large distances from the test charge where the
potential vanishes. Boltzmann’s constant is absorbed int.o the temperatures T, and
T,, which have units of energy and are measured in units of electron-volts. (eV).

Assuming that e@/T, << 1ande¢/T; << 1, we expand the exponents in (1.2)
and write (1.1) away fromr = 0 as

Vi, = __15__9_.( Zd—‘p) = dnge? (

1 1 )
+ (1.3)
~ar\"ar T, T; ¢

+e

Fig. 1.1 A test charge in a plasma attracts particles of opposite sign and repels particles of
like sign, thus forming a shielding cloud that tends to cancel its charge.
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If we define the electron and ion Debye lengths

T 172
A= (W) : (1.4)
and the total Debye length . o
Ap2= A2 4 N2 (1.5)
Eq. (1.3) then becomes , ‘
) 1 df,dey  _ '
Toalw) = re - a9
Trying a solution of the form ¢ = @/r, we find
23 . ,
ol Apl ‘ (}1-"7)

The solution that falls off properly at large distances is @ < exp (—r/\p). From
elementary electricity and magnetism we know that the solution to (1.1) at loca-

tions very close tor = 0 is ¢ = q:/r; thus, the desired solution to (L.1) at all
distances is ’ '

= 91 - L
v == exp(Ap) (1.8)

The potential due to a test charge in a plasma falls off much faster than in vacuum.
This phenomenon is known as Debye shielding, and is our first example of plasma
collective behavior. For distances r >> the Debye length A, the shielding cloud
effectively cancels the test charge gr- Numerically, the Debye length of species s
with temperature T is roughly A, =~ 740[T «(eV)/n(cm™)]'2 in units of cm.

EXERCISE Prove that the net charge in the Sﬁiclding cloud exactly cancels the
test charge g;. S . ;

It is not necessary that ¢, be a special particle. In fact, each particle in a plasma
tries to gather its own shielding cloud. However, since the particles are moving,
they are not completely successful. In an equal temperature plasma (T, = T), a
typical slowly moving ion has the full electron cémponent of its shielding cloud
and a part of the ion component, while a typical rapidly moving electron has a

part of the electron component of its shielding cloud and almost none of the ion
component, RS R ‘

13 PLASMA PARAMETER
In a plasma where each species has density no;' t:h:t:?»d‘ist'énce between a barticle and
its nearest neighbor is roughly n,"'2. The average potential energy @ of a particle
due to its nearest neighbor is, in absolute value,” =~

e PRI
: [®] ~ = ~n'P e - (1.9
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Our definition of a plasma requires that this potential energy be much less than the
typical particle’s kinetic energy

3 3 '
Tompey = 3 T = 5w}
where n1, is the mass of species 5, ( ) means an average over all particle velocities
at a given point in space, and we have defined the thermal speed v, of species s by

172
v, = (Ts ) (1.11)
5 ms
For electrons, v, =~ 4 X 107 T,12 (eV) in units of cm/s. Our definition of a
plasma requires

(1.10)

n' e << T, ©(1.12)

or

/> (nTse2 ) S>> 1 1)

0

- Raising Eac‘h—'side of (1.13) to the 3/2 power, and recalling the definition (1.4) of

the Debye length, we have (dropping factors of 4, etc.)

A, = n\} >> 1 (1.14)

where A is called the plasma parameter of species s. (Note: Some authors call A
the plasma parameter.) The plasma parameter is just the number of particles of
‘species 5 in a box each side of which has length the Debye length (a Debye cube).
Equation (1.14) tells us that, by definition, a plasma is an ionized gas that has

many particles in a Debye cube. Numerically, A, = 4 X 108 TX(eV)/n,'(cm™)."

We will often substitute the total Debye length X, in (1.14), and define the result
A = ny \p’ to be the plasma parameter.

EXERCISE Evaluate the electron thermal speed, electron Debye length, and

electron plasma parameter for the following plasmas.

(a) A tokamak or mirror machine with T, = 1 keV, n, = 10> cm™.

(b) The solar wind near the earth with T, =~ 10 eV, n, = 10 cm™,

(c) The ionosphere at 300 km above the earth’s surface with T, = 0.1 eV,
ny = 10% cm™, .

(d) A laser fusion, electron beam fusion, or ion beam fusion plasma with
T, = 1 keV, ny = 10®° em™.

(e) The sun’s center with T, = 1 keV, n, = 102 cm™.

It is fairly easy to see why many ionized gases found in nature are indeed plasmas.

If the potential energy of a particle due to its nearest neighbor were greater than its

kinetic energy, then there would be a strong tendency for electrons and ions to
bind together into atoms, thus destroying the plasma. The need to keep ions and
electrons from forming bound states means that most plasmas have temperatures
in excess of one electron-volt.

" Plasma Frequen_c"y 5

EXERCISE The temperature of intergalactic plasma is currently unknown, but
it could well be much lower than 1 eV. How could the plasma mamtam itself at
such a low temperature? (Hint: n, =~ 107 cm") £

Of course, it is possible to find situations where a plasma exists _|0mtly w:th'
another state. For.example, in the lower ionosphere there are regions where 99%
of the atoms are neutral and only 1% are ionized. In this partially ionized plasma,
the ionized component can be a legitimate plasma according to (1.14), where A,
should be calculated using only the parameters of the ionized component. Typical-
ly, there-will be a continuous exchange of particles between the unionized gas and
the ionized plasma, through the processes of atomnc recombmatlon and ioniza-
tion. :

We can now evaluate the validity of the assumptlon made before (1. 3), that
e@/T, << 1. This assumption is most severe for the nearest neighbor to the test
charge (which we now take to have charge qr = +e) Usmg the unshlelded form of -
the potential, we require j

()~ £ bt )«1 Cam
or L
n'tet <K T, <7 (116)

which is jUSt the condition (1.12) reqmred by the defmmon of a plasma. Thus, our
derivation of Debye shielding is correct for any ionized gas that.is indeed a
plasma. : .

1.4 PLASMA FREQUENCY

Consider a hypothetical slab of plasma of thickness L, where for the present we
consider the ions to have infinite mass, but equal density n, and opposite charge to
the electrons while the electrons are held rigidly in place with respect to each other,
but can move freely through the ions. Suppose the electron slab is displaced a
distance 8 to the right of the ion slab and then allowed to move freely (an 1.2).
What happens? RUPEE i‘=

An electric field will be set up, causing the electron slab to be pulled back
toward the ions. When the electrons exactly overlap the ions, the net force is zero,
but the electron slab has substantial speed to the léft. Thus, the electron slab
overshoots, and the net result is harmonic oscillation. The frequency of the oscilla-
tion is called the electron plasma frequency. It depends only on the electron densi-
ty, the electron charge and the electron mass: Let s calculate it.

; : G
where E is the electric field. Referring to Fig' 1.3, wcy take the boundar); condition
E(x = 0) = 0, and assume throughout that § << L From(l 17) the electri¢ field
over most of the slab is 47nye8, and the force per unit area on the electron slab is

(electric field) X (charge per unit area) or “~4mn, 2¢25].. Newton’s second law is
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Fig. 1.2 Plasma slab model used to calculate the plasma frequency.

(force per unit area) = (mass per unit area) X (acceleration), or

(—4nng%e*8L) = (ngm L)9) (1.18)
where an overdot is a time derivative. Equation (1.18) is in the standard form of a
harmonic oscillator equation,

3+ (171’;1”_0‘51) 6=0 (1.19)

(4

with characteristic frequency

(1.20)

2

_ (Amnee® |12
=~

which is called the electron plasma frequency. Numerically, », = 2w X 9000 n,'?
(cm™) in units of s\,

EXERCISE Calculate the electron plasma frequency w, and w,/2m (e.g., in MHz
and kHz) for the five plasmas in the exercise below (1.14).

By analogy with the electron plasma frequency (1.20) we define the ion plasma
frequency o; for a general ion species with density #; and ion charge Ze as

F2,21\1/2
.= (M) 1.21)
m;
The total plasma frequency w, for a two-component plasma is defined as
- w,,2 = @ + o (1.22)

i Other Paramelers 7
px)
noe s
L L+§ .
X
0 & :
(a) .
E(x)
dmeny &
| |
o 3 LT L s e

b)

Fig. 1.3 Calculation of the electron plasma frequency (a) Charge density. (b) ‘Electric
field. . .

(See Problem 1.3.) For most plasmas in nature w, >> w;, 50 w,? = w2 We will
see in a later chapter that the general response of an unmagnetlzed plasma to a
perturbation in the electron density is a set- of oscnllatnons with frequenaes very
close to the electron plasma frequency w,. S

The relation among the Debye length )\,, the plasma frequency w,, and the
thermal speed v, for the species s, is e

(1.23)

A, = v;Yri); :

EXERCISE Demonstrate (1.23).

15 OTHER PARAMETERS

Many of the plasmas in nature and in the’labératdry occur in the presence of
magnetic fields. Thus, it is important to consider the motion of an individual
charged particle in a magnetic field. The Lorentz force equation for a particle of
charge ¢, and mass m, moving in a constant magnetic field B = B2 is

ms-.

(1.24)

For initial conditions r(r = 0) = (xo,yo,zo) and r(t 0) = (0, v;,v,) the solu-
tion of (1.24) is

) vJ_ i »5 5:2.“.' .
x(t) = xq +~—5—,(l = cos (1,1)
. s . T ! .

v, .
1=y, +
) = yo 0. ‘
z(1) = 2z + v;t (1.25)
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where we have defined the gyrofrequency

(1.26)

EXERCISE Verify that (1.25) is the solution of (1.24) with the desired initial condi-
tions.

Numerically, }, = — 2 X 107 B, (gauss, abbreviated G) in units of s™, and Q; =
10* B, (gauss) in units of s if the ions are protons.

The nature of the motion (1.25) is a constant velocity in the Z-direction, and a
circular gyration in the x-y plane with angular frequency {{}| and center at the
guiding center position r, given by

fee = (xp + v, /0, Yo, 2o + v.h) (1.27)
The radius of the circle in the x-y plane is the gyroradius v, /|(,|. The mean
gyroradius r, of species s is defined by setting v, equal to the thermal speed, so

re = v/ (1.28)

EXERCISE In the exercise below (1.14), calculate and order the frequencies w,,
w, |1, Q; also calculate the gyroradii r, and r; take T; = T, and use the
following parameters.

(a) Protons, B, = 10 kG.

(b) Protons, B, = 107 G.

(c) O'ions, B, = 0.5 G.

(d): Deuterons, B, = 0 and B, = 10° G.
(e) Protons, By = 100 G.

At this point, let us briefly me .:ion relativistic and quantum effects. For simplici-
ty, we shall always treat nonrelativistic plasmas. In principle, there is no difficulty
in generalizing any of the results of this course to include special relativistic effects;
these are discussed at length in the book by Clemmow and Dougherty [2].

EXERCISE To what regime of electron temperature are we limited by the non-
relativistic assumption? How about ion temperature if the ions are protons?

There are, of course, many plasmas in which special relativistic effects do be-
come important. For example, cosmic rays may be thought of as a component of
the interstellar and intergalactic plasma with relativistic temperature.

We shall also neglect quantum mechanical effects. For most of the laboratory
and astrophysical plasmas in which we might be interested, this is a good assump-
tion. There are, of course, plasmas in which quantum effects are very important.
An example would be solid state plasmas. As a rough criterion for the neglect of
quantum effects, one might require that the typical de Broglie length #/m v, be
much less than the average distance between particles n,™'7°.

Collisions 9

EXERCISE What is the maximum density allowed by this criterion for elections
with temperature
(a) 10eV?
(b) 1 keV?
(c) 100 keV?

In other applications, such as collisions (see next section), one might require the
de Broglie length to be much smaller than the distance of closest approach of the
colliding particles. '

In addition to these assumptions, we shall also neglect the magnetic field in
many of the sections of this book. This neglect is made for simplicity, in order that
the basic physical phenomena can be elucidated without the complications of a
magnetic field. In practice, the magnetic field can usually be ignored when the
typical frequency (inverse time scale) of a phenomenon is much larger than the
gyrofrequencies of both plasma species.

1.6 COLLISIONS

A typical charged particle in a plasma is at any instant interacting electrostatically
(see Problem 1.5) with many other charged particles. If we did not know about
Debye shielding, we might think that a typical particle is simultaneously having
Coulomb collisions with all of the other particles in the plasma. However, the field
of our typical particle is greatly reduced from its vacuum field at distances greater
than a Debye length, so that the particle is really not colliding with pdrticles at
large distances. Thus, we may roughly think of each particle as undergoing A
simultaneous Coulomb collisions.

From our definition of a plasma, we know that the potential energy of interag‘i
tion of each particle with its nearest neighbor is small. Since the potential energy is
a measure of the effect of a collision, this means that the strongest one of its A
simultaneous collisions (the one with its nearest neighbor) is relatively weak. Thus,
a typical charged particle in a plasma is simultaneously undergoing A weak colli-
sions. We shall soon see that even though A is a large number for a plasma, the
total effect of all the simultaneous collisions is still weak. Of course, a weak effect
can still be a very important effect. In the magnetic bottles like tokamaks and
mirror machines currently being used to study controlled thermonuclear fusion
plasmas, ion-ion collisions are one of the most important loss mechanisms.

Mathematically, the importance of collisions is contained in an expression called
the collision frequency, which is the inverse of the time it takes for a particle to
suffer a collision. Exactly what is meant by a collision of a charged particle
depends upon the definition, and we will consider two different definitions with
different physical content. Our mathematical derivation of the collision frequency
is an approximate one, intended to be simple but yet to yield the correct results
within factors of two or so. A more rigorous development can be found in the
book by Spitzer [3]. (See Problem 1.6.) : : :

Consider the situation shown in Fig. 1.4. ‘A particle of charge ¢, mass m is
incident on another particle of charge g, and infinite mass with incident speed v,.

¥
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Go, M+

Fig. 1.4 Parameters used in the discussion of the collision frequency in Section 1.6.

If the incident particle were undeflected, it would have position x = v,¢ along the
upper dashed line in Fig. 1.4, beingat x = 0 directly above the scattering charge 9o
at¢ = 0. The separation p of the two dashed lines is the impact parameter. If the
scattering angle is small, the final parallel speed (parallel to the dashed lines) will
be quite close to vy. The perpendicular speed v, can be obtained by calculating the
total perpendicular impulse

my, =f dt F (1) (1.29)

where F), is the perpendicular force that the particle experiences in its orbit. Since
the scattering angle v, /v, is small, we can to a good approximation use the
unperturbed orbit x = vyt to evaluate the right side of (1.29). This approximation
isa very uiseful one in plasma physics. In Fig. 1.4, Newton’s second law with the
Coulomb force law is

mi = 222 ¢ (1.30)
where £ is a unit vector in the r-direction. Then

qqo 990 sin 8 qq,
) sin @ = (p—_—__/sin oy = p" sin® 8 (1.31)

where we have used p = rsin 8 since the particle is assumed to be traveling along
the upper dashed line. Equation (1.29) then reads

N

= qq" f dt sin’ 6(1) (1.32)
The relation between 8 and ¢ is obtamed from
- = PcosO
x = —rcosf = sn 0 vol (1.33)
so that
- P 49
dt = v S’ @ (1.349)
EXERCISE Verify (1.34).
Using (1.34) in (1.32), we find
2qq
= A% f d9 sin 6 = —42 (1.35)
mugp U

Defining the quantity

Collisions 11

2
Po = m"lj{)‘; . (1:36)
we have "
vy Po |
| ST 4. 1.37
% » (1.37)

which is strictly valid only when v, << vy, p >> p,. In some books, the parame-
ter p, is called the Landau length.

EXERCISE Show that if ggo > 0, then p, is the distance of closest possd)le ap-
proach for a particle of initial speed v,

Although (1.37) is not valid for large angle collisions, let us use it to get a rough
idea of the impact parameter p which yields a large angle collision; we do this by
setting v, equal to vy, in (1.37) to obtain p = p,. Thus, any impact parameter
P < p, will yield a large angle collision. Suppose the incident particle is an elec-
tron, and the (almost) stationary scatterer is an ion. (Although Fig. 1.4 shows a
repulsive collision, our development is equally valid for attractive collisions.) The
cross section for scattering through a large angle by one ion is p,’. Consider-an
electron that enters a gas of ions. It will have a large angle collision after a time
given roughly by setting (the total cross section of the ions in a tube of unit
cross-sectional area, and length equal to the distance traveled) equal to (the unit
area), or (time) X (velocity) X (number per unit volume) X (cross section) =
The inverse of this time gives us the collision frequency v, for /arge angle colh-
sions; thus . o

,_ 4mngg’qy’ 4nget

vy = mHoYePy = mivg = T -(1.38)
e

Note that v, is proportional to the inverse third power of the particle speed.

Recall that a typical charged particle in a plasma is simultaneously undergoing
A collisions. Only a very few of these are of the large angle type that lead to (1.38),
since a large angle collision involves a potential energy of interaction comparable
to the kinetic energy of the incident particle and, by the definition of a plasma, the"
potential energy of a particle due to its nearest neighbor is small compared to its
kinetic energy. Thus, a particle undergoes many more small angle collisions than
large angle collisions. It turns out that the cumulative effect of these small angle
collisions is substantially Iarger than the effect of the large angle collisions, as we
shall now show.

Unlike the large angle collisions, the many small angle collisions can produce a
large effect only after many of them occur. But these small angle collisions pro-
duce velocity changes in random directions, some up, some down, some left, some
right. We need to know how to measure the cumulative effect of many small
random events.

Consider a varlable Ax that is the sum of many small random variables Ax
i=1,2,. N, .
Ax = Ax, + Axy, + ... + Axy (1.39)




12 Introduction

Suppose (Ax;) = 0 for each i and {(Ax)") is the same for each i, where ( )
indicates ensemble average [4]. Furthermore, suppose (Ax; Ax) = 0 if i # j, so
that Ax; is uncorrelated with Ax;, i 5 j. Then by (1.39) we have (Ax) = 0, and

wn = (& o))

N
3, (ax)?

i=1

= N (&x)) (1.40)

I

Consider a typical particle moving in the z-direction through a gas of scattering
centers. As it moves, it suffers many small angle collisions given by v, which can be
decomposed into random variables Av, and Awv,. These latter have just the proper-
ties of our random variable Ax; above. For one collision, with a given impact
parameter p (Fig. 1.5), we have from (1.37)

(v = (Av)) + (Av)) = @;g_oz (1.41)
Since Av, must have the same statistical properties as Av,, we must have
L (B = (Au)) = 5 ”°;’z’°z (1.42)
Theﬁg; (1.40) we have, for the total x velocity Av, ',
(Av)) = N(Av)) = N wee (1.43)

p
Since we are considering a particle moving through a gas of scattering centers, it is
more useful for our purposes to have the time derivative of (1.43), where on the

y

p+dp

Fig. 1.5 The incident particle is located at the origin and is traveling into the paper. It
makes simulitaneous small angle collisions with all of the scattering c¢2nters randomly
distributed with impact parameters between p and p + dp.
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right we shall have dN/dt = 2xp dp nyv, as the number of scattering centers, with
impact parameter between p and p + dp, which our incident particle encounters
per unit time. The time derlvatlve of (1.43) is then

nave'pol - (1.44)

p o

We have calculated (1.44) for only one set of impact parameters between p and
P + dp. The same logic that led to (1.40) also allows us to sum (integrate) the right
side of (1.44) over all impact parameters to obtain a total change in mean square
velocity in the £-direction. Likewise, we can add the total £-direction and the total
J-direction mean square velocities to obtain a total mean square perpendlcular
velocity ((Av,'°9)?). Wlth this final factor of two we have

—r (@uey =

Pmax dp
—‘Z—((Av LY = 2mngug'pe? f = (1.45)
Pwin p
What should we use for p, . and p_. 7 Recall that our derivation of the scattering
angle v, /vy, in (1.37) uses the Coulomb force law. However, we know from Section
1.2 that the true force law is modified by Debye shielding and is essentially
negligible at distances (impact parameters) much greater than a Debye lengtli.
Thus, it is consistent with the approximate nature of the present calculation to
replace p . with X ,. In the case of p, ., we use the fact that our scattering formula
(1.37) is not valid for impact parameters p < |p,| to replace p,;, by |pol. Equation
(1.45) is then .

7‘;— (A, = 2rngu,’pe’Tn ( Ii\»:I ) (1.46)
Since the logarithm is such a slowly varying function of its argument, it will suffice
to make a very rough evaluation of A ,/p,. In the definition of p, in (1.36) wé take
q = —e,qy = +te, m = m,, and for this rough calculation replace v, by the €lec-
tron thermal speed v, to obtain
Ap " A pit,u mApw?
pol 262 T T2

where we have ignored the difference between A, and A,. Dropping the small
factor 27 compared to the large plasma parameter A, and using the definition
(1.36) of p,, we find that (1.46) becomes

= dwnohp’ = 2wA (1.47)

8 n-noe
m .y,

— (Av o) = In A (1.48)

A reasonable definition for the scattering time due to small angle collisions is the
time it takes ((Av,'*')?) to equal vy? according to (1.48); the inverse of this time is
the collision frequency v, due to small-angle collisions:

_ 8mnge* In A :
v, = R ‘ (1.49)

Note again the inverse cube dependence on the velocity vo. One important aspect
of v is that it is a factor 2 In A larger than the collision frequency v, for large
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angle collisions given by (1.38). This is a substantial factor in a plasma (In A = 14
if A = 10°). Thus, the deflection of a charged particle in a plasma is predominant-
ly due to the many random small angle collisions that it suffers, rather than the
rare large angle collisions.

Throughout one’s study of plasma physics, it is useful to identify each phenom-
enon as a collective effect or as a single particle effect. The oscillation of the plasma
slab in Section 1.4, characterized by the plasma frequency w.,, is 2 collective effect
involving many particles acting simultaneously to produce a large electric field.
The collisional deflection of a particle, represented by the collision frequency ».in
(1.49), is a single particle effect caused by many collisions with individual particles
that do not act cooperatively.

EXERCISE s the Debye shielding described in Section 1.2 a collective effect or
a single particle effect?

It is instructive to calculate the ratio of v.to w,, which is, taking a typical speed
vy = v, in (1.49),
. 8mrnet In A In A In A
2o~ 2T ": 3 = T (1.50)
w, mj v w, 270N, 2wA,

By crudely dropping the factor In A/2x and replacing A, by A, we have the easily
remembered but very approximate expression

ve 1
I A (1.51)

Thus, the collision frequency in a plasma is very much smaller than the plasma
frequency. In. this respect, single particle effects are less important than collective
effects. A wave with frequency near w, will oscillate many times before being
substantially damped because of collisions.

EXERCISE What is the ratio of the collisional mean free path, for a typical
electron, to the electron Debye length?

The collision frequency v, that we calculated in (1.49) is the one appropriate to
the collisions of electrons with ions, v,. The collision frequency v,, of electrons
with electrons could be calculated in the same way, by moving to the center-of-
mass frame rather than taking the scattering center to have infinite mass. This
procedure would only introduce factors of two or so, so that within such factors
we have v,, = v,,. Next, consider ion-ion collisions between ions having the same
temperature as the electrons that have collision frequency v,. Equation (1.49)
yields, with m, replaced by m,and v; = (m,/m;})!”2 v,instead of vy, ;= (m./m;)?
v,... Finally, consider ions scattered by electrons (or Mack trucks scattered by
pedestrians). This calculation in the center-of-mass frame would introduce another
factor of (m,/m)/2, so that v, = (m,/m)v.,.

-Suppose an electron-proton plasma is prepared in such a way that the electrons
and protons have arbitrary velocity. distributions, and comparable but not equal
temperatures. On the time scale v,,”' ~ v, = A w, ', the electrons will therma-

s

e
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lize via electron-electron and electron-ton collisions and obtain a Maxwellian dis-

tribution. On a time scale 43 times longer, the ions will thermalize and obtain a-

Mazxwellian at the ion temperature via ion-ion collisions. Finally, on a time scale
43 times longer still, the electrons and i lOl‘lS will come to the same temperature via
ion-electron collisions.

This completes our brief introduction to the impo}tam basic concepts of plasma :
physics. In the next chapter, we shall consider the motion of single charged parti- ™

cles in electric and magnetic fields.
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PROBLEMS

1.1 Debye Shielding

In the discussion of Debye shielding in Section 1.2, suppose that the ions are ’

infinitely massive and thus cannot respond to the introduction of the test charge
How does the answer change?

1.2 Potential Energy (Birdsall's Problem)

A sphere of plasma has equal uniform densities n, of electrons and infinitely
massive ions. The electrons are moved to the surface of the sphere, which they
cover uniformly. What is the potential energy in the system? Sketch the electric
field and electric potential as a function of radius. If the electrons initially had
temperature T,, and it is found that the potential energy is equal to the total initial
electron kinetic energy, what is the radius of the sphere in terms of the electron
Debye length? 2

1.3 Total Plasma Frequency

In the discussion of the plasma frequency in Section 1.4, suppose the ions are not
infinitely massive but have mass m,. Modify the discussion to show that the slabs
oscillate with the total plasma frequency defined in (1.22). :

1.4 Plasma in a Gravitational Field

Consider an electron~proton plasma with equal temperatures T = T, = T}, no.

magnetic field, and a gravitational acceleration g in the —2-direction. We desire the
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densities #,(z) and n(z), where z = 0 can be thought of as the surface of a planet.
If the electrons and ions were neutral, their densities would be given by the
Boltzmann law n,; &< exp (—m,; gz/T). Then the scale height T/m,,; g would be
quite different for electrons and ions. However, this would give rise to huge
electric fields that would tend to move ions up and electrons down. Taking into
account the electric field, use the Boltzmann law and the initial guess thatn,(z) =~
ny(z), to be checked at the end of the calculation, to find self-consistent electron
and ion density distributions.

‘ 1.5 Electrostatic Interaction

Show that in nonrelativistic plasma, the Coulomb force between two typical parti-
cles is much more important than the magnetic field part of the Lorentz force.

1.6 Collisions

Read Sections 5.1, 5.2, and 5.3.of Spitzer [3] and compare his treatment of colli-
sions to_our Section 1.6. Watch out for differences in notation, and explain all
appatent differences of factors of two.

CHAPTER

Single Particle Motion

2.1 INTRODUCTION

A plasma consists of many charged particles moving in self-consistent electric and
magnetic fields. The fields affect the particle orbits, and the particle orbits affect
the fields. The general solution of any problem in plasma physics can be quite;
complicated. In this chapter, we consider the motion of a single charged particle
moving in prescribed fields. After studying this part of the problem in isolation,
we can proceed in following chapters to include these particle orbits in the self-
consistent determination of the ficlds. :

22 E x B DRIFTS

Consider a particle with v. = 0 gyrating in a magnetic field B, in the Z-direction;
with an electric field E, in the —j-direction perpendicular to the magnetic field as
in Fig. 2.1. (The symbol & always means a unit vector in the a-direction.) The
electric field E, cannot accelerate the particle indefinitely, because the magnetic
field will turn the particle. (The component of electric field E,, which we.ignore
here, can accelerate particles indefinitely. In a plasma, the resulting current usually
acts to cancel the charge that caused the electric field in the first place. There are,
however, important cases where this cancellation is hindered; for example, the
earth’s aurora, and tokamak runaway electrons.) What does happen? When the
charge ¢, is positive, the ion is accelerated on the way down. This gives it a larger
local gyroradius at the bottom of its orbit than at the top; recall that the gyroradius
isr, = v,/Q,. Thus, the motion will be a spiral in the x-y plane as shown in Fig.
2.2, where we have used the symmetry of the situation to draw the upward part of
each orbit. We see that the orbit does not connect to itself, but has jumped a
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accelerated drift to a force (being careful with signs), plug in the F X B formula
(2.8), and compare the result to (2.41).

2.4 Mirror Machines

(a) A mirror machine has mirror ratio 2. A Maxwellian group of electrons is
released at the center of the machine. In the absence of collisions, what frac-
tion of these electrons is confined?

(b) Suppose the mirror machine has initially equal densities n = 10" cm™ of
electrons and protons, each Maxwellian with a temperature | keV = 107°C.
The machine is roughly one meter in size in both directions. Recalling our
discussion of collisions from Chapter 1, estimate very roughly the time for
(1) loss of the unconfined electrons;

(2) loss of the unconfined ions;

(3) loss of many of the initially confined electrons (due primarily to which
kind of collision?); why do not all of the electrons leave?;

(4) loss of the initially confined ions (due primarily to which kind of col-
lision?). ,

For fusion purposes (supposing the protons were replaced by deuterium or

tritium) which of these numbers is the most relevant?

2.5 Drift Energy

A particle of mass m and charge g in a uniform magnetic field B = B¢ is set into
motion in the £-direction by an electric field E(#)§ that varies slowly from zero to a
final value E,. Thus, at the final time the particle has an E X B drift v,.

(a) Use energy arguments to show that the particle’s guiding center must
have been displaced a distance v,/Q in the direction of the electric
field. :

(b) Integrate the polarization drift velocity from time zero to time infinity
to obtain a displacement. Does the answer agree with (a)?

CHAPTER

Plasma Kinetic Theory I:
Klimontovich Equation

3.1 INTRODUCTION

In this chapter, we begin a study of the basic equations of plasma physics. The
word *“kinetic’ means “pertaining to motion,” so that plasma kinetic theory is the
theory of plasma taking into account the motions of all of the particles. This can
be done in an exact way, using the Klimontovich equation of the present chapter or
the Liouville equation of the next chapter. However, we are usually not interested
in the exact motion of all of the particles in a plasma, but rather in certain average
or approximate characteristics. Thus, the greatest usefulness of the exact Klimon-
tovich and Liouville equations is as starting points for the derivation of approxi-
mate equations that describe the average properties of a plasma.

In classical plasma physics, we think of the particles as point particles, each with
a given charge and mass. Suppose we have a gas consisting of only one particle,
This particle has an orbit X,(7) in three-dimensional configuration space x. The
orbit X,(¢) is the set of positions x occupied by the particle at successive times ?.
Likewise, the particle has an orbit V,(¢) in three-dimensional velocity space v. We
combine three-dimensional configuration space x and three-dimensional velocity
space v into six-dimensional phase space (x,v). The density of one partlcle in this
phase space is

Nx,v.0) = 8x ~ X,(nJé[v ~ V(1] 3.0

where 8[x — X,|] = 8(x — X))8(y — ¥,)8(z — Z,), etc. (The properties of the
Dirac delta function are reviewed in Ref. [1], p. 29, and in Ref, {21, pp. 53-54.)
Note that X, V, are the Lagrangian coordinates of the particle itself, whereas X,V
are the Eulerian coordinates of the phase space.
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- EXERCISE At any time t, the density of particles integrated over all phase
space must yield the total number of particles in the system. Verify this for the
density (3.1).

Next, suppose we have a system with two point particles, with respective orbits
[X,(D), V()] and [X,(1), V,(1)] in phase space (x,v). By analogy to (3.1), the particle
density is

N(x,v,t) = i6[x — X{0)olv — V(1)) . (3.2)
=1 :

EXERCISE Repeat the previous exercise for (3.2). -

Now suppose that a system contains two species of particles, electrons and ions,
and each species has N, particles. Then the density N, of species s is

Ny
N(xv,0) = 38[x — X(O]8v — VL) 3.3)
1

and the total density N is
Nxv,1) = X N(xV,t) (3.4

ei

EXERCISE Repeat the previous exercise for (3.4).

If we know the exact positions and velocities of the particles at one time, then
we know them at all later times. This can be seen as follows. The position X,(¢) of
particle i satisfies the equation

X(1) = V() (3.5)
where an overdot means a time derivative. Likewise, the velocxty V(1) of particle i
satisfies the Lorentz force equation

mV(1) = g E"X(D,1] + 2= V() X B IX(1).1] (36)
where the superscript m indicates that the electric and magnetic fields are the
microscopic fields self-consistently produced by the point particles themselves,
together with externally applied fields. [On the right of (3.6), the portion of E™ and
B™ produced by particle i itself is deleted.] The microscopic fields satisfy Maxwell’s

equations

V - E™(x,1) = 4mp™(x,t) 3.7
V-B"(x,0) =0 3.8)
V X En(x,1) = — —:— —W;#)— 3.9
and
- 1 SE"(x,0)

v X B = T gmxr) +

L - —~ —; (3.10)
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The microscopic charge density is
o) = 3, g, f dv N (xv,1) G.11)
while the microscopic current is “
In(x,1) = 2:, q, f dvwN (x,v,1) (3.12)

EXERCISE Convince yourself that (3.11) and (3.12) yield the correct charge
density and current.

Equations 3.7 to 3.12 determine the exact fields in terms of the exact particle
orbits, while (3.5) and (3.6) determine the exact particle orbits in terms of the exact
fields. The entire set of equations is closed, so that if the positions and velocities of
all particles, and the fields, are known exactly at one time, then they are known
exactly at all later times.

3.2 KLIMONTOVICH EQUATION

An exact equation for the evolution of a plnsma is obtained by taking the time
derivative of the density N,. From (3.3), this is

Alonl) 2 X+ Vbl — X(D)dly = VA1)

- 2 V-V, 8[x — X(018[v — V{1)] (3.13)
i=1 :
where we have used the relations

2 fa—by ==L fa b
and
£ Mg = fj’;

and where V, = (3,,9,,8,) and V, = = (9,,,9,,,9,.)- Using (3.5) and (3.6), we can
write X; and V,m terms of V;and the fi elds E” and B™, whereupon (3.13) becomes

_a‘_Ni(Ext.’l’t_) = — E? vi.vxa[x — xi]a[v _ V,—]
=1

N, .
= 3 e e + 2 v x mxo |

s

-V, 8[x — X;)8[v — V] (3.14)
An important property of the Dirac delta function is ‘
adla — b) = bd(a — b)

EXERCISE How would one prove this relation?
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This relation allows us to replace V(7) with v, and X,() with x, on the right of
(3.14) (but not in the arguments of the delta functions) so that (3.14) becomes
AN(x,v,1 Ny
——‘(a’itu =— vV, Y olx — XJo[v — Vi

N,
[ vXB”'(xt)] v, Za[x—X]a[v—V]

. (3.15)
But the two summations on the right of (3.15) are just the density (3.3); therefore

AN (x,v,1) D5 (em o YV m _
T+v VXNS+*;{;-(E +C X B )VVNS—O (3.16)

This is the exact Klimontovich equation (Klimontovich [3}; Dupree [4]).

The Klimontovich equation, together with Maxwell’s equations, constitute an
exact description of a plasma. Given the initial positions and velocities of the
particles, the initial densities N(x,v,t = 0)and N(x,v,t = 0) are given exactly by
(3.3). The initial fields are then chosen to be consistent with Maxwell’s equations
(3.7) to (3.12). With these initial conditions the problem is completely determinis-
tic, and the densities and fields are exactly determined for all time.

In practice, we never carry out this procedure. The Klimontovich equation
contains every one of the exact single particle orbits. This is far more information
than we want or need. What we really want is information about certain average
properties of the plasma. We do not really care about all of the individual electro-
magnetic fields contributed by the individual charges. What we do care about is
the average long-range electric field, which might exist over many thousands or
millions of interparticle spacings. The uvsefulness of the Klimontovich equation
comes from its role as a starting point in the derivation of equations that describe
the average properties of a plasma.

The Klimontovich equation can be thought of as expressing the incompressibili-
ty of the “substance” N (x,v,f) as it moves about in the (x,v) phase space. (Is it any
wonder that a point particle is incompressible?) This can be seen as follows.
Imagine a hypothetical particle with charge ¢,, mass m,, which at time ¢ finds itself
at the position (x,v). This hypothetical particle has an orbit in phase space detér-
mined by the fields in the system. Imagine taking a time derivative of any quantity
along this orbit (such a time derivative is called a convective derivative). This
derivative must include the time variation produced by the changing position in
(x,v) space as well as the explicit time variation of the quantity. Thus, it must be
given by

D a dx

dv
or = T ar

Vet —| v, (3.17)

orbit orbit

where by dx/dt{om: we mean the change in position x of the hypothetical particle
with time; likewise for dv/dt|onu. But for our hypothetical particle at position (x,v)
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in phase space we know that
dx
T’ orbit Y (318)
and
dv
—— 3.1
d’ orbit ( 9)
Thus,
D ] qs

v m . .
= 5r t Ve Vet R B0 + o X BTG))-V,  (3.20)

Dt
and the Klimontovich equation (3.16) simply says

D
= = 21
D1 N(x,v,t) = 0 3.2

The density of particles of species s is a constant in time, as measured along the
orbit of a hypothetical particle of species 5. This is true whether we are moving
along the orbit of an actual particle, in which case the density is infinite, or
whether we are moving along a hypothetical orbit that is not occupied by an actual
particle, in which case the density is zero. Note that the density is only constant as
measured along orbits of hypothetical particles; in (x,v) space at a glven tlme it lS
not constant but is zero or infinite,

There is yet a third way to think of the Klimontovich equation. Any fluid in
which the fluid density f(r,1) is neither created nor destroyed satisfies a contmunty
equation

8, fl,t) + V- (fV) =0 (3.22)

where V, is the divergence vector in the phase space under consideration, and V is
a vector that gives the time rate of change of a fluid element at a point in phase
space. (See, for example, Symon [5], p. 317.) In the present case, V, = (V,,V,)
and V = (dx/dt|omin, dv/dt|owi). Since the particle density is neither created nor
destroyed, it must satisfy a continuity equatlon of the form

AN(x¥,1) + V,-(WN,) + V,- {q’ [E"' + — x B"']N } =0 (3.23)

It is left as a problem to demonstrate that the continuity equation (3.23) is equiv-
alent to the Klimontovich equation (3.16).

3.3 PLASMA KINETIC EQUATION |

Although the Klimontovich equation is exact, we are really not interested in exact
solutions of it. These would contain all of the particle orbits, and would thus be far
too detailed for any practical purpose. What we really would like to know are the
average properties of a plasma. The Klimontovich equation tells us whether or not
a particle with infinite density is to be found at a given point (x,v) in phase.space.
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What we really want to know is how many particles are likely to be found in a
small volume Ax Av of phase space whose center is at (x,v). Thus, we really are not
interested in the spikey function N (x,v,?), but rather in the smooth function

S5 (x,v,0) = (N/x,v.1)) . (3.24)
The most rigorous way to interpret { ) is as an ensemble average [6] over an
infinite number of realizations .of the plasma, prepared according to some pre-
scription. For example, we could prepare an ensemble of equal temperature plas-
mas; each in thermal equilibrium, and each with a test charge ¢ at the origin of
configuration space. The resulting f, and f; would then be consistent with the
discussion of Debye shielding in Section 1.2.

There is another useful interpretation of the distribution function f(x,v,t), the
number of particles of species s per unit configuration space per unit velocity
space. Suppose we are interested in long range electric and magnetic fields that
extend over distances much larger than a Debye length. Then we can imagine a
box, centered around the point x in configuration space, of a size much greater
than a mean interparticle spacing, but much smaller than a Debye length (this is
easy to do in a plasma; why?) We can now count the number of particles of species
s in the box at time ¢ with velocities in the range vtov + Av, divide by (the size of
the box multiplied by Av, Av, Av,), and call the result f,(x,v,). This number will of
course fluctuate with time but, if there are very many particles in the box, the
fluctuations will be tiny and the f,(x,v,f) obtained in this manner will agree very
well with that obtained in the more rigorous ensemble averaging procedure.

An equation for the time evolution of the distribution function f,(x,v,?) can be
obtained from the Klimontovich equation (3.16) by ensemble averaging. We de-
fine 6N,, 6E, and 6B by

N(x,v,1) = f(x,v,1) + 8N (x,v,0)

E™(x,v,t) = E(x,v,t) + 6E(x,v,1) (3.25)
and

B™(x,v,1) = B(x,v,t) + 6B(x,v,1)

where B = (B"), E = (E™), and (6N,) = (6E) = (6B) = 0. Inserting these def-
initions into (3.16) and ensemble averaging, we obtain

afs(x,v,1)

s v
Vit e € X B,

- 9 ¥ .
= m, {(6E + c X 6B) -V 8N,) (3.26)

Equation (3.26) is the exact form of the plasma kinetic equation. We shall meet
other forms of this equation in the next chapter.

The left side of (3.26) consists only of terms that vary smoothly in (x,v) space.
The right side is the ensemble average of the products of very spikey quantities like
8E = E™ — (E™) and 6N,. Thus, the left side of (3.26) contains terms that are
insensitive to the discrete-particle nature of the plasma, while the right side of
(3.26) is very sensitive to the discrete-particle nature of the plasma. But the
discrete-particle nature of a plasma is what gives rise to collisional effects, so that
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the left side of (3.26) contains smoothly varying functions representing collective
effects, while the right side represents the collisional effects. We have seen in
Section 1.6 that the ratio of the importance of collisional effects to the importance
of collective effects is sometimes given by 1/A, which is a very small number. We
might guess that for many phenomena in a plasma, the right side of (3.26) has a
size 1/A compared to each of the terms on the left side; thus the right side can be
neglected for the study of such phenomena. This mdeed is the case, as shown in the
next two chapters. :

This important point can be illustrated by a hypothetlcal exercise, Imagine that
we break each electron into an infinite number of pieces, so that n, — oo, m, — 0,
and e — 0, while nge = constant, e/m, = constant, and v, = constant.

EXERCISE Show that in this hypothetical exercise, @, = constant, )'\: =
constant, but 7, — 0 and A, — oo, : :

Then any volume, no matter how small, would contain an infinite number of point

particles, each represented by a delta function with infinitesimal charge. Statistical

mechanics tells us that the relative fluctuations in such a plasma would vanish,

since the fluctuations in the number of particles N, in a certain volume is propor-
tional to the square root of that number. Thus, on the right side of (3.26) we have

8N, ~ Ny ~ A2, and 8E and 8B, which are produced by 8N, behaving like

(from Poisson’s equation) ~ e8N, ~ N, ' Ny'? ~ Ny 2 ~ A2, so that the right

side becomes constant. On the left, however, each term becomes infinite as f; — oo,
Thus, the relative importance of the right side vanishes ~ Ny ~ A,”, and we

have

sxwt) |

at i+ e+ xB) vs=0 | e

which is the Viasov [7] equation (sometimes referred to as the collisionless Boltz-
mann equation). This approximate equation, which neglects collisional effects, is
often called the most important equation in plasma physics. Its properties will be
explored in detail in Chapter 6.

The fields E and B of (3.27) are the ensemble averaged fields of (3.25). They-
must satisfy the ensemble averaged versions of Maxwell’s equations (3.7) to (3. 12),
which are

V- E(x,t) = 41rp
V-B(x) =0
1 4B .
V x E(x,0) —-,——‘7,- o
dE '

VxB(x,l)'————J+T-57

P = 7 = 3 g, Javfixvn
and

) = (my = 2 qs f dv vf{x,v,1) 7 (3.28)
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In the next two chapters we shall approach the plasma kinetic equation (3. 26)
from another direction, and shall use approximate methods to evaluate the colli-
sional right side. In Chapter 6 we shall take up the study of the Vlasov equation
(3.27).
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PROBLEM

3.1 Klimontovich as Continuity

Prove that the continuity equation (3. 23) is equivalent to the Klimontovich equa-
tion (3.16).

CHAPTER

Plasma Kinetic Theory 11:
Liouville Equatlon ,

4.1 INTRODUCTION

In addition to the Klimontovich equation, there is another equation, the Liouville
equation, which provides an exact description of a plasma. Like the Klimontovich
equation, the Liouville equation is of no direct use, but provides a starting point
for the construction of approximate statistical theories. One of the most useful
practical results of this approach is to provide us with an approximate form for the
right side of the plasma kinetic equation (3.26), which tells us how the distribution
function changes in time due to collisions.

The Klimontovich equation describes the behavior of mdwldual particles. By
contrast, the Liouville equation describes the behavior of systems. Consider first a
“system” consisting of one charged particle. Suppose we measure this particle’s
position in a coordinate system x,; then the orbit of the particle X,(¢) is the set of
posmons x, occupied by the particle at consecutive times 1. Likewise, in velocity
space we denote the orbit of the particle V,(2); this is the set of velocities taken by
the particle at consecutive times f; these velocities are measured in a coo_rdmate
system v,. We thus have a phase space (x,,v,) = (X1.01521, Vg5 0,5 0,,). In this six-
dimensional phase space there is one “system” consisting of one pamcle The
density of systems in this phase space is - . g
_ NGyvn) = 8x, — X()]6lv, — V()] ’ @
Next, consider a system of two particles. We introduce a set-of coordinate axes for
each particle. Particle 1 has (x,,v,) coordinate axes as before. Particle 2 has (x3,v3)
coordinate axes that lay right on top of the (x,,v,) coordinate axes. The orbit X, (1),
V,(7) of particle 1 is measured with respect to the (x,,v,) coordinate axes, while the
orbit X,(#), V,(#) of particle 2 is measured with respect to the (x,,v,) coordinate

~
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axes. We now introduce an entirely new phase space, having twelve dimensions.
The phase space is .

(X|,V|,X2,V2) = (xl9yl’zl’vxnvynvzansybzzyvx;vprvzz) 4.2)
In this twelve-dimensional phase space, there is one system that is occupying the
point [%; = X,(#), v; = V,(#), x, = X,(1), v, = V,(#)] at time ¢. The density of
systems in this phase space is
N(x,¥15X2,¥2,0) = 8[x, — Xy(DJ8[vy — Vi(D18Lx, — Xy ())8v, — Vo(0)] (4.3)

EXERCISE Show that there is indeed one systen in the phase space by integrat-
ing the density (4.3) over all phase space.

Note that the density N in (4.3) is completely different from the density N, used in
the previous chapter in the discussion of the Klimontovich equation. The density
N, in Ch. 3 is the density of particles in six-dimensional phase space. The density N
in (4.3) is the density of systems (each having two particles) in twelve-dimensional
phase space.

Finally, suppose that we have a system of N, particles. With each particle i,

= 1,2, ... Ny, we associate a six-dimensional coordinate system (x;,v;). Using
these 6N, coordinate axes, we construct a 6 Ny-dimensional phase space, analogous
to the twelve-dimensional phase space in (4.2). There is one system in 6N,-dimen-
sional phase space; therefore the density of systems, by analogy with the density of
systems (4.3), is

ND
N(x v, %, . .. XN"aVN"J) = H o[x; — X(D1olv; — V()] 4.4
it .
where I, f, = fifh .. . [

EXERCISE Use (4.4) to prove that there is one system in all of phase space.

4.2 LIOUVILLE EQUATION

As with the Klimontovich equation in Chapter 3, the Liouville equation is ob-
tained by taking the time derivative of the appropriate density. In this case, we
take the time derivative of the density of systems (4.4). Because the density of
systems (4.4) is the product of 6N, terms, its time derivative involves the sum of
6N, terms. Using the relation

< 004 = X) = — 2% v, 51— X(0)] @.5)

and similar relations encountered in the previous chapter, the time derivative of
4.4)is

aN Yo
+ 2 Vi) - v, II a(x; — Xpé(y; — V)
Fad!

No . N« )
+ S_l, ViV, IT 8(x — X)8(v; — V) = 0 4.6)
= =t
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Using ad(a — b) = bd(a — b) to replace V, by v;, and similarly for V, so that for
the remainder of this chapter

Vi) = [ B + 2 x B | @
and noting that the products are just the densnty of systems N, (4.6) becomes
aN
+2v,vw+zv,(z)vzv—0 , 4.8)
. 1

which is the Liouville equatmn When combined with Maxwell’s equations and the
Lorentz force equation, the Liouville equation is an exact description of a plasma
For a two-component plasma with N,/2 electrons and N,/2 ions, the expression
for V(1) will depend upon whether the ith particle is an electron or a proton. The
Liouville equation has all of the advantages and all of the disadvantages of the
Klimontovich equation. Because it contains all of the exact six-dimensional orbits
of the individual particles in a single system orbit in 6/N,-dimensional space, it
contains far more information than we want or need. Its usefulness is as a starting
point in deriving a reduced statistical description, which with appropriate approx-
imations can yield practical information.

Equation (4.8) has the form of a convective time derivative in the 6No dlmen-
sional phase space,

. Dit N(X,9,%5,¥5, . . ., xM,,vM,,t)’ =0 . . 4.9)

where ' : o ‘
D .

57———+2v,v+2vu)v (4.10)

Here, V(1) is expressed in terms of the position (x,,v,,X;,¥;, . . . , Xy,»Va,) Of the

system in 6/N,-dimensional phase space, since that position determines the posi-
tions of the particles in six-dimensional space and thus the fields at all points in
six-dimensional space through Maxwell’s equations. Thus, the convective time
derivative, taken along the system orbit in 6N,-dimensional phase space, is zero.
The density of systems is incompressible. ‘

The Liouville equation (4.8) can also be put in the form of a continuity equa-
tion. Recall the vector identity V - (ab) = b+ Va + aV + b. Then

Vi V\N = V, -(v,N) . (4.1D)
since v; and x; are independent variables. Similarly,

Ve VN =V, (V;N) “.12)
since

7 e . ..qL m ._!'_ m 3
Vo Vi =V, {,,,n [E (o) + X B (x.-,r)]} R E)

EXERCISE Prove (4.13).
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Then the Liouville equation (4.8) becomes

N N, N,

— 4+ YV, (wN) + 3V, (V,N) =0 (4.14)
i=1 i=1

In the form of a continuity equation, the Liouville equation expresses the conser-

vation of systems in 6/Ny-dimensional phase space.

As we have introduced it, the Liouville equation describes the exact orbit of a
single point in 6Ny-dimensional phase space. An example is shown in Fig. 4.1,
which is a projection of the orbit onto three of the 6N, dimensions. As the indi-
vidual particles of the system move about in six-dimensional space, the system it~
self moves along a continuous orbit in 6 Ny-dimensional phase space.

Suppose that we have an ensemble of such systems, prepared at time #,. At any
later time ¢ = ¢,, we define

PN L TR TS % 27
to be the probability that a particular system is at the point (x,.v, . . . , Xy,.¥,) in
6N,-dimensional phase space, that is, the probability that X,(¢) lies between x, and
x, + dx,, and V(1) lies between v, and v, + dv, and X,(¢) lies between x, and
x, + dx,, and etc. Since fy, is a probability density, its integral over all 6N,
dimensions must be unity.

Each system in the ensemble moves along an orbit like that shown in Fig. 4.1.
We can think of this orbit as carrying its “‘piece” of probability along with it. A
large probability for point 4 in Fig. 4.1 at time ¢, implies a large probability for
point B at time ¢. In other words, we can think of the probability density as a fluid
moving in the 6 N-dimensional phase space. Each element in the probability fluid
moves along an exact orbit as given by the solution of the Liouville equation (4.8).
Since each element of probability fluid moves along a continuous orbit, and since
probability is neither created nor destroyed, the probability fluid must satisfy a

s Xnps Vs )dxdv dx,dv, . . L dxy, dyy,

*1

7

232

N

Fig. 4.1 A projection onto three dimensions of a typical system orbit in 6 Ny-dimensional
phase space.
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continuity equation in 6 N,-dimensional phase space of the form (4 14). Thus, fy,
must satisfy

6f Y Ny ¢ .\
+ 2 Ve (Vi) + 3.V, (Vifu) = 0 (4.15)
= . .

where V,(r) is, as usual, calculated from the Loréntz force equation (4.7) and the
fields E” and B™ are the exact fields appropnate to the system that occupies this
particular point in 6 N,-dimensional phase space.”

We shall only be concerned with smooth functions fy,. Thus, we might think of
adrop of ink placed in a glass of water. The initial drop contains all those systems
that have a finite probability of being represented in the ensemble of systems at
time 1,. Ignoring diffusion, the drop may lengthen, contract, distort, squeeze,
break into pieces, deform, etc., as time progresses. However, the total: Yolume of
ink is always constant; the total probability is always unity. The convection of the
probability ink is expressed mathematically by réversing the steps that led from
the Liouville equation (4.8) to the continuity equatlon (4.14). (See Problem. 4 1)
Equation (4.15) becomes

5
fN" + 2 Vi Yy f~.. + 2 Vi VoS = ©(4.16)
=t s i
which by (4.10) is »
Dfy, _ = ‘ :
D=0 )

Equation (4.16) is the Liouville equation for the probability density f,. Thus, the
density of the probability ink is a constant provnded that we move with the ink.
The probability density fy, is mcompressnble S

4.3 BBGKY HIERARCHY

As discussed above, the density f}, represents. the joint probability density that
particle 1 has coordinates between (x,,v,) and (x, + dx,,v, + dv,) and particle 2
has coordinates between (x,,v,) and (x, + dx,,v, + dv,), and etc. We may also
consider reduced probability distributions

Fltvi X, - Xvel) = P [ddve - dxndvnf, (418)
which give the joint probability of particles 1 through k having the coordinates
(xy,vi) to(xy + dx,,v, + dv)}and. .. and (x,,%) to (%, + dx;, v, + dv,), irre-
spective of the coordinates of particles k + 1,k + 2, ..., N,. The factor V* on
the right of (4.18) is a normalization factor, where V is the finite spatial volume in
which fy, is nonzero for all x,,x,, . . . , xy, (Fig. 4.2). At the end of our theoretical
development, we will take the limit Ny — o, ¥ — oo, in such a way that ny =
No/V is a constant giving the average number of particles per unit real space. For
the present, we assume thatf,, — O0asx; — tecory; — +eoorz — o0 for any
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i

Fig. 4.2 Finite spatial volume V in which f,, is nonzero for any x;,i = 1,..., N,

i. Likewise, because there are no particles with infinite speed, fy, — 0as v,, — oo
or v, — 4eo or v, ~ oo for any i.

In this development we do not care which one of the N, particles is called
particle number 1, etc. Thus, we always choose probability densities f}, that are
completely symmetric with respect to the particle labels. For example,

Swm(G..z;=2cm...2z;3 =5cm...1)
=f(..2;,=5cm...z;=2cm...I) (4.19)

provided all of the other independent variables are the same. Here, we must
interchange all of the i = 7 variables with all of the i = 13 variables. This means
that when we set k' = 1in (4.18), the function f,(x,,v,,f) is (to within a normaliza-
tion constant) the number of particles per unit real space per unit velocity space.
Thus, this function f,(x,,v,,#) has the same meaning (to within a normalization
constant) as the function f(x,v,?) introduced in the previous chapter in connection
with the plasma kinetic equation.

To keep the theory as simple as possible, we shall ignore any external electric
and magnetic fields. We shall deal with only one species of N, particles; it is easy
enough to generalize the results to a plasma with two species of Ny/2 particles each
at the end of the development. For some purposes, such as calculating electron-
electron collisional effects, the second species can be introduced as a smeared-out

.. ion background of density #,, which simply neutralizes the total electron charge.

Finally, we adopt the Coulomb model, which ignores the magnetic fields produced
by the charged particle motion. In this model, the acceleration

. TN
V) = 3 a, (4.20)
o
where
q 2
o e Sy — ) 4.21
= i — Xl = w @2D
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is the acceleratlon of particle i due to the Coulomb electric field of particle J. Since
a particle exerts no force on itself, we use (4.21) only ifi ¢ j,if i = j, we use
a, = 0. Equation (4.21) replaces Maxwell’s equations and the Lorentz force law.
The Liouville equation (4 16) becomes

a, .
f S+ E i+ Ve, S + Z 2 2, Vy [y, = © (422

=l =1
Equations for the reduced distributions f; are obtained by mtegratmg the Liou-
ville equation (4.22) over all Xp,1, V441, X502, Vis2s - - + Xnos ¥, FOr example, to obtain
the equation for fy,, we integrate (4.22) over all X, and vy, obtaining

® ®
af No 5
fdeo vao ot + fdeo vao §| A/ Vx, fNo

@
+ f Xy, vy, Z 2 8, Y, fun = (4.23)
= e

Term (D is easy, since we can move the time derivative outside the integral to
obtain

a ]
@ = 5 [axndvafu, = VN o o, (4.24)

where the definition (4.18) has been used. Term (D is also easy. In the first N, — 1
terms in the sum, the integration variables are independent of the operator v, - Vys
this operator can then be moved outside the integration and we again obtain a
term proportional to fy,.,. The last term in the sum, with i = N,, is

f den van(pr\, X¥Na + vl An u + v:;\,, .;\,,)fNu
= [ dvdymdzn, v, S|

=90 : 4.25)

since fy, vanishes at the boundaries of the system that have been placed at Xy, =
oo, etc. Thus,

+ 2 similar terms

Nt

@ = v 2 v v,,fNr. (4.26)

=1

Term (® is not much harder. Splitting the double sum

Ne-t Nt v

ZI: Z gq El z 8y + z B nuj + E gine T Enomo

we get
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@@=V i i a;° Yy S

=l JA
1

+ [dxy,dvn, 3ty Voo S

J=1

N1 ,
+ f Axpydvne D) Bne* Vi fre (4.27)
i=t

where thei = N,,j = N, term has been discarded because a5, = 0. The second
term on the right vanishes after direct integration with respect to dv,, and evalua-
tion at v,, = =0, etc. The remaining terms in @©, @, and @, after multiplication
by VM7l are

® ® ®
a,fN.,. F 3o S ¥ S ﬁ 8" Yy
=1 =1

i=1
®
N 1
+ vt Z f dXy, ¥y, iny * Vi, fry = , (4.28)

This is the desired equation for fx,1. Notice that it does not depend only on fr;
the last term @ depends on fy,,We have made no approximations in deriving
(4.28); within the Coulomb model, it is exact.

Having succeeded in deriving the equation for fy,_;, let us proceed to derive the
equation for f_,. To do this, we integrate (4.28) over all X, and over all vy ;. As
in (4.24), term @ yields V' 9, fy,».

EXERCISE Use the definition (4.18) to explain the difference between the power
of V encountered here and that encountered in (4.24).

As in (4.26), term @) yields one term that vanishes upon integration, leaving a sum
from 1toN, — 2.Interm @ we do as in (4 27); we split the double (N0 — 1)sum

J =/N0 - 1 term vanishing since ay,; .y = 0. Term ® becomes
Ni2 Ng2
@@=V 3 3 a VS
=g
Ny-2
+ fdeo“l vao— E a, No-1 VV,fNo
Ng-2
+ [ dxyes dvy, 2 A Vo fvet (4.29)

The last term on the right vanishes upon direct integration with respect to vy,,.
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For term (® we have

LN » s
® =y E fdxM,-l_d"No»r deo dvy, an, * Vv,an

= phe f A%, dvn, B+ Vi f At AV fM,, (4.30)

where the Ny, — 1 termin the sum vanishes upon doing the dvy,., mtegratron The
variables (Xy,,Vy,) and (Xy,-1,Vx,-1) are simply dummy variables of integration on
the far right of (4.30). Therefore, we can switch the labels N, and N, — 1, so that
a;y, becomes a; 5. The density fy, can stay the same, however, because it has the
symmetry property (4.19). Equatron (4.30) bec0mes :

@ — z fdeo‘I vao—l a, No- V fdeovaof(Vu °
= "0 |
: , Vo fyer a
= 3, [ dxner d¥ner 3+ Vo S @31)

which is identical with the middle term on the right of term @) in (4.29). Collecting
all of the remaining terms in @, @, @, and @ and dividing by V we obtain

No2 N Z No-2
_a_"fer + 3 v Vifuez + 2 3, 2y Vo Sura
i=1 rl
+ —2 f dXpyy Vot a,M, V,,,f,,,o_ = o (4.32)

This equation for fy,_, is quite similar in structure to (4.28) forfNo_, Notice again
that this equation does not involve only fy,-,, but also mvolvesto yin the last term
on the left. .

By comparing (4. 28) and (4.32), we sce a pattern emerging. Using the same
manipulations that we have been using (see Problem 4.2), we can generate an
equation similar to (4.28) and (4.32) for arbitrary k. This equation is

&
T+ S Vit 33 a Vi
=1 =l j=1
N — k) &
+ '(_'7_')' 2 fdxkﬂ Aoy gy " Vo Jin = (4.33)
fork = 1,2,..., N, — 2. This is the BBGKY hierarchy (Bogoliubov [1]; Born

and Green [2]; Krrkwood [3, 4); and Yvon [5]). Each equation for f} is coupled to
the next higher equation through the f;,; term.

EXERCISE \Verify that (4.22) forfM, and (4.32) for fy,-, are in agreement with
(4.33). Verify that (4.28) for fy,., is in agreement with (4.33), provided thath, is
replaced by V% f, in (4.33) [see (4.18)].
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' As it stands, the BBGKY hierarchy (4.33) is still exact (within the Coulomb
model) and is just as hard to solve as the original Liouville equation (4.22). It
consists of N, coupled integro-differential equations. Progress will come only
when we take just the first few equations, for k = 1,k = 2, etc., and then use an

approximation to close the set and cut off the dependence on higher equations.
From (4.33) the ¥ = 1 equation is

8 Si(x,vy,0) + vy -V fi

L N1

This is coupled to the k = 2 equation through f,. One way to proceed is to find
some approximation for f, in terms of f,. If we can do this, then (4.34) will be
written entirely in terms of f;, and we will have a complete description of the time
evolution of f(x,,v,,?) given the initial value f,(x,,v,;,t = 0).

This is a good point at which to repeat our interpretation of the functions
Ji(xq,v,,1) and f5(x,,v,,%,,v,,1). We have said before that f) is equivalent to f; in the
plasma kinetic equation; when multiplied by », =N,/V, it is the ensemble averaged
number of particles per unit real space per unit velocity space at the point (x,,v,)
in six-dimensional phase space.

EXERCISE Use the definition to show thatfdv,f,(x.,v,,t) = ] provided that
none of the functions £, k = 1,2,..., N, depend upon the positions x,,x,,
o s Xppe

We may also say that f,(x,,v,,7)dx, dv, is the probability that a given particle finds
itself in the region of phase space between (x;,vy) and (x; + dx,,v, + dv,). The
interpretation of f; is similar to the interpretation of f,. The function f, is the
ensemble averaged number of particles per unit x, real space per unit x, real space
per unit v, velocity space per unit v, velocity space. We may also say that
J2(%1,%1,%,,¥,,£) is proportional to the joint probability that particle 1 finds itself at
(xy,v,) and particle 2 finds itself at (x,,v,). Since in this discussion all particles are
of the same species, we know that an exact expression for f, would include the fact
that no two particles (electrons, for example) can occupy the same spatial location.
Thus, an exact expression for £, must have the property that f, — 0 as x, — x,,
regardless of the values of v, and v,. In developing an approximate expression for
J2; we could of course lose this property. Another property that f; should have is
symmetry with respect to the particle labels: £5(%),1,%5,¥5,0) = f3(X3,¥2,X,,Vy,1).
This symmetry occurs because the original fy, has such symmetry, by assumption.

It turns out that f, has an intimate relation to £;, which can be seen by an
elementary example from probability theory. Suppose we have two loaded dice,
each of which always rolls a five. Then the probability distribution for the value of
the throws of either die is

Pi(x) = 8(x — 5) (4.35)

The joint probability that the value of the first die will be x and the value of the
second die will be y is

Py(x,y) = 8(x — 5)8(y — 5) (4.36)

\\\

vV fdxz avy a;* Vy (X),91,%,9,0) = 0 (4.34) ‘
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But by (4.35) this is just «

Py(x,y) = Pi(x)Pi(y) 4.37)
This separation always occurs when two quantities are statistically independem;’
that is, the value of one quantity does not depend on the value of. the. other
quantity. Thus, it is always useful in considering joint probability distributions to
factor out the piece that would be there if the two quantities were uncorrelaged.
Thus, for the dice we have :

Py(x,p) = Py(x)P\(y) + 8P(x.p) (4.38)
whére 6P(x,y) = 0 by (4.37). For a plasma, we define the correlation function
g(xhvl’xl:vz,t) by : ‘ :

fz(xn"nxz,"z',f) = f:(xnvl,')fn(xz,"z”)
+ g(Xy,¥1,X3,V32,1) (4.39)
This is the first step in the Mayer [6] cluster expansion. A

EXERCISE From the definitions of fy, and f;, convince yourself thatfz'has the
same units as_f f;. .

We are ready to inseft the form (4.39) into the equation (4.34) for f;, which
becomes

alfl(xlavh’) + vl * Vx'fl
+ ”ofdxz dvya;,* Vy, LAV f1(X2,¥2,0)
+ g(x,,v),X2,¥2,0)] = 0 (4.40)

where we have replaced (N, — 1)/V by n, because we are interested only in
systems with Ny >> 1. ' ]

Suppose one assumes that the correlation function vanishes. Tha't is, we assume
that the particles in the plasma behave as if they were con'{pletely lr.ldependent‘ of
the particular positions and velocities of the other particles. This assumption
would be exactly valid if we performed the pulverization procedure dlscussed. in
the previous chapter, in whichn, — ¢,e — 0,m, —~ 0, A — °°;n,e = constant,
e/m, = constant, v, = constant, w, = constant, and A, = consta?t. Then each
particle would have zero charge, and its presence would not affect any other
particle. Collective effects could of course still happen, as these involve only f; and
not g. When we set g equal to zero, (4.40) becomes

afi + Vi L

+ [0 [y dvy 2 filkaw] Vo filxiv) =0 (4:d1)

But the quantity in brackets is just the acceleration a,, produced on p'grticlé | b"y
particle 2, integrated over the probability distribution f;(x,,v,,) of particle 2. This

is the ensemble averaged acceleration experienced by particle .I due to all other

particles, . ) PR
a(x,,t) = rgofdxz dv, a,zf,(xz,\'rz,t) (4.42)

EXERCISE Convince yourself that a is normalized correctly. 3
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Then (4.41) becomes

ity -Vyfita Vv, =0 . (4.43)

which we recognize as our old friend the Vlasov equation.

The Vlasov equation is probably the most useful equation in plasma physics,
and a large portion of this book is devoted to its study. For our present purposes,
however, it is not enough. It does not include the collisional effects that are
represented by the two-particle correlation function g. We would like to have at
least an approxjmate equation that does include collisional effects and that, there-
fore, predicts the temporal evolution of f; due to collisions. We must therefore
return to the exact k = | equation (4.40) and find some method to evaluate g.

Since g is defined through (4.39) as g = f, — f; f;, we must go back to the
k = 2 equation in the BBGKY hierarchy in order to obtain an equation for f;
and, hence, for g. Setting & = 2 in (4.33) and using (N, — 2)/V = n,, one has

® @ ®
o frt+ (v Yy, + vy V2t (ap V,, + ay: V)2
®
+ ny | dx,dvy(a,; Vi, ta3-9) =0 (4.44)

We have seen that it is useful to factor out the partf, f, of f; = f, f, + g, which
exists when the particles are uncorrelated. Likewise, it is useful to factor from f,
the part that would exist when the particles are uncorrelated, plus those parts that
result from two-particle correlations. This leads to the next step in the Mayer
clustet expansion, which is

£(123) = A(DAAG) + £1(1)g(23)
+ £i(2)g(13) + £,(3)g(12) + h(123) (4.45)

where we have introduced a simplified notation: (1) = (x1,v1),(2) = (x,,v,), and
(3) = (x3,v;). Equation (4.45) will be explored further in Problems 4.4 and 4.5.

Our procedure is to insert (4.45) into (4.44) and neglect h(123). This means that
we neglect three-particle correlations, or three-body collisions. It turns out that
these correlations are of higher order in the plasma parameter A; therefore their
neglect is quite well justified for many purposes. The resulting set of equations
constitute two equations in two unknowns f, and g. Thus, we have truncated the
BBGKY hierarchy while retaining the effects of collisions to a good approxima-
tion.

Inserting (4.45) for f; and f, = f, f, + g into the k = 2 BBGKY equation
(4.44), we find for the numbered terms:

O AC) .
® = /DA + 7AW + §(12)

®
@ = v Y% ilDA@ + vy - Yy 2(12) + {1 = 2
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@ =2, "V, DN + ay Vy,;g,(12) + {1~ 2}

@ = n [ d3 2, - Vo, HDADSB) + /1(D2@3)
@ ! .
+ /1(2)g(13) + £iDe(2] + {1 - 2 S (446)

where d3 = dxydv;and {I < 2} means that all of the preceding terms on the right
side are repeated with the symbols 1 and 2 interchanged. Recall that g(12) = g(21)
by the symmetry of f;. Many of the terms in (4.46) can be eliminated using the
k = 1 BBGKY equation (4.40). For example,

@+O@+0+@= {1+ v Vi)
+ o [ d3 2+ V., LHDAG) + d1RAQ)

= [left side of (4.40)]1;(2) = 0 (4.47)
Term (© likewise combines with three of the {I — 2} terms to vanish, leavir_lg

g12) + (vi - Yy + v+ V, )2(12) =
~ (@2t Yy, oy VYUADAQ) + 2(12))

~{ro [ d3 0, ¥, [/(D2@3) + £iDe0D) + (1 ~ )| 448)

Together with (4.40) which in the condensed notation reads

A+ v T i) + o a2 0,

Y, [AMAQ + g(12)] = 0  (@4.49)

we have two equations in the two unknowns f; and g. We have truncated the
BBGKY hierarchy by ignoring three-particle correlations.

In practice, (4.48) and (4.49) are impossibly difficult to solve, either analytically
or numerically. They are two coupled nonlinear integro-differential equations in a
twelve-dimensional phase space. The present thrust of plasma kinetic theory con-
sists in finding certain approximations to g(12) that are then inserted in (4.49).
Using the definition of the acceleration a in (4.42), we rewrite (4.49) as

OO+ vV it aV 5= nfda,v, 500 | @s0)

which is in exactly the same form as the plasma kinetic equation (3.26).

Most of the discussion in this chapter has been exact, in particular, the deriva-
tion of the Liouville equation and the BBGKY hierarchy. Even the approxima-
tions that lead to (4.48) and (4.49) are extremely good ones, for example, | << N,
and the neglect of three-particle ¢ollisions. By contrast, the approximations needed
to convert (4.48) and (4.49) into manageable form are sometimes quite drastic and
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less justifiable, as will be seen in the next chapter. Further discussion of the
Liouville equation and the BBGKY hierarchy can be found in the books of Mont-
gomery and Tidman [7], Montgomery [8], Clemmow and Dougherty [9], Krall
and Trivelpiece [10], and Klimontovich [11].
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PROBLEMS

4.1 Continuity vs. Convective

Demonstrate the equivalence between the convective derivative form of the Liou-
ville equation (4.16) and the continuity equation (4.15).

4.2 BBGKY Hierarchy

Integrate (4.32) over all xy,-, and vy,_, to obtain the k = N, — 3 equation of the
BBGKY hierarchy, and compare your result to (4.33).

4.3 Norpjalization

Explé}"ﬂ in detail the normalization of (4.42).
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4.4 Three-Point Correlations (Coins).

In (4.45) we define a three-point joint probability function f; in terms of the

one-point probability f;, the two-point correlation function g, and the three-point

correlation function A. Suppose we apply this kind of thinking to the case of three

coins, each of which can come up heads (+) or tails (—). What is the meaning of /5

in this case? Write out f;in the form (4.45), and evaluatef,,f,, g,and kin each of

the following cases.

(a) All three coins are “honest,” that is, each coin is equally llkely to come up

- heads or tails, and each coin is unaffected by any other coin.

(b) Because the coins are mysteriously locked together, in any one throw’ ‘all
three are heads or tails, the result changing randomly from throw to throw.

(c) All three coins always come up tails.

(d) The first two coins always come up heads, while the third is honest. Note
that here the probability functions are not symmetric, so that, for example,
fi(1) is not the same function as f(3).

4.5 Three-Point Correlations (Dice)

In (4.45) we define a three-point joint probability function f; in terms of t‘he

one-point probability f;, the two-point correlation function g, and the three-point

correlation function 4. Suppose we apply this kind of thinking to the case of three
dice, each of which can take on integer values from one through six. What is the
meaning of fyin this case? Write out f; in the form (4 45), and evaluate f3, /i, g, and

h in each of the following cases.

(a) All three dice are ‘“*honest,” that is, the value of each die is equally likely
one through six and is independent of the value of any other die.

(b) Because the dice are mysteriously locked together, in one throw all three
always show the same value, the value changing randomly from throw to
throw with all six values equally likely.

(c) All of the dice always come up “five.” »

(d) The first two dice always come up “two"; the other one is “honest.”

4.6 BBGKY Hierarchy

In this chapter, we derive the BBGKY hierarchy from the Liouville equation. This
can be done in a completely different way [10], starting with the Klimontovich
equation. Explain, by using words and writing equations only for illustration, how
the k = 1 and k = 2 equations of the BBGKY hierarchy can be obtained from
the Klimontovich equation. ; :



CHAPTER

Plasma Kinetic Theory Ill:
Lenard-Balescu Equation

5.1 BOGOLIUBOV’S HYPOTHESIS

In the preceding chapter, the BBGKY hierarchy is truncated by neglecting three-
particle correlations (three-body collisions). For a good plasma, this is probably a
ver)irgo‘o'd approximation, although no rigorous proof exists. The spirit of the
approximation is the same as that of Section 1.6, where the collision frequency is
calculated as a series of two-body collisions, even though the particle is interacting
with A particles simultaneously. Since the collision of particle A with particle B is
‘usua.lly a small angle collision, its effect on the orbit of particle A is small, thus
making a negligible effect on the simultaneous collision of particle 4 with
particle C.

The result of our truncation of the BBGKY hierarchy is the set of coupled
equations (4.48) and (4.50) in the two unknowns H(xy,vy,0) and g(x,,v,,x,,v,,0).
'I:hese equations are quite intractable in general. However, there is one set of
simplifying assumptions that is both physically very important and allows the
exact (almost) solution of (4.48) and (4.50).

Consider a spatially homogeneous ensemble of plasmas. This means that any
function of one spatial variable must be independent of that variable; so
Ji(xp,vi,1) = fi(vy,2) and a(x,,1) = a(?) = 0 by (4.21) and (4.42). Any ensemble
averaged function of two spatial variables can only be a function of the difference
between those variables; therefore we write g = g(x; — X,,v,,v,,1). With these
assumptions, (4.50) simplifies considerably and becomes

4, fi(vi,t) = — nofdxz dvy a, * Vvl g(x; = X5,v,,v,,0) 5.1
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Equation 4.48 simplifies since two terms are ofighve form

[no [ d3 2 /i(3)] - Vs, £(12) = 2 9, g(12) = 0 5:2)
leaving P
3, g(x) — Xp,v1,¥put) + v o Vx,g(12)+ v, Vy, 8(12)

+ (a2 Wy, + Ay V,)g(12)
+ mo [ d3 a9, (D823 + n [ d3 4y - V., £2)803)
i CIRA AR TR AV Y1) B e

We now wish to argue that the fourth term on the left is smaller than all the other
terms and can be discarded. Recall the pulverization procedure of the previous
chapter. By that argument, as well as the discussion of collisions in Section 1.6,'we
argue that the two-point correlation function g is higher order in the plasma
parameter A than f,; thusg/f; ~ A™'. The acceleration a;, ~ e*/m, ~"A "since
e/m,is constant and e ~ n,"' ~ A”'; here, we phrase our discussion in terms of
electrons. Thus, all terms in (5.3) are ~ A™! except for the fourth term on the left,
which is ~ A2, We discard this term, leaving ‘ '

9g(12)
at

+ Vg4 Vg=S - (5.4)

where ¥, and V, are operators defined by
Vig(12) = v, = Vy, g(l2)

+ no [ d3a,, £(23)] - Vs, (D) (5.6)
V,g(12) = v, * Vy g(12)
+ (o [ d3as, £(13)] - Vo, £12) (57)

and the source function S is
S(x; — x3,v,¥3) = — (85, Yy, + ay* V) fi(D) £i(2) (5.8)

In this chapter we alternate between the notations (1) and (x,,v,) depending on
convenience. For simplicity, we suppose that we are dealing with an electron
plasma. A neutralizing ion background can be thought to be present; it is consid-
ered to be smoothed out so that it does not contribute explicitly to the acceleration
a;;, which by (4.21) is

et e
a, = — — (x. — X, 5.9
Y mx; — xj" (.bl )) 9

The important physical situation to which this discussion applies is as follows.

Imagine a beam of electrons incident on a Maxwellian electron plasma in the
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f-direction. Then the function
F(v,) Efdv,, dv, fi(v) (5.10)

has the form shown in Fig, 5.1. Ignoring questions of stability (see Chapter 6), we
recognize that the beam of electrons represented by the bump at large positive U,
will experience collisions that will eventually (1 — o) produce a new Maxwellian
at a higher temperature. By the discussion of Section 1.6 we can predict the time
scale for this process to be ~ v,, ~ w,/A. The solution of (5.1) and (5.4) which we
are about to obtain should yield a very good theoretical description for this
important process. This evolution is encountered in such applications as electron
beam-pellet fusion and (when generalized to ions) ohmic heating of tokamaks.
The further assumption that allows us to solve the (still very complicated) set of
equations (5.1) and (5.4) is Bogoliubov’s hypothesis. The assumption is that the
two-point correlation function g relaxes on a time scale very short compared to the
time scale on which f; relaxes [1]. Imagine introducing a test electron into a
plasma. The other electrons will adjust to the presence of the test electron in
roughly the time it takes for them to have a collision with it. With a typical speed
v.and a typical length X, the time for a collision is ~ A,/ v, ~ w,. By contrast, the
time for f, to change because of collisions is ~ Aw,'; thus it is indeed quite
reasonable to assume that g relaxes quickly compared to f;. Mathematically, we
incorporate this assumption by ignoring the time dependence of f,(v,,?) and
Ji(v4,1) in the source function S on the right of (5.4). Equation (5.4) is then a linear
equation for g with a known, constant (in time) source function on the right. We
can solve such a linear equation for g(x; — X,,v,,v,,¢ — o) where t — o is
understood to refer to the short time scale on which g relaxes. The solution for g
will then depend on the factors f(v,,f) and £,(v,,?) in the source function (5.9).
When this solution for g is substituted into the right side of (5.1), there resuits a
single nonlinear integro-differential equation in the one unknown function Ji- We

F(v,)

Fig. 5.1 Distribution F(v,) defined in (5.10) for an electron beam incident on a plasma.
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have finally achieved our goal of truncating the BBGKY hierarchy and have
expressed the entire plasma kinetic equation (5.1) in terms of the one unknown
function fi(v,,1). s

The implementation of this procedure is straightforward but complicated. In

- order to understand it, it is useful to have first studied the material in Chapter 6 on

the Vlasov equation, Thus, we will not perform the derivation here; it is included
in Appendix A. The reader who is studying plasma physics for the first time may
wish to accept the results as given here, and proceed to read Appendix A after a
thorough study of Chapter 6. : .

The solution of (5.1) and (5.4) uses the techniques of Fourier transformation in
space, Laplace transformation in time, and their inverses, The conventions used in
this book are as follows:

r0 = [ emrw e
F o) = [ dkers 1k B AT
J(w) = f d e (1) .13
o= 5 it (@) (5.14)

where the integrals over x, k, and ¢ are usually along the real axes while the integral
over  is along the Laplace inversion contour to be discussed later.

Expressed in terms of the difference variable x = x, — x,, the acceleration a,,
in (5.9) is
el 5
a,(x) = —————mele X : (5.15)
with Fourier transform 'k
—i
a(k) = — ¢(k) (5.16)
m, .
where .
=2 (5.17)
(P(k) - 27r2k2 . »'
is the Fourier transform of the Coulomb potential
82
x) = — (5.18)
w(x) P

(See Problem 5.1.) Then, as shown in Appendix A, the solution of (5.1) and (5.4),

under the Bogoliubov hypothesis, is .

f(vt) _ _ 8a'ng o AR ' G
= U fdk av k- s E
X 8k (v — VISV, f(v) — f(¥V)V, f(¥)] (5::‘1'9)




64 Plasma Kinetic Theory 1l

which is the Lenard-Balescu equation (Refs. [2] to [6]). In this equation, we have
dropped the subscript 1 from v,, and the subscript 1 from f;, and have used the
dielectric function

k-V,f(v)
szd —k-v

which will be studied in detail in the next chapter. The velocity integral must be
performed along the Landau contour, as discussed in the next chapter. The inter-
pretation of the Lenard-Balescu equation (5.19), and several alternate forms, will
be discussed in the next section.

(5.20)

5. 2 'LENARD-BALESCU EQUATION

The Lenard-Balescu equation (5.19) is obtained from the BBGKY hlerarchy after
several assumptions: three-particle correlations are negligible, the ensemble of
plasmas is spatially homogeneous, and the two-particle correlation function g
relaxes much faster than the one-particle distribution function f;. Thus, the Len-
ard-Balescu equation is applicable to situations such as the collisional relaxation
of a beam in a plasma, but is not applicable in general to the collisional damping
of spatially inhomogeneous wave motion or any phenomena that involve high
frequencies like w,.

The right side of (5.19) represents the physics of two-particle collisions, since the
right side of (5.1) is proportional to the two-particle correlation function g. This is
indicated by the factor ¢(k)/e(k,.k - v), which appears squared. It will be shown in
the next chapter that the dielectric function e(k,w) represents the plasma shielding
of the field of a test charge. Thus, this term in (5.19) represents the interaction of
one particle (together with its shielding cloud) with the potential field of another
particle (together with its shielding cloud); that is, the collision of two shielded
particles.

There is a problem with the Lenard-Balescu equation (5.19) as it stands. If one
converts the k integration into spherical coordinates, and takes into account the
forms (5.17) of ¢(k) and (5.20) of e(k,w), one finds that at large k the integral
diverges likefdk/k ~1n k. Thus, just as in the derivation of the collision frequen-
cy in Section 1.6, we find a logarithmic divergence at large k, or small distances. In
Section 1.6 we cut off the spatial integral at the lower limit p,, where p, is the
impact parameter for large angle collisions. It is argued in Section 1.6 that the
physical formulation is not valid for large angle collisions, thus producing an
unphysical divergence at short distances. The same thing is going on here. The
derivation of the Lenard--Balescu equation is based on the assumption that in the
expression

£(12) = (1) /() + g(12) (5.21)
we have |g| << |f, f,l. This assumption led us to discard a term in (5.3) to obtain
(5.4). However, this assumption is not always valid. It is not possible for two
electrons to get very close to each other; therefore, we must have f;, ~ 0 as
X; — X,, which impliesg = — f, f,. Thus, for small values of |[x, — x,| (large k),
it is not correct to assume |g| << | f, fi]. In practice, since the divergence is
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logarithmic, we can simply cut off the integral in (5.19) at some upper limit wave
number corresponding to some lower limit spatial scale. For this purpose, the
impact parameter (Landau length) p, for large angle collisions (see Section 1.6)
would be a reasonable choice.

The Lenard-Balescu equation (5.19) has several desrrable features [4- 5] These
are:

(@ Hf=0atr=0,f=0atall.

(b) Particles are conserved: d/dtfdv flv,) = 0.

(c)  Momentum is conserved: d/dtfdvv Sfv,t) = 0.

(d) Kinetic energy is conserved: d/dtfdv v? f(v,t) = 0.

(e) Any Maxwellian is a time-independent solution.

(f) Ast — oo, any fsatisfying (a) approaches a Maxwellian,

A simplified but fairly accurate form of the Lenard-Balescu equation (5.19) can
be obtained as follows. We rewrite (5.19) in the form

WD = — v fav @ 0%, = VAIMIW) 52D
with the tensor ; i
= 8a'n kke?(k) ,
Q (vv) = -#fdkmé[k-(v—v)]
4 -
. 2nof f kk Sk * (v v)! 523
m, ,l + Y ¢ l
KNE

where the definition (5.17) has been used, and where the dimensionless function ¢
is found from (5.20) to be :

k- V,f(v)
k(v —v)
Again, the velocity integral must be performed along the Landau contour, as
discussea in the next chapter The wave number integral in (5.23) is performed as

follows. When we orient the kl axis in the v — v dlrectlon the Q;; component of
the tensor Q is :

Quvy) = —

Pkk-v) = v, fdv (5.24)

e Kl 1 8(k,)
3 k‘ v —v| 11+ WA

(5.25)

The factor 8(k,) implies Q;; = 0 if either i =1 or j = 1. The k, integration is
trivially performed using this factor. In cylindrical coordinates with k, = k cos 0
k; = ksin 6, and cutting off the integration at an upper wave number ko = p,!,
we find, using Q;; as an example,

n o 2n,e’ dk 1
0ulry) = = oy [ dosin’ of T T aamsr 69

m2v — V|

Since 4 is a function of 8 but not of k [see (5.24)],,the wave number integration can
be performed (Problem 5.3). The result is
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. nye’ 2r  Im{gln (I + k2A2/ )]
Qu(vy) = mj; de m(9)
It turns out (as can be seen more clearly after a study of the following chapter) that
the dimensionless function y is of order unity. In addition, we recognize the factor
koA, = A./p, from Section 1.6 to be (within factors of order unity) the plasma
parameter A. Thus, we neglect unity compared to k,?A,2/4, and In () compared
to In (ky2A,%) =~ In (A2) = 21n A, to obtain

2mnget

Qu(v,V') = Qy(v,y) = — T’T

Similar arguments yield Q,; = @;, = 0. A tensor with only the Q,, and Q,,

components nonzero can be convemently expressed in terms of the unit tensor I=

k k, + k2k2 + k3k3, with g = v — v’ and recalling that kI = &, we have
- 2rnee’in A g2 T— gg
Q(v’v) == m 2 g3

This expressnon is known as the Landau form for Q.

With Q in the form (5.29), it is possible to put the Lenard-Balescu equation
(5.22) in the form of a Fokker-Planck equation. The general Fokker-Planck equa-
tion is a very important equation in all aspects of statistical physics, and is derived

from first principles in Appendix B. Following Montgomery and Tidman [5], we
notice that

sin?8 (5.27)

InA . (5.28)

(5.29)

)
I —_
v, vg=5—E8 z B (5.30)
so that with an integration by parts (5.22) becomes
2mwnget In A
0 f() = TEEL v (9, 1) - VY, [ dv g7(v)
— 1) [ av 99, V) 1)
2mnget In A
= SRS W OV, [ gf ()]
= 29,17 [ dv 99, - Vg 1)
2mnq.e’ In A L f
= TR - 4w, [row o B2
+ V9, U0, [ dv g £(v)) (5.31)
where in the first step we have used V,g = — V,.g, and in the third step we have

used (V,* V,)g = 2/g. This is in the standard form of a Fokker-Planck equation
(see Appendix B),

af;:,;) == Ve [Afml + % v, : B (5.32)
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where the coefficient of dynamic friction
8mnge’ In A f , (v 1)
A(v,) = m? V.| dv — (5.33)
and the diffusion coefficient
4
B, = ‘3—’5”“7"3'“—‘3 vV, f av v = VISV, (5.38)

With the coefficients (5.33) and (5.34), Eq. (5.32) is known as the Landau form of
the Fokker-Planck equation.

The meaning of the terms in the Fokker~Planck equation is discussed in Ap-
pendix B. The coefficient of dynamic friction A represents the slowing down of a
typical particle because of many small angle collisions. The diffusion coefficient
represents the increase of a typical particle’s velocity (in the direction perpendicu-
lar to its instantaneous velocity) because of many small angle collisions. Thus, thé
two terms on the right side of the Fokker-Planck equation (5.32) tend to balance
each other. They are in perfect balance when f is a Maxwellian, as shown in
Problem 5.5.

The Landau form of the Fokker-Planck equation (5.32) has been solved: nu-
merically by MacDonald et al. [7] (Fig. 5.2). The initial distribution function
S(v,t = 0) = f(lvl,t = 0) is spherically symmetric in velocity space. Figure 5.2
shows the steady progression of the distribution, as time increases, toward'a Max-
wellian. At late times, there is an overshoot at low speeds, which indicates that it

Maxwellian
distribution

distribution

Dimensionless velocity .

Dimensionless velocity
Fig. 5.2 Time evolution of a spherically symmetric electron distribution function as ob-

tained from a numerical sofution of the Landau form of the Fokker-Planck equation (5.32)
by MacDonald et al. {7].




68 Plasma Kinetic Theory 1l

takes a long time to populate the high speed tail of the Maxwellian. (Remember
that Coulomb collisions become quite weak for fast particles.)
There exist even simpler forms of the Fokker-Planck equation [4] but these are
not too accurate and are used only to get a rough idea of collisional effects. One is
of

a7 = vVl = v+l f] (5.35)

where v is a collision frequency, and v, is a constant velocity. An even cruder
model, which is not related to the development of the present chapter, is the Krook
model,

of

== - 1) (5.36)

where f, is the appropriate Maxwellian distribution. Equation (5.36) is also called
the BGK equation, after Bhatnagar, Gross, and Krook [8].

This brings us to the end of our study of plasma kinetic theory including the
effects of two-body collisions. The material in this chapter can be truly appreciated
only after a careful study of Appendices A and B. However, Appendix A itself can
best be understood after one has mastered the treatment of the Vlasov equation, to
which we turn our attention in the next chapter.
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PROBLEMS

5.1 Fourier %ransforms

Find the Fourier transforms (5.16) and (5.17). (Hint: Use spherical polar coordi-
nates with k - x = kr cos 6.)

Problems 89

5.2 Lenard-Balescu Equation

After referring to Clemmow and Dougherty [4], ahd Montgomery and Tidman

[5], sketch the proofs of properties (a) to (f) of the Lenard-Balescu. equatlon as
listed below (5.21). .

5.3 An Integral

With the help of a table of integrals, perform the integration in (5.26).

5.4 Simpler Derivation of the Landan Form

The development of the Landau form for Q, from (5.23) to (5.28), is the standard
one. However, a simpler one exists. In (5.23), replace e by unity, and cut off the
wave number integration at a lower wave number A,™! as well as at the upper wave
number p,”'. Show that (5.28) results. The replacement of e by unity is equivalent
to ignoring the shielding, as can be seen in (5.20).

5.5 Maxwellian

Show that a Maxwellian is an exact time-independent solution of both the Len-
ard-Balescu equation (5.19) and the Landau form of the Fokker—Planck equation
(5.32). :

5.6 Two-Point Correlation Function e v ,

Discuss the meaning of /, = f, f, + g. Why shbu']dvg depend on f,? In particular,
how would g change as we turn up the temperature of a Maxwellian?

5.7 Plasmas and Brownian Motion

Discuss the analogy between collisional effects on a particle in a plasma and
Brownian motion. Explain why the collisional effects can be described by a Fok-
ker~Planck equation. Thus, using only words, explain how we could use the
results of Section 1.6 on collisions to obtain the Fokker-Planck equation directly;
without starting from Liouville -~ BBGKY — — Lenard-Balescu — Fokker~Planck.
This is actually the technique used by Rosenbluth et al. [9].

5.8 Units

Check all of the units in (5.19) to (5 36). Using crude dimensional é;gument's,
derive the model (5.35) from the Fokker-Planck equatlon (5.32) and the coeffi-
cients (5.33) and (5.34).



APPENDIX

Derivation of the
Lenard-Balescu Equation

In this appendix, we complete the derivation of the Lenard-Balescu equation
(5.19) starting from Eqgs. (5.1) and (5.4), which in turn are obtained from the
BBGKY hierarchy by discarding three-particle correlations (Refs. [1] to [5]). From
(5.1) and (5.4) to (5.8), we have

3, filvyst) = — "ofdxz dviaay * Vy g(Xp = Xg,V1,V2,0) (A.1)
3 . 5 o :
Frl g(xy — X, V1,¥p,1) + Vig + Vog = S(x; — X5,v,¥3) ((A2)

V,g(12) = v, * Y, g(12)

+ [no [ d3 235 32)] * Uy, %) (A.3)
V,2(12) = v, + Vyg(12)
+ [ f 432y g(I3)] - Vo i) (A.4)
SO = Xa¥i¥s) = — (A - Vo, + 80 VOAODLAG)  (AS)

where we have used g(32) = g(23), we alternate between the notations (1) and
(x,,v,) depending on convenience, and we recall from Chapter 5 that we wish to
solve for g(1 — ) where 7 is the fast time scale on which g relaxes. On this fast
time scale, the functions f; and thus S are considered to be constants. We shall also
need, from (5.9),
e’ :
a; = mal% = X1 (x; — x) (A.6)
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Using the Fourier transform conventions in Chapter 5, we spatially Fourier trans-
form these equations with respect to x, and x,. Because of the appearance of the
combination (x, — x,), we obtain the factor 5(k, + k,) in several places and, thus
can replace k, by —k,.

y

EXERCISE For any function f(x, — x,), show that the double Fourier trans-
form with respect to x, and x, is 8(k, + k,) f(k,) where f(k) is the Fourier
transform of f(x) with respect to x.

EXERCISE Show that [dx f,(x) f,(x) = (2m)*[dk f,(—k) f(k) for any functions
Sy and fy; here, f(k) is the Fourier transform of f,(x), etc., as usual.

EXERCISE Show that the double Fourier transform off dx; fi(x; — x3)
X fxs — x3) is (27)° 8(k, + K,) £1(k,) fo(—k)).

With the results of these exercises, and Eq. (5.16) for a,,(k), the Fourier trans-
formed version of (A.1) to (A.6) is

. ing(2m)’
R afivt) = = ===V,
| [ v dk b otk)g v T = ) @A)
a ~
—a";- g(klavlvvbt) + Vlg + VZg = S(klrvth) (A8)

Vig(12) = ik, - v,g(12)

27)? .
— no(’nﬂ') Ikl . Vvlf,(v,)<p(k,)fdv3 g(kl’v),"z,l) (A9)

V,8(12) = —ik, - v, g(12)

2m)? -
+ BT v, et [ vt (A.10
k
St = B i (9, — v,) £ i) (A1)

(4

Our goal is to express the right side of (A.7) in terms of f; by solving (A.8) for g.
With (A.7) in its present form, the remainder of the calculation can be performed
in wave number space; because of the factor i on the right of (A.7) and the fact that
the right of (A.7) must be real, we need only calculate the imaginary part of
g(kl’vlrvb; = °°) .

The solution of (A.8) for g(k,,v,,v,,7 = o) is accomplished by Laplace trans-
forming with respect to the fast time 7.

EXERCISE For any function g(t), show that the Laplace transform of dg/dt is
—g(t = 0) — iw g(w).
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With the result of this exercise, the Laplace transform of (A.8) is

— gk vivad = 0) = iw g(kiviva0) + Vi g(120)

+ Vyg(120) = — = S(hy¥,) (A1)

where g(w) is defined only for w; = Im(w) sufficiently large, and where the opera-
tors ¥, and V, can be regarded as numbers since they have no time dependence in
(A.9) and (A.10). Solving (A.12) for g(w) we find

_ 80 =0) — (§/iw)
8w = T T T,
We require g(f = o). This can be obtained from the inverse Laplace transform of
(A.13). It turns out that distribution functions f,(v) that are stable in the Vlasov
sense (Chapter 6) are such that the zeros of —iw + V, + ¥, always occur in the
lower half w-plane. We consider only such stable distribution functions f;(v).
Thus, the inverse Laplace transform

(A.13)

~ [ do g =0 — Slie

80 =) 2 e+ 7, F 7, °

can be performed by deforming the Laplace contour as shown in Fig. A.l. Since
poles in the lower half plane contribute only damped functions of time, ~ exp
(w;t), the only pole that contributes to g(t = o) is the one at w = 0; therefore,

gmiat (A.14)
g(i = ») = lim § L (A9

w0 —iw + V| ¥V,

Original contour

N
D
£

I I

Deformed contour

Fig. A.1 Inverse Laplace contour for calculating g(7 = o).
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where we retain the lim__g to help us interpret other contour integrations that
occur in the calculation. _ ..

At this point, we introduce a trick that allows us to treat the operators Viand V,
s€parately, rather than in the combination V, + V,. Consider

1 f’” oV —
——— e — dt (iw—V =V,
ie vV, ¥y, J,aeT
=fwdt grat dw, e~ oy dw2 . -e-—iwzl
0 o 2m ey + Vi Je, 2 —iw, + V,

__f dw, f dw, 1 1 ) 1
T 2 e, 2 —iw, + V|, Tia, TV, —i(0 — o, — w)

(A.16)
where the contours C, and C, must be chosen so that w, > wy; + wy. Then
(A.15) becomes
’ g(klvvl’vb; = °°)

= lim o 2 e —iwy + V, —imy + ¥V, ~Hw — o, — a)
(A.17)

In expressions (A.13) to (A.17), we interpret the meaning of an inverse operator
(—iw, + V,)'F acting on a function F to be that function G such that F =
(—iw, + V,)G.

We first need

dw, f dw, 1 1 S(ky,v,,v,)
2

1

e ¥ 7, S(ky,vy,v,) (A.18)

olk;,v,v,) =

such that
Sk, v,v,) = (—iwy + V)ak,,v,,v,)

i2n)n,

X i)k, [ dvy alk,,v5,) (A.19)

= (e + ik v)alk,v,,v,) — k- v,

In order to solve this for & we must first eliminatefdv3 a; we express (A.19) as

. - S(kiviv)

alky,vy,¥,) = Tie T ik, v,

1 3
+ 1(2::;) [ kl . Vv'f,(v,)<p(k,)fdv3 a(khvhvz)] (AZO)

" and integrate over all v, to find
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fdvl a(kl »Vl,gV;)

=fdv' —SM + [fva a(k,,V3,V2)]
1

—iw, + ik, v

kl ¢ Vvl.fl(vl)
~iw; + ik, v,
Realizing that v, on the right is merely a dummy variable of integration, we find

1 S(ky,v3,v,)
d — 1573:%2
Javs atkivvs) Fouy [ n e o (A.22)

s
X D gy fay, (A21)

where
k| * Vv'ﬁ(vl)
w, — kv,

w,’
ekyw) =1 + Wfdv,

is the dielectric function encountered in Chapter 6. Thus, (A.20) becomes

(A.23)

1
atk,,v,,v,) = ‘W-v— [S(k,,v,,vz)
1 1

(27 nek, - V v )o(k, )/ m S(k,,v
+ oKy * Vy fi(vi)eo(ky) tfdv, ‘ (k, J.v"z) ] (A.24)
ek, w,) —iw; + ik, - v,
which completes the inversion of the operator (—iw, + V)
Next, we need
fdvzﬁ(k,v v)=fdv — L k) (A.25)
2V 72 2 __iwz_l_ Vz 1571572 . i

where we have noted from (A.7) that we needfa'v2 g rather than g, allowing us to
use the compact analogue of (A.22). Noting that V, is the same as V, if the sign of
k, is changed and if v, and v, are interchanged appropriately, we find

1 a(k,vi,v)) . L
d k ,¥y, — 12 ¥1s%2
f v Blkivie) e(—k,w,) -[dvz ~iwy, — ik, * v, (A.26)

With the result (A.26) we have from (A.17) .

fd"z gk, vyl = )

- dw dw 1 1
= lim -t bt
w0 o 27 fc; 2m e(—kpw) —i(w — ®, — wy)
1 1
X far, — |
V2 —iw, ~ ik r v, —iw, + ¥, Stky,v,,v,) : (A.27)

We perform the w, integration first, along the contour C, shown in Fig. (A.2).
Since thermtegrand behaves like w, for large @,, we can close the contour upward




Wy = w—oy

Y

e Wap
wy =—Kky o v,

ec(—ky, w,y)=0

Fig. A.2 Contour C, used in evaluating (A.27).

and pick up only the pole at w, = w — w, yielding

3 d
de2g(k|,Vl,Vz,t = °°) = Iim dv2 -5‘—;-'—

w0 Ci

' 1 1 1 ‘
X e —w) e = e =Tk v, —ia, ¥ 7, SEKnvuv)  (A28)

Inserting the results (A.11) and (A.24) we have

~ I dw,
fd"zg(knvh"z,f = ) = l:)f_f‘o fd"z ‘ &

1 1 1
(k0 ~ ) —ilw — o) — ik v, —iw, + ik, v,
K O @

X [t - ek, = T i)

iQ2m)nok, - Vv,fl(vl)¢2(k1)/me2
€(k|,ﬂ)|)
© o
x far, 2 1) 1) (A29)

X

There are four numbered terms in the square brackets. Including the v, integration
and the denominator containing v,, we have
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_ —iky e ¢(k|) Vo, f1(V2)
® = m, 5o [ av, —i(w — ;) — ik, - v,
= 2 o = @) = 1] (A30)

where (A.23) has been used. Similarly,

—iQ2m)ny Jilvy)
® = e(khwl) [fd V2 —i{w — o) — ik 'Vz]

-V,
vy fl(Vl)(P(k,)/m, [‘p( 1) fd vy ad i{l-l(v;)

«p(k )
- [ ek,,w )] (=iky+ Vv,fl(vl) Rk 4

X fdv2 Silv) ) (A31)

—i(w - w,) - 'kl * Vv,

where (A.23) has been used again. Likewise,

otk VA
@ [ ik, (2”)3'10 dv2 —i(w — ) — ik, * Vz]
k, - Vv,fl(vl)‘P(kl)/me S1(v3)
ek, ) fdv; Wy — kl 'V
_ k0 — w) — 1] wlky)
= T ey ke e S
X f dv, Jj(vk”l)  (A32)

Cancelling term @ with one of the terms in term @, we combine the remammg
terms to obtain

do 1
d =) =lim [ 22
f ng(klsvl’vh’ °°) 1‘1210 a 2 —iwl + lk| i

® ® ©
_ 1 AV ke S0k )/m,
x {[’ prea— w,)] PXEISY (ko)
@ ®

% fd"z Ji(vy) ] ik, * Vv,fn("l)‘P(kl)/me

w — kv, ek, w)e(—kj, 0 — )

X fdv2 B ) 'k.-vz} (A.33)

—i{lw — w) — i
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el—k,, w—c,)=0 euw =wtk, - vy
.

Y

.
Wy =Ky vy wy =

~
.
<
~N

o elky, w,)=0

Fig. A3 Contour C; used in evaluating (A.33).

where a change of dummy variable has occurred in term @. Recalling from below
(A.16) that we still have w;, > o, along the C, contour, and recalling that stable
distributions f,(v) imply that the zeroes of €(k,w) occur only for w; < 0, the C,
contour and the poles of the integrand on the right of (A.33) are as shown in Fig.
A.3. Note that not all of the poles occur for each of the terms in (A.33).

Term (9 is evaluated by closing the contour C; downward, yielding a contribu-

tion only from the pole at wy = k; + v, which gives
| __ﬁm)[_ ! ]
©= e I~ @me T (439

EXERCISE Convince yourself that the integrand falls off fast enough at large w,
to allow the contour to be closed downward.

Term@ X (@ vanishes when the contour is closed upward. Finally, we consider
the remaining two pieces together: these are

=1 dw, 1 1
OX@+ 0= ]:'To fc. 2 —iw, + ik, -V, €—k,0 — @)
1 (ky)
X Gy o Tt S [
X[wl—k,.v2+wl_w__kl,v2]- (A.35)

At this point it is convenient to use the fact that in (A.7) we only need the
imaginary part offdv2 g- As we move the contour in Fig. A.3 down to the real axis
(let @ — 0), the integrand of (A.35) appears to vanish. However, we must be
careful at the pole w, = k, * v, and at the two poles that pinch the contour at
w; = ky v, and w; = @ + ki * v,. Recall the Plemelj formulas,
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. 1 L 1 . N ,

l,,lf(]) e P(w — a) F indlew — a) (A.36)
where the upper sign is used when a contour passes above a pole, and the lower
sign is used when a contour passes below a pole. Then

Reklim ! [ -l ! ]
w0 @ T KV Lo — kit o~ w— kv,

= Re[p (——1——-) — ind(w, — Kk, 'vl)]

w — kv
1 . .
X [ P (m) -+ 171'6(0;, k| VZ)

— 1
o, — kv,

+ P( ) + ind(w, — k, -vz)]
= 228w, ~ ky * v)8(e;, — k; - v,) S (A9

where Re indicates the real part. If we use one of the §-functions to perform the w,
integration, (A.35) yields

Im(® X @ + @1 = irk,* ¥, fi(v) Lkt

' Xfa'v,_ o[k, * (vi — v))1/i(v)

le(ky Kk, v))? (A-38)

where we have used the fact that ¢(—k,—w) = e*(k,w) when w is real.

EXERCISE Demonstrate this fact from the definition (A.23) of e(k,w). Show
that for w real, Im{e(k,w)] = — in(w,/k2) [dv [k V, f,(¥)](w — k - V).

Similarly, if one uses the results of the exercise,

L) Imle(ki ok, - v)] =i fi(v)eky)/m,
no(2m)*  fetky kv lekyky = vy))?

Im[©] =

X [ av, Ik, + ¥, fi(v2)100K, - () = v A3
Finally, inserting (A.38) and (A.39) into (A.7), one obtains

8m'n, f kk, - ‘Pz(kl.)
mz VS M G TR

X Ok - (vi = VANV, £i(v) = [iv)Vy, £i(W)] (A.40)

which with appropriate changes of variables is the Lenard-Balescu equation (5.19).

vy, 1) = —
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APPENDIX

Langevin Equation,
Fluctuation- Dissipation
Theorem, Markov
Process, and -
Fokker-Planck Equation

B.1 LANGEVIN EQUATION AND FLUCTUATION-DISSIPATION
THEOREM

The discussion of plasma kinetic theory, including collisions, in Chapters 3, 4, and
5, led to the Fokker-Planck form of the plasma kinetic equation in (5.31). This is
not a coincidence. In this appendix, it is shown that the Fokker-Planck equation
arises naturally whenever a probability distribution [i.e., the one particle distribu-
tion function f(v,7)] changes slowly in time because of huge numbers of small
changes (i.e., small angle collisions).

In order to motivate the Fokker-Planck equation, we use a physical example
that is simpler than a plasma; namely, the case of Brownian motion. This will lead
us to the related topics of the Langevin equation, the Sluctuation-dissipation theo-
rem, and Markov processes. As we study the example of Brownian motion, ask
yourself how each step corresponds to its analogue in the plasma case.

The Langevin equation arises whenever a variable experiences a slow time
variation as a result of a rapidly varying force. The best known example of. this is
the case of Brownian motion. A large particle (mass ~ 10"'2 gram) exhibits
Brownian motion when bombarded by the molecules in air (mass ~ 10722 gram).
The path of the particle may look as shown in Fig. B.1. The human eye, looking
through a microscope, cannot see the fine structure on the curve shown, and so
instead [1, 2] sees the curve in Fig. B.2. The wandering motion is, essentially, a
random walk due to the large number of collisions that the particle suffers per unit
time with the gas molecules. Picking out one of the dimensions of the motlon ‘we
can write Newton’s force law in one spatial dimension,

M. F(n (B.1)
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Fig. B.1 Path of a Brownian particle.

where F(7) is the force per unit mass on the Brownian particle. Thus, F(1) contains
the sum of many collisions, each lasting an extremely short time,

To study the physics of (B.1), we can consider an ensemble of realizations, each
having the same initial speed v(t = 0) = vy but different random functions F(t).
Our intuition tells us that the overall effect of the many collisions will be to slow
the Brownian particle, so that (u(#)) = 0 as t — oo,

Microscopically, the Brownian particle slows because it collides with more par-
ticles in the direction of motion than in the opposite direction. It thus gives up net
kinetic energy to the gas molecules, which leave the collision with a net gain in
right-going momentum.

This discussion leads to the conclusion that the ensemble average of the force on
the right of (B.1) must contain a term that tends to siow the Brownian particle.

Fig. B.2 Path of a Brownian particle as seen by the human eye.
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Thus, we spht the force F(1) into two terms, . ‘
F(1) = (F(n)) + &F(1) ‘ (B.2)

“so that (0F(1)) = 0. The ensemble averaged part of F(r) will depend on the

properties of the gas, and on the speed v of the Brownian particle. Suppose we
Taylor expand this quantity in terms of the particle speed v:

FM) =¢ + v+ ;v + ... ‘ (B.3)
When v = 0, we want (F) = 0, since there is then no preferred direction; thus,

¢, = 0. Let us then keep only the next term in (B.3). Because we expect this term
to slow the particle, we introduce the minus sign explicitly through the introduc-

tion of a new constant » such that ¢, = —p; our force equation (B.1) now reads
DA = — o) + 6F (1) (B.4)

which is the famous Langevin equation (Refs. [3] to [7]).
The constant v in (B.4) represents dlSSlpatlon This can be seen by taking the
ensemble average of (B.4)

L w0y = = vt (3)

so that
(1)) = yoe™! (B.6)

(Recall that each realization ofthe ensemble has initial speed v,). Thus, the char-
acteristic slowing down time is »™, and since the slowing down means a decrease in
kinetic energy, v represents dissipation.

Let us next investigate some of the statistical properties of (B 4). This equation
is a linear inhomogeneous first order ordinary differential equation and lhus is
easy to solve. We have

%)- + vu = 8F(1) ‘ (B.7)
Multiplying each side by e’ we have
g .
a [v(t)e”’] i= e¥ §F(1) (B.8)
Thus ’ _
une” = y, + f "dr SE(1)er” ¢ (B9)
o
or
; ’ .
“ul) = ype vt + e“"'f dr’ 8F(t")e" 3 (B.10)
H ) o .

The ensemble average of this equation reproduces (B.6),
(1) = yee™ (B.6)
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(8F(t') 8F (¢"))

—_— r—g"

H
1

-
-

Fig. B.3 Autocorrelation function of the fluctuating force 8F (), indicating the relative
time scales 7, and v'.

Next, we square the velocity and ensemble average. Using (B.10), we have

V(1) = vy e~ + e f "dr sE()er)
0
t
X [we™ + e f dr SF(1")e"])
(1]

= ple~ + =Mt f "dr e f " dr (SE(1)SF(")er” (B.11)
0 0

where two terms have disappeared in the ensemble average.

We now make the important assumption that 6F is only correlated with itself
over a time 7, extremely short compared to the characteristic dissipation time »™!
(Fig. B.3). We furthermore “assume that 6F is a stationary process, so that
(8F(#)8F(¢")) is only a function of the time difference 1 — ¢”. The correlation
time 7, is roughly the time of one molecular collision.

We are interested in the integral

] = v f "dr e f " dr (SF(0)SF(1")yer (B.12)
0 0

The above arguments indicate that the integrand is onli' important (nonzero) for
' = 1", as shown in Fig. B.4. With the change of variable y = ¢ — ", dy =

¢

Integrand nonzero

¢

¢

Fig. B.4 Region of the 1" plane that contains a substantial contribution to the integral
in (B.12).
s
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¢
1/,1 ————————
- -
- -
Pl b |ntegrand nonzero
l// e - “. y
B 3 ; t

Fig. B.5 Region of the {’-y plane that contains a substantial contribution to the integral in
(B.13).

— dt”, (B.12) becomes

t ’
1= e [ arer [ ayer-werwrw -y - @.13)
0 : r'—t .

By stationarity, we can write
BF(1)SF(1 — y)) = (SF(0)8F(—y))

= (8F(0)6F(y)) (B.14)
where the last equality is due to the evenness of the correlation function. The
integral in (B.13) is now substantial in the region shown in Fig. B.5, where y =
I — ¢’ = 0. Since the integrand is only important near y = 0, we can replace the

upper limit of y-integration by +o° and the lower limit of y-integration by —oo.
Then (B.13) becomes

I=em f "dr e f " dy (SF(0)5F(y)) (B.15)
5 9

* where we have discarded the factor e—*” that is unity when y = 0 where the

integrand is important. The ¢’ integration can now be performed,

1= —2‘7 (1 — =2y f : dy (5F(0)5F(y)) (B.16)

so that the full equation (B.11) now reads

W) = wlew + *217 (1 — e f " dy (oF (O8F(y) (B-l-7i

If we allow the time to become very large compared to the dissipation time »™!,
then we obtain an expression for the thermal fluctuations of v2,

W) =3 —217 f " dy (5F(0)8F(y)) (®.18)

However, we know from elementary thermodynamics that in thermal equilibrium,
the Brownian particle will have AT of kinetic energy per degree of freedom (Boltz-
mann’s constant is as usual absorbed into the temperature T). Thus, elementary
thermodynamics preqicts

WM (1)) = WT ' (B.19)
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or"
(1) = AZI (B.20)
Equating (B.18) and (B.20) we have
&= [ ay (sF©)6F ) (B.21)
or -
y = % f " dy (BF(0)SF(y) (B.22)

which is the fluctuation-dissipation theorem.

Equation (B.22) expresses the amazing fact that the dissipation of a Brownian
particle is directly related to the correlation function (8F(0)6F()) of the fluctuat-
ing force F(#) = (F(1)) + S6F(r) whose ensemble average (F) produces the dissi-
pation. This is a fundamental result of physics that applies in many situations: in
the theory of electric circuits it is known as Nyquist's theorem.

This concludes our discussion of the Langevin equation and the fluctuation~dis-
sipation theorem. In the next section, we shall consider the related topic of Markov
processes and derive the Fokker-Planck equation.

B.2 MARKOV PROCESSES AND FOKKER-PLANCK EQUATION

In the previous section, we considered the behavior of a Brownian particle and
derived the Langevin equation together with a fluctuation-dissipation theorem. In
this section, we show how the behavior of a Brownian particle can be described by
a Fokker-Planck equation. The Fokker-Planck equation is a very general equa-
tion in physics; it describes not only Brownian particles, but any phenomenon that
in some approximate sense can be thought of as a Markov process.

A Markov process is one whose value at the next measuring time depends only
on its value at the present measuring time, and not on any previous measuring
time. Thus, if x(¢) is the random process, and x, = x(t,), with 1, > 1,., > ... >
1, > 1y, a Markov process has a probability density such that

P{x| Xy Xy - o o Xy X0) = p(X1X,01) (B.23)
where the notation p(a]b) means “‘the probability density of a given that b was
true.” Thus. for a Markov process, the probability that x, = 5 depends only on
what the value of x,., was; it does not depend on what the values of x,._,, x,._,, etc.
were,

There are both discrete and continuous Markov processes. An example of a
discrete Markov process is given by flipping a coin. A trivial example comes if we
give each toss a value x(7,) = x, = + | for a toss of “‘heads” and a value
x, = — 1for a toss of “tails.”” Then x is clearly a Markov process, since p(x,) =
%18(x, — 1) + %b(x, + 1) does not depend on x,_,, much less on x,_,, x,.;, etc.

A better example of a discrete Markov process is given by defining the random
variable
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x(t)

i t
Lyt By by ey

Fig. B.6 Any function in nature can be drawn as a smooth curve as shown.

Xt) =X, = 2. x, (B.24)

where the x; are given by the coin tosses of the previous paragraph. Now X is
clearly a Markov process, whose probability density at ¢, very definitely depends
on the value of X,_,, but on no previous value.

EXERCISE Calculate p(X,,lX‘_,) for this example.

To give an example of a continuous Markov process is more difficult, because a
continuous Markov process cannot exist in nature. To see this, consider any
random function that we can draw as a smooth curve, as in Fig. B.6. Now, on the
time ecale shown, it appears that x,,,, not only depends on x,, but also on x,.,. That
is, x,., not only depends on X,, but also on the derivative of the function
dx(t)/dtl,=,n, which can be written

dx(t) X, T X

dt L=, = At i (B'»ZS)

Thus, this function is not a Markov process. In fact, no function that is a continu-
ous curve and, therefore no physical function, can be a Markov process.

This does not mean that Markov processes cannot be a good approximation to
a physical process. Consider the velocity function of the Brownian particle in the
previous section (Fig. B.7). We have seen that the velocity consists of a rapid
fluctuation due to each molecular collision, together with a slowing down or net -
friction force. Thus, on the time scale of molecular collisions, the process is not
Markovian. However, on the much longer time scale of many collision times, the

v(t)

L\ pAN
g e —_

p——
Fig. B.7 One realization of the velocity of a Brownian particle in a particular direction.
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situation is very nearly Markovian. The Brownian particle is performing a random
walk in velocity space, and soon forgets the details of its orbit near r = 0; it does,
however, remember its velocity v, at 1 = 0.

Thus, we consider the process to have three time scales (Fig. B.8): the collision
time 7., which is the autocorrelation time of the force 8F(¢) in the Langevin
equation; the time At after which we may assume to good approximation that the
process is Markovian; and the dissipation time »™!. We must have A1 >> 7. we
shall further assume in this section that Ar << p~'.

Let us develop some of the mathematical properties of Markov processes. This
development will lead us to the Fokker-Planck equation.

Consider the probability of a sequence of values of the random function x(7).
This is ‘

(X5 Xn1s -+« 2 X2,X1,%0) = {probability that, at time t,, the process x(r)
has the value x, and at time ¢,, x(¢) has the
value x,, and . . . and at time t,, x() has
the value x,} wheret, > 1,., > t,,... >

> 1, (B.26)
By the definition (B.23) we can write
P(XsXpogs + o v 5 X0) = (K| X1 X2 « + « 5 Xg) .
,/"V’/f X p(xn-lsxn—Z, Tty XO) = p(xnlxn—l)p(xn-lrxn-Z! AR XO) (827)

The same procedure can now be applied to the last factor on the right of (B.27), so
that

p(xn-l’xn—za A xo) = p(xn-l'xmz)p(xn-zv AL | xo) (B28)
and so on until we have finally, for a Markov process,

v(t)
%
[ ~_r
e f-\v - t
% Collision time, not Markovian

Many collision times, aimost Markovian

| | Dissipation time
pt

Fig. B.8 Three time scales of Brownian motion.
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p(xmxn-lvxmzv cery XO) = .p(‘-xnlxn—l)p(xn—llxn—z)
-+ PEXa1x))p(x, 1 Xo)p(Xo) . (B.29)

By elementary considerations it must also be true that
p(xn'xn—hxn-Zv ) xlvxo) = P(men‘h LA ) Xllxo)P(xo) (B-30)
Comparing (B.30) and (B.29) we find
N P(xnvxn—h ey X,’Xo)

= p(Xp} X)X | Xg) - P(xllxo) (B.31)
In particular, we can choose # = 2 to obtain g
p(x3.x11x0) = p(x;]x)0(x|x0) . (B.32)
Let us now integrate this expression over all possible X, to obtain
pxalxa) = [ dxi plxyixlx) (B.33)
or
plxalxe) = [ dei p(xslxp)p(xiIx0) (B.34)

which is the Chapman~Kolmogorov equation, or Smoluchowsky equation 8].
Suppose we identify x, with time ¢ and x, as x(¢ + At). Suppose we further
assume that

p(xo) = p(x,t = &) = 8(x — xo) (B.35)

Then we can drop the references to x, in (B.34), and write

f C plalx) = plx + An  (B36)
that is, x, is now denoted by x, and
p(xi1x0) = p(x;,0) (B.37)

We can also change the notation of p(x,|x,): with the definition

Ax = x — x, (B.38)
we can write . ;
p(xalxy) = p(x,t + Atlx — Ax,1)

I

W(Ax,t + Atjx — Ax,1) (B.39)

where the transition probability  is defined by (B.39); ¢ gives the probability that
at time ¢ + A¢, the-random process has made a jump of Ax from its previous
value x — Ax at time . v

With these notational changes, we can rewrite (B.34) as

p(x,t + Ar) =fd(Ax)a//(Ax,t + Atlx — Ax,0)p(x — Ax,1) (B.40)
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The value x appears on the right of (B.40) only in the combination x — Ax. Thus,
if we assume that all of the important physics happens for small Ax, then we can
make a Taylor series expansion on the right of (B.40), obtaining

Ax)

p(x,t + Ar) —fd(Ax) i

=0

al
X {W [![I(AX,I + Atlx — Ax,0)p(x — Ax,t)] X_Ax=x}

or
oo !
p(x,t + A1) =fd(A Z Ax) "l
<
X [W(Ax,t + Atlx,0)p(x,1)] ' (B.41)

If the infinite sum converges, and if we can interchange the summation and inte-
gration, then we can write

I e Vi
p(x,t + A1) = 720 T
X [p(x.1) f d(Ax)(Ax)y(Ax,t + At]x,1)] (B.42)

The quantity given by the Ax integration is just the expectation value or ensemble
average of (Ax),

{(Ax)) Efd(Ax)(Ax)’w(Ax,t + Af|x,t) (B.43)
which is itself a function of x,7 through . Equation (B.42) becomes

o —1¥ !
ot + a0 = 3, S8 T pogaanien) (B.44)
=0 :

Moving the / = 0 term to the left side, and dividing by At, we have

S + Al — , o0 —1Y al
= AZ Aol 2 (,,A3 o [PeDUAX)(x.0] - (B.4S)

k1
We next take the limit as Az — ““0”. This means that we let A7 become very small,
much.smaller than any macroscopic time scale (e.g., »"'). However, Af cannot
really go to zero, because this development has assumed that At is large enough to
justify the Markovian assumption. Thus, the left side of (B.45) becomes

p(x,t + A1) — p(x,1) ap(x 1)
At at

lim
Ar—="0”

(B.46)

where the time derivative refers to macroscopic time. Equation (B.45) becomes
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{(Ax)) ]
1 o
? - o [ lim 7y p(x,1) (B.47)
Defining the diffusion coefficients
. ((Ax))
th =
DYY(x,1) k?—]---o" AL (B.48)
Equation (B.47) is
a"(" 2 - E (- D"'(x Dp(x.1)] (B.49)

If we keep only the first two terms on the rlght of (B.49), we have

ap(x,1) _
at

3 92 ‘
Ty (D" (x,0)p(x,1)] + ] [D¥(x,1)p(x,1)] (B.50)

which is the well-known Fokker-Planck equation [9].

For Brownian motion, the random variable x is replaced by the particie velocity
v(1). We shall leave it as an exercise to determine the diffusion coefficients D“’(u 0
and D¥(v,1). :

EXERCISE Use the results of the previous section to evaluate the coefficients in
Eq. (B.50) for Brownian motion. Show that D!"v,#) = — vv, and D (v,f) =
vT/M, so that the Fokker-Planck equation associated with the Langevin equa-
tion of Brownian motion is

ap(v,1) _ vT  9?

o 55 o) + 37 o P (B:51)

EXERCISE Use the results of the previous section to show that D v,1) ~ At
and, thus, vanishes as Az — *0”.

We can now understand why we are able to write the Lenard-Balescu equation
in the form of a Fokker—Planck equation,

af(vlyt)

0l = — v, A + 5 9 B ®.52)

Because the derivation of Lenard-Balescu assumed g(1,2) << f;(1)f(2), we have
effectively limited ourselves to small angle two-body collisions. The quantity f(v,,t)
may be thought of as the probability density of particles in velocity space. Thus,
f(v,,1) is changing slowly on the time scale for a two-body collision. All of these
features are precisely those assumed in the derivation of the Fokker-Planck equa-
tion. It should come as no surprise to us that the Lenard-Balescu equation can be
written in the form of the Fokker-Planck equation. The coefficient A in (B.52) is
called the coefficient of dynamic friction, and plays the same role as vv in the
Fokker-Planck equation (B.51) for Brownian motion. It represents the slowing




