Calculation of Debye-Waller temperature factors for GaAs

¹M. Schowalter, ¹A. Rosenauer, ²J. T. Titantah, and ²D. Lamoen

¹ Institut für Festkörperphysik, Universität Bremen, Germany

² Departement Fysica, Universiteit Antwerpen, Belgium

Accurate simulations required for quantitative HR(S)TEM
 Simulations based on Fourier-components of Coulomb potential

$V^{hkl} \propto \sum D^{hkl}_{\mu}(T) f^{hkl}_{\mu} \exp[2\pi i \vec{k}^{hkl} \vec{r_{\mu}}]$

- f_{μ}^{kkl} : atomic scattering amplitudes (ASAs) of atom μ $D_{\mu}^{kkl}(T) = \exp(-k_i B_{\mu,ij} k_j)$: temperature dependent factor containing the Debye-Waller-factor $B_{\mu,ij}$ f_{μ}^{kkl} influenced by redistribution of charge due to bonds \Rightarrow Accounting for redistribution using modified ASAs [1] μ_{μ}^{kl} : atomic scattering amplitudes (ASAs) of atom μ
- B
- Final theorem is the construction of the displacement (SCFD) with $u_{\mu\nuij}$; static correlation function of the displacement (SCFD) $u_{\mu\nuij}$ (T) not accurately known for many materials and not for all temperatures

2 Computation of phonon frequencies

- Using method of Parlinski et al. [2]
- 1. Computation of lattice parameter within density functional theory
- DFT computations carried out using the WIEN2k code [3]
 Computation of total energy as function of lattice parameter

- · Fitting the total energy in vicinity of the minimum energy by a parabola ⇒ Equilibrium lattice parameter ⇒ Structure without residual forces

2. Calculation of Hellmann-Feynman forces using DFT

Generation of Supercells (e.g. 2x2x2) • Displacement \vec{U} of one non-equivalent atoms for each cell

- Computation of Hellmann-Feynman forces acting on each atom due to the disp
- 3. Deriving force-constant matrices
 - Forces $F_i(n,\mu)$ and force-constant matrices $\Phi(n,\mu,m,\nu)$ connected by Hooke's law
 - $\begin{array}{l} F_i(n,\mu) = -\sum_{m,\nu,j} \Phi(n,\mu,m,\nu) U_j(m,\nu) \\ \mu,\nu \text{ atom indices} \\ m,n \text{ primitive cell indices} \end{array}$
 - Inversion of Hook's law
 ⇒ Force-constant matrices
- 4. Deriving dynamical matrices and phonon frequencies
 - Fourier transform of force-constant matrices \Rightarrow Dynamical matrix $D(\vec{k}; \mu, \nu)$

 $D(\vec{k};\mu,\nu) = \frac{1}{M_{\mu}M_{\nu}} \sum_{l} \Phi(0,\mu,l,\nu) \exp\left(-2\pi i \vec{k} \left[\vec{R}(0,\mu) - \vec{R}(m,\nu)\right]\right)$ $\vec{R}(m,\nu)$: position of atom ν M_{ν} : position of atom ν \vec{k} : wave vector of the phonon

Diagonalization

 $\omega^2(\vec{k},j)\vec{e}(\vec{k},j)=D(k)\vec{e}(\vec{k},j)$ $\omega(\vec{k},j)$; phonon frequency for \vec{k} and phonon branch j

Derivation of T-dependence of the SCFD

- Phonon dispersion relation
 - Here e.g. for GaAs: Forces from a 2x2x2 supercell
 - using local density approximation (LDA) as exchange and correlation potential Calculation of phonon frequencies according to section 2 along directions in Brillouin zone

· Resulting phonon dispersion curve (black lines)

Compared with experimental phonon frequencies (red points) from Ref. [4]

2. Phonon density of states

- Calculation of phonon frequencies belonging to
- Calculation of wave-vectors
 Histogram of number of phonons within a certain frequency interval
 ⇒ Phonon density of states

3. Calculation of the SCFD

SCFD in harmonic approximation given by

 $= \frac{\hbar r}{2M_{\mu}} \int_{0}^{\infty} d\omega g(\omega) \frac{1}{\omega} \coth(\frac{\hbar \omega}{2k_{B}T})$ $a_{\mu;ij} = \frac{1}{2M_{\mu}} \int_{0}^{-} a\omega g(\omega) \frac{1}{\omega} \operatorname{cont}(\frac{1}{2k_{B}T})$ $g(\omega)$ phonon density of states r number of degrees of freedom

• (Blue line): fit with the Einstein model \rightarrow Good fit at high T \rightarrow Slight deviations at low T

4 Fitting procedure

- 1 The mean value theorem
 - For two functions f(t) and g(t) continuous on [a; b] and $g(t) \ge 0$: $\int_{a}^{b} f(t)a(t)dt = f(c) \int_{a}^{b} a(t)dt$
 - c being an intermediate value in [a; b]

2. Application of the mean value theorem

$$\begin{split} u_{\mu;ij} &= \frac{hr}{2M_{\mu}} \int_{0}^{\infty} d\omega \underbrace{g(\omega)}_{g(t)} \underbrace{\frac{1}{\omega} \coth(\frac{\hbar\omega}{2k_{\text{B}}T})}_{f(t)} \\ u_{\mu;ij} &= \frac{\hbar}{2M_{\mu}\omega_{c,\mu}(T)} \coth(\frac{\hbar\omega_{c,\mu}(T)}{2k_{\text{B}}T}) \end{split} \tag{*}$$

• Weakly T-dependent characteristic frequency • $\omega_{c;Ga}(T)$ (red curve)

- Fit of $\omega_{\mathbb{C},\mu}(T)$ by a gaussian (blue curve) $A\exp(-T^2/\sigma^2)+\omega_0 \quad \Rightarrow \text{only }\sigma$ as fit parameter A and ω_{ρ} known from the analytic expressions of $\omega_{\mathbb{C},\mu}(0)$ and $\omega_{\mathbb{C},\mu}(\infty)$
- Inserted into Eq. (*) \Rightarrow Fitted T-dependence of the SCFD

Maximum deviation between fit and calculated data lower than 1% Fit parameters given in the paper

6 Discussion and Conclusion

- · Phonon dispersion relation computed on basis of DFT
- Good agreement of experimental and computed phonon frequencies

• Experimental SCFD at 1=287K [5] In 10 "A":				
		Experiment [5]	here	Theory[6]
	u_{Ga}	0.844	0.8447 ± 0.0018	0.7840
	u_{As}	0.716	0.7257 ± 0.0020	0.8440

 \bullet Values of this work in better agreement with experiment than values of Ref. [6]

Acknowledgements

Financial support from the FWO-Vlaanderen under Contract No. G.0425.05 and the Deutsche Forschungsgemeinschaft (DFG) under Contract No. RO 2057/4-1

References

- [1] A. Rosenauer, M. Schowalter, F. Glas, and D. Lamoen. Phys. Rev. B, 72:085326, 2005.
- [2] K. Parlinski, Z. Q. Li, and Y. Kawazoe. Phys. Rev. Lett., 78:4063, 1997.

[3] P. Blaha et al. Wien2k, ISBN 3-9501031-1-2, 2001

- [4] D. Strauch and B. Dorner. J. Phys.: Cond. Mat., 2:1457, 1990.
- [5] J. Stahn, M. Möhle, and U. Pietsch. Acta Cryst., B54:231, 1998.
- [6] H. X. Gao and H.-L. Peng. Acta Cryst., A56:519, 2000.