Theory of Pseudopotentials

David Vanderbilt Rutgers University

THE STATE UNIVERSITY OF NEW JERSEY

Bangalore Summer School, July 11, 2006

Outline of Talk

- Introduction
 - Motivation
 - Basic Idea
 - History and Terminology
- First-Principles Pseudopotentials
 - Construction
 - Scattering Properties
 - Norm Conservation
 - Transferability Tests
 - Relativistic Case
 - Computational Considerations: Softness
- Ultrasoft Pseudopotentials and PAW
- Resources
 - Reference list
 - Web resources

Motivation

Basic idea of pseudopotentials

Pseudopotentials: History

Early history of pseudopotentials

- Phillips and Kleinman, 1959
 - Based on OPW formalism
- Empirical pseudopotentials, 1970's
 - For use in non-selfconsistent bandstructure calculations
 - See, e.g., Chelikowsky and Cohen
- Model pseudopotentials, late 1970's
 - For use in DFT calculations
 - Not exact by construction for any property
 - Usually local
- First-principles pseudopotentials, 1979-present
 - Usually semilocal or nonlocal

RUTGERS

Bangalore Summer School, July 11, 2006

Pseudopotentials: Terminology

Local PSP

$$\hat{V}_{
m ps} = V_{
m ps}(r)$$
 (local in r , $heta$, ϕ)

Semilocal PSP

$$\hat{V}_{
m ps} = \sum_l V^{(l)}_{
m ps}(r) \, \hat{P}_l \qquad (ext{local in } r, ext{ nonlocal in } heta, \phi)$$

Nonlocal separable PSP (e.g., Kleinman-Bylander)

$$\hat{V}_{
m ps} = V_{
m ps}^{
m loc}(r) + \sum_{lm} D_l \, | \, eta_{lm} \,
angle \langle \, eta_{lm} \, |$$

General nonlocal separable PSP

$$\hat{V}_{
m ps} = V_{
m ps}^{
m loc}(r) + \sum_{ au au'} \sum_{lm} D_{ au au'l} \, |\, eta_{ au lm} \,
angle \langle eta_{ au'l} |\, eta_{ au lm}
angle
angle$$

(Note: All are spherically symmetric.)

$$\beta_{T,2}(n)$$

$$T=1$$

$$T=2$$

$$T=2$$

$$T=2$$

$$T=2$$

$$T=2$$

Pseudopotentials: Terminology

Local PSP

THE STATE UNIVERSITY OF NEW JERSEY

Bangalore Summer School, July 11, 2006

Pseudopotentials: Terminology

Pseudopotentials: Terminology

RUTGERS

Bangalore Summer School, July 11, 2006

First-principles pseudopotentials

First-principles pseudopotentials

First-principles pseudopotentials: History

- Zunger & Cohen, Starkloff & Joannoupoulos, Kerker: ${\sim}1978$
- Hamann, Schlüter & Chang, 1979
- Separability
 - Kleinman & Bylander, 1982
- Smoothness
 - Vanderbilt, 1985
 - Rappe, Rabe, Kaxiras & Joannopoulos, 1990
 - Troullier & Martins, 1991
- Ultrasoft pseudopotentials
 - Vanderbilt, 1990
- Projector-augmented-wave (PAW) potentials
 - Blöchl, 1994

RUTGERS

Bangalore Summer School, July 11, 2006

Outline of Talk

- Introduction
 - Motivation
 - Basic Idea
 - History and Terminology
- First-Principles Pseudopotentials
 - Construction
 - Scattering Properties
 - Norm Conservation
 - Transferability Tests
 - Relativistic Case
 - Computational Considerations: Softness
- Ultrasoft Pseudopotentials and PAW
- Resources
 - Reference list
 - Web resources

First-principles PSP construction

- Use "atomic DFT program"
 - $\psi_{nlm}(\mathbf{r}) = R_{nl}(r) Y_{lm}(\theta, \phi)$
 - Works entirely with $R_{nl}(r)$ on radial grid
- Ignore self-consistency for the moment
- Match:

$$\begin{array}{c} \underline{\text{Given:}} & \left[-\frac{1}{2m} \frac{d^2}{dr^2} + \frac{l(l+1)}{2mr^2} + \overline{V_{\text{ae}}(r)} - \epsilon_{nl} \right] \overline{\psi_{nl}^{\text{ae}}(r)} = 0 \\ & & & & & \\ & & & & \\ & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline \hline \\ \hline & & & \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \\$$

RUTGERS

Bangalore Summer School, July 11, 2006

First-principles PSP construction

Beyond r_c :

Also

$$\mathcal{E}_{AE} = \mathcal{E}_{PS}$$

First-principles PSP construction

- By construction, $V_{\rm ps}$ has correct ϵ_{nl} .
 - Scattering properties are correct at ϵ_{nl}
- Also want:
 - Norm conservation
 - Scattering properties remain pretty good for nearby ϵ_{nl}
- Surprising result of Hamann, Schlüter & Chang:
 - These two properties come together!
 - Norm-conserving PSPs have good scattering properties!
- Define these concepts:

THE STATE UNIVERSITY OF NEW JERSEY

Bangalore Summer School, July 11, 2006

Scattering properties

- For AE and PS separately:
 - Choose channel / and energy $\boldsymbol{\varepsilon}$
 - Find solution of SE that is regular at the origin at this ε
- Compare beyond r_c
- If match \Rightarrow "good scattering properties"

THE STATE UNIVERSITY OF NEW JERSEY

Bangalore Summer School, July 11, 2006

Scattering properties

Norm conservation

• Norm conservation:

$$\int_{0}^{r_{c}} r^{2} |\psi_{nl}^{\rm ps}(r)|^{2} dr = \int_{0}^{r_{c}} r^{2} |\psi_{nl}^{\rm ae}(r)|^{2} dr$$

Norm conservation \Leftrightarrow Scattering properties

Fundamental advance of Hamann, Schlüter and Chang, 1979:

First-principles PSP construction

Typical construction algorithm for semilocal pseudopotential

- Pick reference configuration E.g., for Si: $[1s^22s^22p^6]3s^23p^2$
- Solve all-electron problem $ightarrow V_{
 m scr}^{
 m ae}(r)$, $\psi_{nl}^{
 m ae}(r)$
- For each angular momentum channel *l*:
 - 1. Construct $\psi_{\rm ae}(r) \rightarrow \psi_{\rm ps}(r)$
 - Nodeless
 - Joins smoothly at r_c
 - Obeys norm conservation
 - 2. Invert Schroedinger equation to get $V_{\mathrm{scr},l}^{\mathrm{ps}}(r)$
 - 3. Descreen to obtain $V_{\mathrm{ion},l}^{\mathrm{ps}}(r)$
 - 4. Export $V_{\text{ion},l}^{\text{ps}}(r)$ for tests and applications

Example: Hamann, Schlüter, and Chang (Semilocal PSP), 1979

THE STATE UNIVERSITY OF NEW JERSEY

Bangalore Summer School, July 11, 2006

Charge self-consistency in PSP construction

Unscreening

• Construct $n_{
m ps}(r) = \sum_l f_l \, |\psi_l^{
m ps}(r)|^2$

where f_l is shell occupancy (e.g., 4 for p shell of oxygen)

- Obtain $V_{\mathrm{Hxc}}^{\mathrm{ps}}(r)$ from $n_{\mathrm{ps}}(r)$
- For each l, set $V^{\rm ps}_{{\rm ion},l}(r)=V^{\rm ps}_{{\rm scr},l}(r)-V^{\rm ps}_{{\rm Hxc}}(r)$

In target calculation

- $V_{\text{ion}}(\mathbf{r}) = \sum_{I} \sum_{l} V_{\text{ion},l}^{\text{ps}}(\mathbf{r} \mathbf{R}_{I})$ • $V = V_{\text{ion}} + V_{\text{Hxc}}[n]$ where $n(\mathbf{r}) = \sum_{n\mathbf{k}} f_{n\mathbf{k}} |\psi_{n\mathbf{k}}^{\text{ps}}(\mathbf{r})|^{2}$
- Solve Schrödinger equation to obtain new $\psi_{n{f k}}^{
 m ps}({f r})$ and repeat

(This procedure guarantees the desired result if the target is the free atom in its reference configuration.)

Transferability tests

- PSP was generated in "reference configuration", e.g.: [core]s²p² for Si
- Now, pick a couple of excited configurations, e.g.: [core]sp³
 [core]s²p(+1 ion)
- For each excited configuration, compare: All-electron calculation
 Pseudopotential calculation using previously generated PSP
- Points of comparison:
 - Total energies
 - Energy eigenvalues
 - Logarithmic derivatives

THE STATE UNIVERSITY OF NEW JERSEY

Bangalore Summer School, July 11, 2006

Transferability tests

State		AE	HSC
$s^1 p^5$	S	-1.7662	-1.7649
-	р	-0.6981	-0.6982
	$\Delta E_{ m tot}$	1.0658	1.0651
$s^0 p^6$	s	-1.7987	-1.7957
•	р	-0.7262	-0.7261
	$\Delta E_{ m tot}$	2.1361	2.1331
$s^{2}p^{3}$	S	-2.8738	-2.8737
•	р	-1.7909	-1.7904
	$\Delta E_{\rm tot}$	1.2066	1.2065

Example: HSC pseudopotential for oxygen

Relativisitic pseudopotentials

- Do all-electron calculation on free atom using Dirac equation
- Obtain $\psi_{nlj}(r)$ for $j=l+rac{1}{2}$ and $j=l-rac{1}{2}$
- Invert Schrödinger equation to get $V_{lj}^{\rm ps}(r)$
- For "scalar relativistic" target calc., use *j*-averaged PSPs:

$$V^{
m ps}_l(r) = rac{1}{2l+1} \left[(l+1) \, V^{
m ps}_{l,l+rac{1}{2}} + l \, V^{
m ps}_{l,l-rac{1}{2}}
ight]$$

For spin-orbit interactions, keep also

$$V^{
m so}_l(r) = rac{1}{2l+1} [V^{
m ps}_{l,l+rac{1}{2}} - V^{
m ps}_{l,l-rac{1}{2}}]$$

and use, schematically speaking,

$$\hat{V}_{
m ps} = \sum_{l} \left| \, l \,
ight
angle \, \left[\, V^{
m ps}_{l}(r) + V^{
m so}_{l}(r) \, {f L} \cdot {f S} \,
ight] \, \left\langle \, l \,
ight| \, .$$

RUTGERS

Bangalore Summer School, July 11, 2006

Relativisitic pseudopotentials

Issues of computational expense

- The expense is in the target calculation (PSP construction is extremely cheap)
- First consideration:
 - Compatibility with FFT approach to $H\psi$?

THE STATE UNIVERSITY OF NEW JERSEY

Bangalore Summer School, July 11, 2006

Issues of computational expense

(Note: All are spherically symmetric.)

Expense vs. accuracy

Compare different functional forms:

THE STATE UNIVERSITY OF NEW JERSEY

Bangalore Summer School, July 11, 2006

Improved softness

Now assume nonlocal (KB):

Softness and plane-wave convergence

Softness and plane-wave convergence

- Apply maximal smoothness to $V_{\rm ps}$ construction \Rightarrow Vanderbilt, 1985
 - This was only marginally successful in lowering the cutoff needed for the wavefunction
- Apply maximal smoothness to ψ_{ps} construction \Rightarrow Rappe, Rabe, Kaxiras, Joannopoulos (RRKJ, 1990) \Rightarrow Troullier and Martins (TM, 1991)
 - Much more successful
 - These (especially TM) are "standard" kind of potentials in use today

Softness and plane-wave convergence

THE STATE UNIVERSITY OF NEW JERSEY

Bangalore Summer School, July 11, 2006

Outline of Talk

- Introduction
 - Motivation
 - Basic Idea
 - History and Terminology
- First-Principles Pseudopotentials
 - Construction
 - Scattering Properties
 - Norm Conservation
 - Transferability Tests
 - Relativistic Case
 - Computational Considerations: Softness
- Ultrasoft Pseudopotentials and PAW
- Resources
 - Reference list
 - Web resources

Ultrasoft pseudopotentials

Ultrasoft pseudopotentials

Ultrasoft pseudopotentials

THE STATE UNIVERSITY OF NEW JERSEY

Bangalore Summer School, July 11, 2006

Ultrasoft pseudopotentials

Ultrasoft pseudopotentials: Formalism

(Notation is for a molecule or cluster; α labels eigenstates.) Minimize

$$E = \sum_lpha \langle \psi_lpha \, | \, T + \hat{V}^{ ext{ps}}_{nl} \, | \, \psi_lpha \,
angle + \int d^3r \, n(\mathbf{r}) \, V^{ ext{ps}}_{ ext{loc}}(\mathbf{r}) + E_{ ext{Hxc}}[n]$$

subject to

$$\langle \psi_{lpha} \, | \, 1 + \hat{N}^{
m ps}_{nl} \, | \, \psi_{eta} \,
angle = \delta_{lphaeta}$$

where

$$n({f r}) = \sum_lpha \langle \psi_lpha \mid \left(\mid {f r} \,
angle \langle \, {f r} \mid + \hat{K}^{
m ps}_{nl}({f r})
ight) \mid \psi_lpha \,
angle$$

and for consistency

$$\hat{N}^{
m ps}_{nl} = \int d^3r\, \hat{K}^{
m ps}_{nl}({f r})$$
 just as $1 = \int d^3r\, |\,{f r}\,
angle\langle\,{f r}\,|$

Euler-Lagrange equation resulting from minimization:

$$(T + V_{
m loc}^{
m ps} + \hat{V}_{nl}^{
m ps}) \ket{\psi_{lpha}} = \epsilon_{lpha} (1 + \hat{N}_{nl}^{
m ps}) \ket{\psi_{lpha}}$$

THE STATE UNIVERSITY OF NEW JERSEY

Bangalore Summer School, July 11, 2006

Ultrasoft pseudopotentials: Formalism

Usual NCPP:

$$K^{
m ps}_{nl}({f r})=0$$

$$\hat{N}^{
m ps}_{nl}=0$$
 (so that $n({f r})=\sum_lpha |\psi_lpha({f r})|^2$ as usual)

USPP:

$$egin{aligned} \hat{K}^{ ext{ps}}_{nl}(\mathbf{r}) &= \sum_{ au au' lm} Q_{ au au' l}(r) \, | \, eta_{ au lm} \,
angle \langle \, eta_{ au' lm} \, | \ \hat{N}^{ ext{ps}}_{nl} &= \sum_{ au au' lm} Q_{ au au' l} \, | \, eta_{ au lm}
angle \langle \, eta_{ au' lm} \, | \end{aligned}$$

These are known as "charge augmentation terms"

Compare

$$\hat{V}_{nl}^{\rm ps} = \sum_{\tau\tau' lm} D_{\tau\tau' l} \, | \, \beta_{\tau lm} \, \rangle \langle \, \beta_{\tau' lm} \, |$$

Ultrasoft pseudopotentials: Formalism

USPP are naively not norm-conserving.

 $\big\langle\,\psi^{\mathrm{ps}}_{\alpha}\,|\,\psi^{\mathrm{ps}}_{\alpha}\,\big\rangle\neq\big\langle\,\psi^{\mathrm{ae}}_{\alpha}\,|\,\psi^{\mathrm{ae}}_{\alpha}\,\big\rangle$

USPP are norm-conserving in a generalized sense:

 $\langle \psi^{\mathrm{ps}}_{lpha} \, | \, 1 + \hat{N}^{\mathrm{ps}}_{nl} \, | \, \psi^{\mathrm{ps}}_{lpha} \,
angle = \langle \, \psi^{\mathrm{ae}}_{lpha} \, | \, \psi^{\mathrm{ae}}_{lpha} \,
angle$

This can be shown to imply that scattering properties remain correct to second order in $(\epsilon - \epsilon_{\text{bound}})$.

RUTGERS

Bangalore Summer School, July 11, 2006

Ultrasoft pseudopotentials: Formalism

Typically, τ =(1,2) in each angular momentum channel:

Terminology and Comparison

- In current usage, PSPs are classified as either
 - NCPP = Norm-conserving pseudopotentials
 - USPP = Ultrasoft pseudopotentials
- However, remember that USPP are norm-conserving in a generalized sense
- Thus, they retain the "good features" of NCPP
 - In fact, their accuracy is usually better than NCPP
- Warning:
 - Extra coding required in solid-state code
 - Not all code packages accept USPP

RUTGERS

Bangalore Summer School, July 11, 2006

Ultrasoft Pseudopotentials

Referee B

Referee's Report: Manuscript #LJ4237

Title: Soft self-consistent pseudopotentials in ...

USPP and PAW

P.E. Blöchl, "Projector Augmented-Wave Method" PRB **50**, 17953 (1994)

G. Kresse and D. Joubert, "From USPP to PAW" PRB **59**, 1758 (1999)

THE STATE UNIVERSITY OF NEW JERSEY

Bangalore Summer School, July 11, 2006

Outline of Talk

- Introduction
 - Motivation
 - Basic Idea
 - History and Terminology
- First-Principles Pseudopotentials
 - Construction
 - Scattering Properties
 - Norm Conservation
 - Transferability Tests
 - Relativistic Case
 - Computational Considerations: Softness
- Ultrasoft Pseudopotentials and PAW
- Resources
 - Reference list
 - Web resources

Resources: References

<u>Articles</u>

	D.R. Hamann, M. Schlüter, and C. Chang, Phys. Rev. Lett. 43, 1494 (1979).
	G.B. Bachelet and M. Schlüter, Phys. Rev. B 25, 2103 (1982).
	L. Kleinman ad D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).
	G.B. Bachelet, D.R. Hamann, and M. Schlüter, Phys. Rev. B 26, 4199 (1982).
	D. Vanderbilt, Phys. Rev. B 32 , 8412 (1985).
	A.M. Rappe, K.M. Rabe, E. Kaxiras, and J.D. Joannopoulos, Phys. Rev. B 41 , 1227 (1990).
	N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).
	D. Vanderbilt, Phys. Rev. B 41 , 7892 (1990).
	Reviews and Books
	W.E. Pickett, <i>Pseudopotential Methods in Condensed Matter Applications</i> , Computer Physics Reports 9 , 115 (1989).
	D.J. Singh, <i>Planewaves, Pseudopotentials, and the APW Method,</i> Kluwer, Boston, 1994.
	R.M. Martin, <i>Electronic Structure: Basic Thoery and Methods</i> , Cambridge University Press, Cambridge, UK, 2004.
SEY	Bangalore Summer School, July 11, 2006

Resources: Web Sites

- Jose Luis Martins site for Troullier-Martins potentials: <u>http://bohr.inesc-mn.pt/~jlm/pseudo.html</u>
- "Octopus" web interface for pseudopotential generation http://www.tddft.org/programs/octopus/pseudo.php
- Vanderbilt Ultrasoft Pseudopotential site: <u>http://www.physics.rutgers.edu/~dhv/uspp</u>

Octopus Web Site

Octopus Web Site

Just click on an element																	
Not everything works, but part does!																	
				Н													He
Li	Be											в	С	N	0	F	Ne
Na	Mg											Al	Si	Ρ	S	Cl	Ar
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Τc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sь	Te	Ι	Xe
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	РЬ	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	110	111	112						
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЪ	Dy	Ho	Er	Tm	ΥЪ	Lu
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw

Octopus Web Site

Octopus Web Site

THE STATE UNIVERSITY OF NEW JERSEY

Bangalore Summer School, July 11, 2006

Octopus Web Site

Ultrasoft Pseudopotential Web Site

Bangalore Summer School, July 11, 2006

Ultrasoft Pseudopotential Web Site

Summary

- Introduction
 - Motivation
 - Basic Idea
 - History and Terminology
- First-Principles Pseudopotentials
 - Construction
 - Scattering Properties
 - Norm Conservation
 - Transferability Tests
 - Relativistic Case
 - Computational Considerations: Softness
- Ultrasoft Pseudopotentials and PAW
- Resources
 - Reference list
 - Web resources

Talk will be posted on http://www.physics.rutgers.edu/~dhv

