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A brief digression on units...

I will be using atomic units
throughout this presentation.

Atomic units

~ = 1

me = 1

e = 1

length Bohr 0.529 Å
energy Hartree 27.2 eV = 627 kcal/mol
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Why wavefunctions are awkward

Why wavefunctions are awkward

Schrödinger’s equation is essentially exact for chemical systems
with moderate atomic number:

H = −∇
2

2
+

∑
N<M

ZNZM∣∣∣ ~RN − ~RM

∣∣∣ −
∑
Ni

ZN∣∣∣~ri − ~RN

∣∣∣ +
∑
i<j

1

|~ri − ~rj |

Etot =

∫
ψ∗(~r1, ~r2...~rn)Hψ(~r1, ~r2...~rn)d ~r1d ~r2...d ~rn

Alas, ψ is a function in 3n dimensions, which makes
wavefunction-based approaches impractical for large numbers of
electrons—we can’t even store the many-body wavefunction.
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Hohenberg-Kohn Theorem

Hohenberg-Kohn Theorem

Hohenberg and Kohn proved that the ground state energy of a
system of electrons in an external potential V (~r) is the minimum
of a universal functional of the electron density

Eground = min
n(~r)

{
F [n(~r)] +

∫
V (~r)n(~r)d~r

}
Thus if we had a decent approximation to F [n(~r)] we’d never again
have to worry about those pesky wavefunctions, and could just
work with the electron density.
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The Kohn-Sham approach

The Kohn-Sham approach

FKS [n(~r)] = T + EHartree [n(~r)] + Exc [n(~r)]

n(~r) =
∑

i

|ψi (~r)|2

T ≡
∑

i

∫
ψ∗

i (~r)

(
−∇

2

2

)
ψi (~r)d~r

EHartree [n(~r)] ≡
∫ ∫

n(~r)n(~r ′)

|~r −~r ′|
d~rd~r ′

Exc [n(~r)] ≡ everything else

Note: This is still exact. The approximation will be in Exc .
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The Kohn-Sham approach

Eigenvalue equation

Minimizing the Kohn-Sham functional leads to solution having the
form of a self-consistent single-partical eigenproblem.

Hspψi = εiψi

Hsp ≡ −∇
2

2
+ VHartree(~r) + Vxc(~r)

Vxc(~r) ≡
δExc [n]

δn(~r)

Note: Vxc is a functional of n(~r), so this requires self-consistency.
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The Kohn-Sham approach

Meaning of eigenvalues

Hspψi = εiψi

Eigenvalues εi is not the energy of an excitated state.

Eigenfunctions ψi are not actual wavefunctions.

“Electron kinetic energy” T is not the total electron kinetic
energy. (Some is hidden in Exc)
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Spin density functional theory

Spin-density functionals

One can alternatively split the total electron density into two parts
an “spin up” density n↑(~r) and a “spin down” density n↓(~r).

FKS [n↑(~r), n↓(~r)] = T + EHartree [n(~r)] + Exc [n↑(~r), n↓(~r)]

n↑(~r) =
∑

i

|ψi↑(~r)|2 n↓(~r) =
∑

i

|ψi↓(~r)|2

In principle no more exact than ordinary DFT.

In practice necesary for magnetic systems, or insulating
systems with an odd number of electrons.
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Exchange-correlation functionals

Exchange-correlation functionals

LDA “Local Density Approximation” This functional is
uniquely determined by the properties of the uniform
electron gas. Usually overbinds by a few percent.

LSDA “Local Spin Density Approximation”

GGA “Generalized Gradient Approximation” Actually a
class of functionals, which depend on both the
density and its gradient. They tend to correct the
overbinding of LDA, but sometimes overcorrect.

PBE “Perdue-Burke-Ernzerhof” The most commonly use
GGA by physicists, based on an interpolation
between analytically solvable regimes.

Chemists more commonly use empirical functionals such as those
by Becke (e.g. B3LYP—which is actually a hybrid functional), but
don’t tend to work well for solids.
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Metals

Metals

When working with metals, one needs to add a “filling factor” fi to
the computation of the density.

n(~r) =
∑

i

fi
∣∣ψi (~r)

2
∣∣

For efficiency reasons, when handling metals one generally
introduces an artificial finite electronic “temperature”, with the
result that the filling factor can take intermediate values between 0
and 1.
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What DFT can and cannot predict

What DFT can and cannot predict

Fundamentally, DFT can only predict the density and total energy
of a set of electrons under an external potential.

DFT can predict

Total energy

Forces

Lattice constants

Bond lengths

Vibrational frequencies

Phonon frequencies

Electron density

Static dielectric response

DFT cannot predict

Excited state energies

Band gap

Band structures

Wave functions

Fermi surface

Superconductivity

Excitons

Electronic transport
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What DFT can and cannot predict

What DFT can predict accurately

Accuracies I expect from LDA calculations (ballpark estimates)

bond length ∼3% too small
bulk modulus ∼10% too high

phonon frequency ∼10% too high
energy difference > 1 mHartree
cohesive energy very poor (much too high)

Accuracies for properties that DFT technically does not predict

band gap ∼50% too small
band structure qualitatively reasonable

fermi surface qualitatively reasonable
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A bit of solid state terminology

Bravais lattice A periodic array of points, defined by three vectors,
which are referred to as “lattice vectors” ~R.

Reciprocal lattice A bravais lattice that is related to the real space
bravais lattice by ~G · ~R = 2πn

Reciprocal space Also known as “k-space”, the space in which
wave vectors live.

k-vector or k-point or “crystal momentum” A quantum number in
periodic systems (see Bloch’s theorem).

Brillouin zone Portion of k-space in which the k-vectors live.

Irreducible Brillouin zone Portion of the BZ which cannot be
mapped onto itself by symmetry operations.

Cutoff energy Plane waves having a kinetic energy less than the
cutoff energy are included in the basis. G 2/2 < Ecut
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Advantages and disadvantages of a plane wave basis

Approches for representing Kohn-Sham orbitals numerically

Basis set methods

A linear combination of basis functions.

Integrals and derivatives may be computed exactly.

The energy is variational.

Finite difference methods

Store the actual value of the orbitals at grid points.

Both integrals and derivatives are approximate—not
variational in grid spacing.

Usually easier to parallelize.

Easy to systematically improve.

Hybrid methods

See the next presentation.
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Advantages and disadvantages of a plane wave basis

Advantages and disadvantages of a plane wave basis

Advantages

It is simple.

All necesary matrix elements can be efficiently computed.

The basis doesn’t prefer one location over another, so there
are no “Pulay forces”.

A single parameter controls convergence of the basis.

Disadvantages

Nonlocalized basis functions are hard to parallelize efficiently.

Cannot take advantage of vacuum to reduce the basis size.

Representing atomic wavefunctions requires a prohibitively
large number of planewaves (kmax ∝ Z ).
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Pseudopotential approach

Pseudopotential approach

The pseudopotential approach addresses two problems:

1 Atomic orbitals require a very high cutoff energy.

2 There are lots of boring core states.
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Pseudopotential approach

Norm-conserving pseudopotentials

An effective potential that

Is generally non-local (one potential per angular momentum l)

Reproduces valence orbital eigenvalues exactly

Reproduces all-electron potential outside some cutoff radius

Creates orbitals that integrate to the same “norm” within the
cutoff radius.
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Pseudopotential approach

Norm-conserving pseudopotentials

“Pauli repulsion” represented by a repulsion in the core region.

Additional smoothing for angular momentum channels for
which there are no core electrons (and thus no Pauli
repulsion).



Density Functional Theory Plane waves Pseudopotentials

Pseudopotential flavors

Pseudopotential flavors

Flavors

Norm conserving:

Troullier-Martins
Rappe
Hamann

Vanderbilt ultrasoft pseudopotentials

Projector Augmented Wave (PAW)

Codes

FHI pseudopotential generating code: fhi98PP

OPIUM
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Transferability

Transferability of pseudopotentials

A transferable pseudopotential gives correct results in a wide
variety of environments.

Factors affecting transferability

Cutoff radii

Partial core correction

Reference configuration

Cutoff energy used for actual planewave calculation

The only solution is to test your pseudopotentials!
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