A case study: Aluminum bandstructure by OPW

H. Sormann March 2010

- In the following, the OPW method shall be applied to the fcc metal Al.
- What one needs to know: the reciprocal-lattice vectors \mathbf{K} and the crystal potential of the Al metal, $V(\mathbf{r})$, with

$$
V(\mathbf{r})=V(\mathbf{r}+\mathbf{R}) \quad \rightarrow \quad V(\mathbf{K})=\sum_{\mathbf{K}} V(\mathbf{K}) \mathrm{e}^{i \mathbf{K} \cdot \mathbf{r}}
$$

- The OPW method is based on the expanded eigenvalue problem

$$
(\hat{H}-E \hat{S}) \mathbf{a}=0
$$

with

$$
\begin{equation*}
H_{s, t}=H_{s, t}^{P W}-\sum_{l}^{\text {core }} \mu_{\mathbf{k}_{s}, j}^{*} \mu_{\mathbf{k}_{t, j}} E_{j} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{s, t}=H_{s, t}^{P W}-\sum_{l}^{\text {core }} \mu_{\mathbf{k}_{s}, j}^{*} \mu_{\mathbf{k}_{t}, j} \tag{2}
\end{equation*}
$$

with $\mathbf{k}_{s}=\mathbf{k}+\mathbf{K}_{s}$ and $\mathbf{k}_{t}=\mathbf{k}+\mathbf{K}_{t}$.
The core parts contain energies and wave functions of the electron core states in Al:

$$
E_{j} \rightarrow E_{n l m} \quad \text { and } \quad w_{j}(\mathbf{r}) \quad \rightarrow \quad w_{n l m}(\mathbf{r})
$$

- Electronic structure of the Al atom $(\mathrm{Z}=13)$:
$1 s^{2} \quad 2 s^{2} \quad 2 p^{6} \quad 3 s^{2} \quad 3 p^{1}$
with the core part $|n l m>=|100>| 200>$,, and $| 21 m>$ with $m=-1,0,1$.

The corresponding atomic-like Schrödinger equation

$$
\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(|\mathbf{r}|)\right) w_{n l m}(\mathbf{r})=E_{n l} w_{n l m}(\mathbf{r})
$$

with

$$
w_{n l m}(\mathbf{r})=R_{n l}(r) Y_{l m}(\tilde{\mathbf{r}})
$$

where $\tilde{\mathbf{r}}$ means the unit vector in direction \mathbf{r}.

- The evaluation of the core terms in Eqs. (1) and (2) can be done as follows: one has

$$
\begin{equation*}
H_{s, t}=H_{s, t}^{P W}-\sum_{l}^{c o r e} \mu_{\mathbf{k}_{s}, j}^{*} \mu_{\mathbf{k}_{t}, j}\left(E_{j}\right) \tag{3}
\end{equation*}
$$

with

$$
\begin{aligned}
\mu_{\mathbf{k}, n l m} & =\frac{4 \pi}{\sqrt{\Omega_{0}}} i^{l} Y_{l m}(\tilde{\mathbf{k}}) \int_{r=0}^{\infty} d r r^{2} R_{n l}(r) j_{l}(|\mathbf{k}| r) \\
& =\frac{4 \pi}{\sqrt{\Omega_{0}}} i^{l} Y_{l m}(\tilde{\mathbf{k}}) I_{n l}(|\mathbf{k}|) .
\end{aligned}
$$

Including this expression into the sum in Eq. (3) leads to

$$
\frac{(4 \pi)^{2}}{\Omega_{0}} \sum_{n} \sum_{l=0}^{n-1} \underbrace{(-i)^{l} i^{l}}_{=1}\left(E_{n l}\right) I_{n l}\left(\left|\mathbf{k}_{s}\right|\right) I_{n l}\left(\left|\mathbf{k}_{t}\right|\right) \sum_{m=-l}^{+l} Y_{l m}^{*}\left(\tilde{\mathbf{k}}_{s}\right) Y_{l m}\left(\tilde{\mathbf{k}}_{t}\right)
$$

where the term in red gives the simple result

$$
\frac{(2 l+1)}{4 \pi} P_{l}\left(\cos \angle\left[\mathbf{k}_{s}, \mathbf{k}_{t}\right]\right)
$$

with $P_{l}(x)$ as the $l^{\text {th }}$-order Legendre polynomial.
Using the abbreviation $x_{s, t}=\cos \angle\left[\mathbf{k}_{s}, \mathbf{k}_{t}\right]$, one gets for Al:
$\frac{4 \pi}{\Omega_{0}}\left\{\left[\left(E_{10}\right) I_{10}\left(k_{s}\right) I_{10}\left(k_{t}\right)+\left(E_{20}\right) I_{20}\left(k_{s}\right) I_{20}\left(k_{t}\right)\right] P_{0}\left(x_{s, t}\right)+3\left(E_{21}\right) I_{21}\left(k_{s}\right) I_{21}\left(k_{t}\right) P_{1}\left(x_{s, t}\right)\right\}$.
Taking into account that

$$
P_{0}(x)=1 \quad \text { and } \quad P_{1}(x)=x,
$$

The final result for the elements of the Hamilton and the structure matrix reads
$H_{s, t}=H_{s, t}^{P W}-\frac{4 \pi}{\Omega_{0}}\left\{E_{10} I_{10}\left(k_{s}\right) I_{10}\left(k_{t}\right)+E_{20} I_{20}\left(k_{s}\right) I_{20}\left(k_{t}\right)+3 E_{21} I_{21}\left(k_{s}\right) I_{21}\left(k_{t}\right) x_{s, t}\right\}$
and
$S_{s, t}=\delta_{s, t}-\frac{4 \pi}{\Omega_{0}}\left\{I_{10}\left(k_{s}\right) I_{10}\left(k_{t}\right)+I_{20}\left(k_{s}\right) I_{20}\left(k_{t}\right)+3 I_{21}\left(k_{s}\right) I_{21}\left(k_{t}\right) x_{s, t}\right\}$
with

$$
I_{n 0}(k)=\int_{0}^{\infty} d r r^{2} R_{n 0}(r) \frac{\sin (k r)}{k r}
$$

and

$$
I_{21}(k)=\int_{0}^{\infty} d r r^{2} R_{21}(r)\left[\frac{\sin (k r)}{(k r)^{2}}-\frac{\cos (k r)}{k r}\right] .
$$

Finally, it is demonstrated how successful the OPW method works for Al. The following three figures show OPW band structures of Al (red circles), based on 9,59 , and 135 orthogonalized plane waves.
The corresponding APW band structure is drawn as black points.

SCHWARZ = APW-METHODE ROT=OPW-METHODE 59

SCHWARZ = APW-METHODE ROT=OPW-METHODE 135

