Workshop on Application of Density-Functional Theory in Condensed Matter Physics, Surface Physics, Chemistry, Engineering and Biology, Berlin, 21 - 30 July 2003

L4

Pseudopotentials for ab initio electronic structure calculations

Martin Fuchs

Fritz-Haber-Institut der MPG, Berlin, Germany

• We want to <u>calculate electronic structure</u> of many-atom systems using a plane wave basis

• ... this is enabled by pseudopotentials "Where they come from and what they do in theory and practice"

Key words & ideas

"Bad idea":	Plane waves & full-potential all-electron approach
•	scale of orbitals core: size of $1s \sim \frac{1}{Z}$ bohr valence: same scale, due to orthogonality \blacktriangleright number of plane waves $\propto Z^3$
•	Hamiltonian matrix size $\propto Z^6$, cpu time $\propto Z^9$
	➡ could do at most diamond (C)
•	large total energy (components)
	GaAs E_{tot} /pair $\simeq 10^5$ eV $\hbar \omega_{phonon} \simeq 30$ meV
	- numerical precision possible, but demanding

"Good news:" Chemical bonding ... determined by valence electrons

- core electrons matter only indirectly
 - ➡ removed within frozen core approximation

effect on valence electrons may be described by a potential

e-n & e-e core-valence interactions are "linearized"

work with valence electrons only = energy scale & degrees of freedom reduced

- eliminate orthogonalization wiggles in valence wavefunctions by transformation
 o to smooth pseudo wavefunctions seeing a weak pseudopotential
 - ➡ good efficiency with plane waves
 - $\circ\,$ relativity can be included
- frozen-core & "pseudoization" are approximations should be independent of system: atom → molecule → solid
 - transferable pseudopotentials

+

all-electron

frozen cores

valence

pseudo valence

From full potentials to pseudopotentials

Atom- calculate eigenstates \rightarrow solve (radial) Kohn-Sham equation: $\hat{T} + \hat{V}^{AE} |\phi_i^{AE}\rangle = \epsilon_i |\phi_i^{AE}\rangle$

• choose atomic configuration, for some $\epsilon < 0$ integrate ... outward $rR^{out}(\epsilon; 0) = 0 \longrightarrow R^{out}(\epsilon; r) | r_{<} = 0 \dots r^{match}$ inward $R^{in}(\epsilon; \infty) = 0 \longrightarrow R^{in}(\epsilon; r) | r_{>} = \infty \dots r^{match}$...outside classical turning point

• if logarithmic derivatives match ... iterate ϵ until they do,

$$\frac{1}{R^{\textit{out}}(\epsilon;r)} \frac{d}{dr} R^{\textit{out}}(\epsilon;r) \bigg|_{r^{\textit{match}}} = \frac{1}{R^{\textit{in}}(\epsilon;r)} \frac{d}{dr} R^{\textit{in}}(\epsilon;r) \bigg|_{r^{\textit{match}}}$$

we get an eigenstate $R_{
u l}$ with eigenvalue $\epsilon_{
u l}$.

• Any potential \hat{V}^{PS} giving the <u>same</u> logarithmic derivative for $r \ge r^{match}$ gives the <u>same</u> eigenvalue as \hat{V}^{AE}

Pseudopotential = exact transformation of full potential

$$\hat{T} + \hat{V}^{PS} |\phi_i^{PS}\rangle = \epsilon_i |\phi_i^{PS}\rangle$$

• $r > r^{match}$: $\phi_i^{PS}(\mathbf{r}) \propto \phi_i^{AE}(\mathbf{r})$ what normalization?

Solid - logarithmic derivatives \leftrightarrow boundary conditions

$$core \qquad \phi^{core} \to \sum c_{lm} R_l(r) Y_{lm}(\Omega)$$

$$interstitial \qquad \phi^{inter} \to \sum c_{klm} j_l(kr) Y_{lm}(\Omega)$$

$$Match \qquad \left. \frac{\frac{d}{dr} R_l(r)}{R_l(r)} \right|_{\substack{\epsilon \\ r} core} = \frac{\frac{d}{dr} \phi_l^{inter}(r)}{\phi_l^{inter}(r)} \right|_{\substack{\epsilon \\ r} core} \dots \text{ like APW}$$

The pseudopotential is "weak" - cancellation theorem

- can bind valence states, but not core states
- in core region potential and kinetic energy contributions nearly <u>cancel</u>:

$$\int_{0}^{r^{\text{core}}} \bar{\phi}_{i}^{\text{AE}} \left[T + V^{\text{AE}} \right] \phi_{i}^{\text{AE}} d\tau \ll \epsilon_{i}$$

• the pseudopotential acts like¹

$$\hat{V}^{PS}|\phi^{PS}\rangle = \hat{V}^{AE}|\phi^{PS}\rangle - \sum_{core} |\phi_c\rangle\langle\phi_c|\hat{V}^{AE}|\phi^{PS}\rangle \approx 0$$
attractive repulsive, confined to core

 \ldots if there are core states with same angular momentum l

¹ Philips, Kleinman, Phys Rev 116, 287 (1959); Heine, in *Solid State Physics*, Vol 24 (Academic, 1970)

Accuracy aspect: Norm-conservation

- So far: Pseudopotential o.k. for atom in some chosen electronic configuration
- Pseudopotential must be transferable, i.e. perform correctly in different environments
 - \otimes PS \simeq AE eigenvalues \leftrightarrow band structure & one-particle energy $\sum_{i}^{occ} \epsilon_i$
 - ${}^{\circledast}$ electron density $\leftrightarrow V^{\it eff}[{m n};{m r}]$ and total energy
- If we impose

 $\phi_i^{PS}(\mathbf{r}) = \phi_i^{AE}(\mathbf{r}) \mid r > r^{core} \quad \Leftrightarrow \quad \text{proper electron density outside core}$

and norm conservation

$$\int_{0}^{r^{core}} |\phi_{i}^{AE}(\mathbf{r})|^{2} d\tau = \int_{0}^{r^{core}} |\phi_{i}^{PS}(\mathbf{r})|^{2} d\tau \quad \Leftrightarrow \quad \langle \phi_{i}^{PS} |\phi_{i}^{PS} \rangle = \langle \phi_{i}^{AE} |\phi_{i}^{AE} \rangle \equiv 1$$

• get correct "total charge inside core radius" \Leftrightarrow proper electrostatic potential for $r > r^{core}$ • boundary conditions of AE and PS orbitals in same way with energy $\epsilon_i \pm \delta \epsilon$

$$-\frac{1}{2}|\phi(\epsilon;\mathbf{r})|^{2}\frac{d}{d\epsilon}\left[\frac{\partial}{\partial r}ln\phi(\epsilon;\mathbf{r})\right]\Big|_{r^{\text{core}},\epsilon_{i}} = \int_{0}^{r^{\text{core}}}|\phi_{i}(\epsilon_{i};\mathbf{r})|^{2}d\tau$$

 \ldots over the width of the valence bands \rightarrow correct scattering properties

► PS wavefunctions change similar to AE wavefunctions

 $\circ~$ separately for each valence state $\rightarrow~l\text{-dependence}$

Accuracy aspect: Frozen-core approximation

"Chemically inert core" . . . but in fact: core orbitals will change with chemical environment too!

• Effect on total energy?

$$E^{\textit{tot}}[n] \to E^{\textit{core}}[n^{c}] + E^{\textit{valence}}[n^{v}] + E^{\textit{valence-core}}[n^{c}; n^{v}]$$

two step view: change valence density \rightarrow change effective potential \rightarrow change core density

- → second order error $\int \Delta V^{c,\text{eff}} \Delta n^c d\tau$... cancels out in total energy differences ¹
- core regions of neighboring atoms do not overlap
- core/valence separation often intuitive: core \rightarrow all filled shells

beware: this choice is not always adequate (semicore states of Ca, Zn, Ga, ... see later)

¹von Barth, Gelatt, Phys Rev B 21, 2222 (1980).

Example: Pseudopotential for aluminum

Constructing normconserving pseudopotentials

Free atom - all-electron full potential \longrightarrow pseudo valence orbitals & pseudopotential

• Kohn-Sham equations for full potential \rightarrow eigenstates $\phi_i^{AE}(\mathbf{r}) = \frac{u_{\nu l}^{AE}(r)}{r} Y_{lm}(\Omega) \dots$ central field

$$\left[-\frac{1}{2}\frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} + V^{AE}[n^{AE};r]\right] u^{AE}_{\nu l}(r) = \epsilon^{AE}_{\nu l} u^{AE}_{\nu l}(r), \quad n^{AE}(r) = \sum_{occ} f_i |\phi^{AE}_i(\mathbf{r})|^2$$

 \blacktriangle Relativity: Dirac \rightarrow scalar relativistic \rightarrow non-relativistic

• Full potential
$$V^{AE}[n^{AE};r] = -\frac{Z}{r} + V^{H}[n^{AE};r] + V^{XC}[n^{AE};r]$$

... XC in LDA or GGA or ...: take same as in solid etc.

• Pseudo atom \rightarrow pseudo valence orbitals $\phi_i(\mathbf{r}) = \frac{u_l(r)}{r} Y_{lm}(\Omega)$

$$\left[-\frac{1}{2}\frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} + V_l^{scr}[n;r]\right] u_l(r) = \epsilon_l u_l(r), \quad n(r) = \sum_{occ} f_i |\phi_i(\mathbf{r})|^2$$

- ... formally non-relativistic Schrödinger eq.
- ... V_l^{scr} effective potential (screened pseudopotential) different for each valence state $\rightarrow l$ -dependent
- ... lowest state for each l has no radial nodes \rightarrow core states gone!

Actual steps in the construction

User chooses:

- Z
- electronic configuration
- valence states
- pseudopotential type
 - \rightarrow cutoff radii in each l
 - \rightarrow (reference energy)
- (core-valence XC)
- local potential

Program follows the recipe:

nodeless radial pseudo wavefunctions satisfy conditions ...

- ① same valence energy levels $\epsilon_l = \epsilon_{\nu l}^{AE}$... center of VB's
- ② outside cutoff radius r_l^{cut} orbitals match

$$u_l(r > r^{cut}) = u_{\nu l}^{AE}(r)$$

... implies matching of logarithmic derivatives

 \bigcirc norm-conservation $\langle \phi_l | \phi_l \rangle = \langle \phi_l^{AE} | \phi_l^{AE} \rangle = 1$

+ constraints for good plane-wave convergence

→ pararametrize u_l(r) and invert Schrödinger eq. V^{scr}_l(r) = ε_l - ^{l(l+1)}/_{2r²} + ^{d²/dr² u_l(r)}/_{2u_l(r)}
 → unscreening with atom's pseudo valence density → final ionic pseudopotentials for applications

$$V_l^{ion}(r) = V_l^{src}(r) - V^H[n;r] - V^{XC}[n;r]$$

Transferability

- \circ compromise with needed <u>smoothness</u>
- needed accuracy $\sim \mathcal{O}(0.1 \dots 0.01 \text{ eV})$
 - electronic structure
 - cohesive properties
 - atomic structure, relaxation, phonons
 - formation & activation energies, ...
- modifications
 - separable potentials (computational)
 - core corrections (methodic)
- \blacktriangle <u>new materials</u> \rightarrow GaN (with 3*d* or not), ...
- $\blacktriangle \text{ <u>new XC functionals</u>} \rightarrow \text{GGA, } \dots$

Characteristic tests of PP at atomic level?

Test: Logarithmic derivatives

$$D_l(r^{\text{diag}}, \epsilon) = \frac{1}{R_l(\epsilon)} \frac{d}{dr} R_l(r, \epsilon) \Big|_{r^{\text{diag}} > r^{\text{core}}}$$

norm conservation $\rightarrow D_l(\epsilon_l \pm \delta \epsilon) = D_l^{AE}(\epsilon_l \pm \delta \epsilon)$... in practice: over range of valence bands?

Monitoring transferability

¹ Grinberg, Ramer, Rappe, Phys Rev B 63, 201102 (2001); Filipetti et al, Phys Rev B 52, 11793 (1995); Teter, Phys Rev B 48, 5031 (1993).

"Hardness tests" in practice

Nonlinear core-valence XC (nlcv XC)

total energy & electronic structure depend just on valence electron density

$$E[n^{v}] = \sum_{i} \langle \psi_{i} | \hat{T} + \delta \hat{V}_{l}^{PS} | \psi_{i} \rangle + \int V^{PS, loc}(\mathbf{r}) n^{v}(\mathbf{r}) d\tau + E^{H}[n^{v}] + E^{XC}[n^{v}]$$

electronic core-valence interactions mimicked by pseudoptential \rightarrow different in GGA & LDA!

1

- $\checkmark\,$ electrostatic part linear in n^v
- **X** exchange-correlation **nonlinear**, terms like $(n^c + n^v)^{4/3}$...

• pseudopotential
$$\rightarrow$$
 linearized core-valence XC

$$E^{XC} = E^{XC}[n^{v}] + \int n^{v}(\mathbf{r}) \sum_{\alpha} \Delta V^{XC}[\mathbf{n}_{\alpha}^{c} + n_{\alpha}^{v}; \mathbf{r}] d\tau \quad \text{XC functional}$$

$$V_{l}^{PS,\alpha}(r) = V_{l}^{scr,\alpha}[\mathbf{n}_{\alpha}; r] - V^{H}[n_{\alpha}^{v}; r] - V^{XC}[n_{\alpha}^{v}; r] \quad \text{PP unscreening, consistent in LDA or GGA}$$

• restoring nonlinear core-valence XC ²

$$E^{XC} = E^{XC}[n^v + n^c_{\{\alpha\}}]$$
$$V_l^{PS,\alpha}(r) = V_l^{scr,\alpha}[n_{\alpha};r] - V^H[n^v_{\alpha};r] - V^{XC}[n^v_{\alpha} + n^c_{\alpha};r]$$

¹Fuchs, Bockstedte, Pehlke, Scheffler, Phys Rev B 57, 2134 (1998).

²Louie, Froyen, Cohen, Phys Rev B 26, 1738 (1982).

Partial core density for nlcv XC

Overlap matters only around core edge ...

can smoothen full core density inside the core "partial core corrections"

$$n^{c}_{\alpha}(r) \rightarrow \left[1 - g(r)\theta(r^{\textit{nlc}} - r)\right] n^{c}_{\alpha}(r)$$

- $\,$ where 0 < g(r) < 1 e.g. a polynomial
- r^{nlcv} is the core cutoff radius

... where nonlinear core-valence XC makes a difference Rocksalt (NaCl): ¹

- ★ semi-metal with linearized CV XC (a)
- \checkmark insulator with nonlinear CV XC (b)

¹Hebenstreit, Scheffler, Phys Rev B 46, 10134 (1992).

... and where linearized core-valence XC is fine

Transferability tests for K:

- Inearized nlcv XC mostly sufficient!
 - -1^{st} & 2nd row, As, Se, ...
 - "two shell" cases \rightarrow all transition metals, see Cu: 3-4 XC valence-valence interaction

A test calculation helps...

- Inlcv XC needed:
 - "soft" valence shells (alkali's!)
 - extended core states (Zn, Cd, ...)
 ↔ varying core-valence overlap
 - spin-density functional calculations!
 (open shell atoms, molecules, MnAs, ...)
- b turning semi-core into valence states?
 - Zn 3d, Ca 3d, Rb 4p, ...
 - Ga 3d, In 4d in III-nitrides
 (but not GaP, GaAs, ...)

... a bit system dependent

... core-valence interactions

Group-III nitrides: N 2s resonant with Ga 3d

- $\circ \circ$ all-electron
- pseudopotential

Need for nlcv XC in GGA?

 \blacktriangleright satisfactory only with cation 3, 4d states

Beware of frozen core approximation!

nlcv XC not more important in GGA than in LDA!

Plane-wave convergence – "smoothness"

Nearly free electrons & perturbed plane-waves: $\psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\mathbf{r}} + \sum_{\mathbf{G}} \frac{V^{PS}(\mathbf{G})}{(\mathbf{k} + \mathbf{G})^2 - \mathbf{k}^2} e^{i(\mathbf{k} + \mathbf{G})\mathbf{r}}$

- → for fast convergence reduce high Fourier components of $\psi^{PS}(\mathbf{G})$ and $\langle \mathbf{G} | \hat{V}^{PS} | \mathbf{G}' \rangle$
- modern norm-conserving schemes are good already ¹
- \bullet ... not perfect: "coreless" 2p & 3d states still somewhat hard

Choose right scheme & (dare to) increase cutoff radii

- 1st-row & 3, 4, 5d elements Troullier-Martins scheme (flat potential for $r \to 0$)
- AI, Si, Ga(4d), As, ... Troullier-Martins & <u>Hamann</u> scheme, ... perform much alike
- loss in accuracy \Leftrightarrow upper bound for r_l^{cut}
 - poor scattering properties, \ldots \rightarrow atomic transferability tests tell
 - artificial overlap with neighbor "cores" ... total energy error $\Delta E \propto \int n(\mathbf{r}) \Delta V(\mathbf{r}) d\tau$, N₂ dimer: $r_l^{cut} = 1.5$ a.u., bondlength d/2 = 1.0 a.u. \rightarrow binding energy error $\mathcal{O}(0.1 \text{ eV})$... may be acceptable

¹Rappe, Raabe, Kaxiras, Joannopoulos, Phys Rev B 41, 1227 (1990); Troullier, Martins, Phys Rev B 43, 1993 (1991); Lin, Qteish, Payne, Heine, Phys Rev B 47, 4174 (1993).

Plane-wave cutoff in practice

Kinetic energy of valence electrons as measure for plane-wave cutoff energy $E^{PW} = G_{PW}^2$ (Ry): For the free pseudo atom:

$$\Delta_l(G_{PW}) = \int_0^{G_{PW}} |u_l^{PS}(G)|^2 \frac{G^2}{2} dG - \int_0^\infty \dots$$

 \ldots for s, p, d electrons

Corresponding total energy convergence error :

$$\Delta E(G_{PW}) \simeq \sum_{i}^{electrons} w_i \Delta_{l_i}(G_{PW})$$

- ... for atom pprox same as in real system
 - gives useful estimate ... too high/ too low?
- can't tell how much errors cancel out
 Perform convergence tests on your system!

- typically we see converged cohesive properties for $\Delta_l \lesssim 0.1~{
m eV}$

Form of pseudopotential operator in applications

Atom - radial & angular momentum representation

general but naive:
$$\hat{V} = \sum_{lm,l'm'} |rlm\rangle V_{ll'mm'}(r,r') \langle r'l'm'|$$
 ...a projector, nonlocal in space

•
$$\langle \mathbf{r} | \hat{V} | \vec{\mathbf{r}}' \rangle = V(r) \frac{\delta(r-r')}{r^2} \sum_{lm} \bar{Y}_{lm}(\Omega) Y_{lm}(\Omega') = V(r) \frac{\delta(\mathbf{r}-\mathbf{r}')}{r^2} \dots \frac{\text{local potential}}{\bullet \text{ Coulomb, atomic, } \dots}$$

• same for all l

•
$$\langle \mathbf{r} | \hat{V} | \vec{\mathbf{r}}' \rangle = \sum_{lm} \bar{Y}_{lm}(\Omega) V_l(r) \frac{\delta(r-r')}{r^2} Y_{lm}(\Omega') \dots \text{our semilocal pseudopotential}$$

Solid etc.- $\langle \mathbf{r} | \hat{V} | \vec{\mathbf{r}}' \rangle = \sum_{\mathbf{R}_i} V_i (\mathbf{r} - \mathbf{R}_i, \mathbf{r}' - \mathbf{R}_i)$... want reciprocal space representation $\langle \mathbf{G} | \hat{V} | \mathbf{G}' \rangle \rightarrow$ form factor \rightarrow like in atom Need a finite infite sum over l! One could use

$$\langle \mathbf{r}|\hat{V}|\mathbf{r}'\rangle \rightarrow V^{loc}(r)\delta(\mathbf{r}-\mathbf{r}') + \sum_{l=0}^{l_{max}}\sum_{m=-l}^{l}\bar{Y}_{lm}(\Omega)\delta V_{l}(r)\frac{\delta(r-r')}{r^{2}}Y_{lm}(\Omega'),$$

pseudopotential = local potential $V^{loc}(r)$ + short-range corrections $\delta V_l(r) = V_l(r) - V^{loc}(r)$... note that one can choose an arbitrary $V^{loc}(r)$ but ...

... semilocal pseudopotentials

<u>Truncation of *l*-sum</u> for $l > l_{max}$ natural:

- ullet $r > r^{\textit{core}}$: $V_l(r) \propto -rac{Z^{\textit{ion}}}{r}$, all l
- high l: repulsive $+\frac{l(l+1)}{r^2}$ angular momentum barrier

 \Rightarrow high-l partial waves see mostly local potential

➡ allows to save projections by local component

$$V^{\textit{loc}}(r) = V_{l_{\textit{loc}}}(r)$$
 with $l_{\textit{loc}} = l_{\textit{max}}$

- ✓ $l \leq l_{max}$ see same $V_l(r)$ as before
- ▲ local potential \leftrightarrow scattering for $l > l_{max}$ (norm-conservation not imposed)
- ▲ transferability of separable representation

typically l=0,1,2,(3) s,p,d,(f)

Fully separable potentials

Semilocal potentials:

Separable potentials \leftrightarrow factorization:

 $\rightarrow \left[\int j_l(Gr)\chi_l(r)r^2dr\right]\left[\int \chi_l(r)j_l(G'r)r^2dr\right]$

- only scalar products size $N pprox \mathcal{O}(10^{3...})$
- nonlocal, fully separable pseudopotential

$$\begin{aligned} \langle \mathbf{r} | \hat{V} | \mathbf{r}' \rangle &= \langle \mathbf{r} | \hat{V}^{\textit{loc}} + \delta \hat{V}^{\textit{NL}} | \mathbf{r}' \rangle \\ &= V^{\textit{loc}}(r) \delta(\mathbf{r} - \mathbf{r}') + \sum_{lm}^{l_{max}} \langle \mathbf{r} | \chi_l lm \rangle E_l^{\textit{KB}} \langle lm \chi_l | \mathbf{r}' \rangle \end{aligned}$$

• separable Kleinman-Bylander pseudopotential \leftrightarrow transformation of semilocal $\delta \hat{V}_l = V_l - V_{loc}$

$$|\chi_l
angle = rac{|\delta V_l u_l
angle}{\langle u_l \delta V_l | \delta V_l u_l
angle^{1/2}}, \ \delta \hat{V}_l^{NL} |\chi_l
angle = E_l^{KB} |\chi_l
angle$$

$$\delta \hat{V}^{NL} = |\chi_l
angle E_l^{KB} \langle \chi_l |$$

• KB-energy: strength of nonlocal vs. local part

 semilocal & nonlocal potential yield same (reference) valence states; also

$$\langle r | \delta \hat{V}_l^{NL} | u_l
angle = \delta V_l(r) u_l(r) =: \langle r | \tilde{\chi}_l
angle$$

 \Rightarrow KB-potentials norm-conserving!

 $\circ~$ note: $|\tilde{\chi}_l\rangle=\epsilon_l-\hat{T}_l-\hat{V}^{\textit{loc}}|u_l\rangle$ could be calculated directly from a chosen local potential

Kleinman-Bylander pseudopotentials at work

- ✓ Price: full nonlocality → spectral order of states by radial nodes not guaranteed
- unphysical states above/below physical valence levels possible → "ghost states"

Ghost states detectable in free atom ...

- inspect logarithmic derivatives
- do analyze the atom's valence spectrum
- ... readily avoided by proper choice of local & nonlocal components

$$V_l(r)
ightarrow \left\{ V^{\textit{loc}}(r), \delta V_l(r)
ight\}$$

Example: KB-pseudopotential for As \rightarrow ZB GaAs bandstructure

Analysis of the spectrum of nonlocal Hamiltonians $\hat{H}_l = \hat{T}_l + \hat{V}^{loc} + |\chi_l \rangle \lambda \langle \chi_l |$

¹Gonze, Stumpf, Scheffler, Phys Rev B 16, 8503 (1992)

Ghost states

Seen in logarithmic derivatives

... where they occur, how to avoid them?

 \checkmark local potential $l_{\mathit{loc}} = l_{\mathit{max}} = 2$ saves computing

$$\checkmark$$
 unproblematic: 1^{st} & 2^{nd} row, (earth-) alkali's

 \mathbb{B} strong nonlocality (large $|E_l^{KB}|$) can cause ghosts

"artifically:" \approx zero denominator in E_l^{KB} (KB-cos) Ga, Ge, As, Se, ...

vary cutoff radii of local/ nonlocal components

"intrinsically:" numerator of E_l^{KB} large Cu: deep $V_{3d}(r) \Rightarrow E_l^{KB} \gg 0$ to get 4s right all 3,4,5d-metals: Cu, Pd, Ag, ...

make local potential repulsive $\rightarrow E_l^{\textit{KB}} < 0$ use to s - or p-component !

→ KB-potentials work well in practice

additional projectors in principle a cure too

Other forms of pseudopotentials

Motivation - an exact transformation between AE and PS wavefunctions is¹

$$\begin{split} |\phi^{AE}\rangle &= |\phi^{PS}\rangle + \sum_{n} \left\{ |R_{n}^{AE}\rangle - |R_{n}^{PS}\rangle \right\} \langle \chi_{n}^{PS} |\phi^{PS}\rangle \\ |\phi^{AE}\rangle &= \left\{ 1 + \hat{T} \right\} |\phi^{PS}\rangle \end{split}$$

... PS operators (acting on pseudo wavefunctions) act as

$$\hat{O}^{PS} = \hat{\mathcal{T}}^{\dagger} \hat{O} \hat{\mathcal{T}} = \hat{O} + \sum_{nn'} |\chi_i^{PS}\rangle \left\{ \langle R_n^{AE} | \hat{O} | R_{n'}^{AE} \rangle - \langle R_n^{PS} | \hat{O} | R_{n'}^{PS} \rangle \right\} \langle \chi_{n'}^{PS} | \hat{O} | R_{n'}^{PS} \rangle$$

 $ightarrow \{\ldots\}$ looks like $\sum_{nn'} |\chi_n^{PS}\rangle V_{nn'} \langle \chi_{n'}^{PS}|$

 \blacktriangleright Can make ansatz for *separable* pseudopotential with multiple projectors²

$$\langle r|\hat{V}_{l}|r'\rangle = \langle r|\hat{V}^{loc}|r'\rangle + \sum_{n,n'=1,2,\dots} \langle r|\chi_{il}\rangle V_{l,nn'}\langle \chi_{n'l}|r'\rangle$$

 $\dots \quad \chi_{nl}$: e.g. atomic functions derived from $|\tilde{\chi}_{nl}\rangle = \epsilon_n - \hat{T}_l - \hat{V}^{loc}|u_{nl}\rangle$ $\dots \quad n = n' = 1$ like Kleinman-Bylander pseudopotentials

¹ Blöchl, Phys Rev B 50, 17953 (1994). ² Blöchl, Phys Rev B 41, 5414 (1990).

① Norm-conserving:

 $Q_{n\,n'} = \langle u_{nl}^{AE} | u_{n'l}^{AE} \rangle_{r^{core}} - \langle u_{nl} | u_{n'l} \rangle_{r^{core}} = 0$... several reference states possible!

② "Quasi" norm-conserving:

 $\langle u_{nl}|u_{n'l}
angle_r$ core + $Q_{n\,n'}=\langle u_{nl}^{\rm AE}|u_{n'l}^{\rm AE}
angle_r$ core

- \rightarrow Ultrasoft pseudopotentials ¹
- ► logarithmic derivative match as in norm-conserving case
- \blacktriangleright density & wavefunction \rightarrow smooth part + augmentation

reduced plane-wave basis for 1^{st} row & *d*-metal elements \leftrightarrow increase in projections, added complexity

¹ Vanderbilt, Phys Rev B 41, 7892 (1990); Laasonen *et al*, Phys Rev B 47, 10142 (1993)

Outlook: pseudopotentials justified as approximations to PAW, an exact all-electron approach:

pseudo valence

pseudo valence on site

on site

Summary

Pseudopotential = electron-ion interaction

- nucleus' Coulomb attraction + core-valence interaction (orthogonality, electrostatic, XC)
 - work throughout periodic table (... almost)
 - ✓ physically motivated approximation
 - valence electrons rule chemical bonding
 - frozen-core approximation (depends on system)
 - cancellation of potential and kinetic energy in core
 - ✓ <u>well controlled</u>
 - norm-conservation (built in)
 - nonlinear core-valence XC (depends on system)
 - proper construction & testing of the pseduopotential
 - ✓ Transferability properties
 - logarithmic derivatives (scattering properties)
 - chemical hardness
 - plane-wave convergence
 - ✓ Fully separable, nonlocal potentials
 - analysis & removal of ghost states
 - generalizations