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Preface

Traditionally, physics has been divided into two fields of activities: theo-
retical and experimental. Due to the development of powerful algorithms
and the stunning increase of computer power, each of which have resulted
in improvements by many orders of magnitude, a new branch of physics
has established itself: Computational Physics. Computer simulations play
an increasingly important role in physics and other sciences, as well as in
industrial applications. They involve different strategies and serve differ-
ent kinds of purposes, among them

e Direct solution of complex mathematical problems, e.g.
e Eigenvalue problems
e Minimization / Optimization
¢ Differential Equations (Finite Element Methods)
e Stochastic methods for very high dimensional problems, especially

by Markov Chain Monte Carlo (importance sampling from a distri-
bution), for e.g.

Statistical Physics

Percolation problems like oil search, forest fires, avalanches

Minimization / Optimization

Quantum Mechanics
e Simulation of time evolutions in high dimensional spaces, e.g.

e Classical physics, using Molecular Dynamics methods
e Quantum Mechanics, using special Hilbert space methods or
mappings to Molecular Dynamics
e Newly evolved applications, e.g.
e Machine Learning, especially with Neural networks (so-called
Deep Learning)

e Abstract dynamical models like cellular automata for forest fires,
traffic flow, avalanches
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Computer simulations have become essential tools, enabling the inves-
tigation and the understanding of complex problems which are inaccessi-
ble to analytical methods. Amazingly, they have also led to the discovery
of pervasive phenomena in nature, like fractal structures, which had pre-
viously escaped recognition. They have also led to completely new insight
by the development of abstract dynamical models like cellular automata
for diverse topics like forest fires, traffic flow, or avalanches.

From the multitude of strategies and applications of computer simula-
tions, the present lectures, with a restricted available time of only one hour
per week, aim to serve as an introduction to some of the most important
aspects and techniques.

There are several additional important goals addressed thoughout these

lectures and the accompanying excercises, beyond the introduction of spe-
cific techniques and applications. One important aspect is efficiency in
terms of scaling of the computational effort with problem size. This does
not concern details of a method or its implementation, but instead the
much more important issue of whether a method dealing with N variables
takes a computational effort of, say, O(N) or O(N?) or even more. For typ-
ical problem sizes like N = 10° or 10? the difference between O(N) and
O(N?) is giant. This question of scaling applies both to the algorithm used
and indeed to its implementation. Examples of algorithms with favorable
scaling are the Fast Fourier Transform and sorting algorithms (O (N log N)
instead of O(N?) in both cases). It is however easy to accidentally intro-
duce bad scaling and thus gross inefficiencies in the implementation of an
algorithm, especially when using abstract vector or matrix operations like
in Matlab. In small test cases one can overlook the problem. When big
system sizes are eventually intended, one must make sure that the actual
computational effort scales correctly.
On the other hand, the most precious resource is personal time. It depends
on the eventual running time of a program (seconds versus years) whether
optimizations are worthwhile. Optimizations below, say, a factor of two in
running time are often not worth the effort.

The most important overarching goal is on how to produce reliable
results. It is tempting to treat numerical methods (as well as other ma-
chinery) as black boxes. One presses some buttons, the machine runs, and
out come the results. But are they reliable? Are they even remotely true??
Is the method used within its limits of applicability? It is very easy to pro-
duce nonsense, even with a formally correct program and a lot of com-
puting time. Therefore, it is essential to proceed very carefully, starting from
very easy cases with known results, for which one must verify the program
and its results. Then one must proceed very slowly to more difficult cases,
e.g. bigger simulated systems, and check for signs of difficulties. Usually
one does not know the limitations of one’s procedures in advance, and easily
oversteps them. The catchword is to think small. In everyday life this is
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obvious, for example for mountain climbing: if one would proceed from a
first climbing course inside a building directly to the Himalayas, the result
would be desaster.

But different from falling off a mountain, the failure of an algorithm
or program may be completely hidden. There will almost always be re-
sults, but they may be entirely wrong, and one may not be able to notice
this from the results themselves. It is extremely tempting to write a pro-
gram, verify it on easy cases, and then apply it immediately to the actual
big case of interest. Watch out ! This will often produce nonsense ! The
only safe way to proceed is to start with easy cases and slowly increase the
difficulty, while monitoring for signs of problems. This way one can stay
with cases for which problems are still manageable. Note that this careful
procedure usually does not take much extra time, since it is the biggest sen-
sible system which will in the end dominate the total computational effort.

Finally, an essential part of every quantitative result is a reliable es-
timate of the uncertainties (often called “error estimate”). A numerical
result must always be accompanied by a sensible error estimate. Stating
a numerical result without providing a reliable error estimate is use-
less. Related issues often arise in every-day life. In an unfortunate sense,
every quantitative statement already contains an error estimate of sorts,
namely by the number of digits specified. For example, it is common to
see numbers like 34.21% as the result of some poll, without any explicitely
specified error estimate. This seems to imply that the last digit “1” is still
correct or almost correct. But is this true ? The actual uncertainty in polls
is usually two orders of magnitude larger. If one takes all the digits to be
true, then one is led, often in practice, to very wrong conclusions, like the
supposed gains or losses of a political party, with ensuing political con-
sequences — based on a wrong interpretation of data that was specified
without uncertainties. A discussion of such topics, including the related
question of errors of histograms, will be provided in an appendix to these
lecture notes.

In computational physics (and elsewhere), the control of uncertainties,
and hopefully a good quantitative estimate, is one of the major tasks, and
can sometimes even dominate the effort invested. But, to emphasize, with-
out the error estimate the results would be meaningless. The present lec-
ture notes and the accompanying excercises will attempt to provide some
guidance.

Additional information and other topics can be found in the book Basic
Concepts in Computational Physics (Springer, 2nd edition 2016) by B. Stick-
ler and E. Schachinger, with which these lecture notes share a common
ancestry.
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Chapter 1

Sampling from probability
distributions

Literature
1. F.J. VESELY, Computational Physics: An Introduction, Springer 2001.
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3. K. BINDER and D.W. HEERMANN, Monte Carlo Simulation in Statistical Physics:
An Introduction, Springer 2002.

4. D.P. LANDAU and K. BINDER, A Guide to Monte Carlo Simulations in Statis-
tical Physics, Cambridge University Press 2009.

5. B.A. BERG, Markov Chain Monte Carlo Simulations and their Statistical Analy-
sis, World Scientific 2004.

6. M.E.]. NEWMAN and G.T. BARKEMA, Monte Carlo Methods in Statistical
Physics, Oxford University Press 1999.

7. ].S. L1u, Monte Carlo Strategies in Scientific Computing, Springer 2008 (math-
ematically oriented).

1.1 Introduction

Physical systems, like a gas, a fluid, or a more complicated system, can
occur in many states z. It is often useful to describe such a system by
its (equilibrium) statistical properties, namely the probability distribution
7(z), for example the Boltzmann distribution in statistical physics. Quan-
tum mechanical systems in d dimensions can often also be mapped to such
systems, which formally look like a statistical system in d+1 dimensions,
where the extra dimension corresponds to time.



Many physical quantities (including dynamical response functions in
the case of quantum mechanical systems) can then be expressed as an ex-
pectation value of some function f,

(fy = > fl@)=(x), (1.1)

where f is for example the energy, or a correlation, or any other quantity.
We shall denote the expectation value by angular brackets, like in quantum
mechanics.

The state space of physical systems is usually huge. For example, imag-
ine a crystal of some atoms, for which we just examine the spin direction
of the outermost electrons, i.e., spin  degrees of freedom. In the simplest
case, we treat the system classically, with spin values +2 for each electron,
and some Boltzmann-like probability distribution 7 for each configuration
x of the spins. (This leads to the so-called Ising model, discussed later in
this chapter). Then for n atoms, there are 2" possible spin configurations,
i.e. exponentially many, so that for large n one cannot sum over all of them
to calculate the partition function or expectation values like (f). Precise
or even just useful analytic calculations are often not possible; thus such
problems are very difficult to treat directly.

However, if we find a way (called importance sampling) to draw states
x; directly from the distribution 7 then we can calculate the sample mean
(average value) of NV such states, denoted by a bar in these lecture notes

_ 1 &
ﬂ—ﬁzﬂm, (12)

One needs to strictly distinguish between the expectation value (f) with
respect to a probability distribution, and a sample mean ? The sample
mean obviously depends on the sample taken and is a random variable
itself, with fluctuations across different samples. In the limit N — 0o, f ap-
proaches (f). Note that specifying this sample mean (like any quantitative
result) is meaningless without an estimate of its error !

The variance of f with respect to 7(z) is defined as an expectation value

o* = ((f(2) = {f(2)))") . (1.3)

Note that this variance refers to the distribution of the values which f can
take. (A very simple example would be a distribution 7 of values 1 with
equal probability, thus an expectation value of 0 and a variance of 1.)

The variance can be estimated by the sample variance

? o= 3 () - 7). (1.4)

i=1

n the present lecture notes, we will adhere to these names and notations, but note
that they may differ elsewhere in the literature.
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If the states z; are drawn independently of each other, then the error of
the sample mean f for large N can be estimated as

o7 ~ /s2/N. (1.5)

It falls off like 1/v/N. (In the simple example above, where f has a variance
of 1, it would just be 1/ VN ). If the states z; are not independent, then the
error can be much larger, as we will discuss later (but it will usually still
fall off like 1/v/N).

It is therefore highly desirable to develop and employ numerical meth-
ods for drawing states from a given distribution 7, where 7 might be
complicated and very high dimensional.

For low dimensional state spaces, there are algorithms, so-called ran-
dom number generators, to draw from some given probability distribu-
tion “directly”. We will soon introduce some important simple methods
to do this. They are usually based on some basic generator for uniformly
distributed numbers.

For high dimensional state spaces where such direct methods become
extremely inefficient, so called Markov Chain Monte Carlo methods have
been developed. By a stochastic process, they generate a sequence of con-
figurations =; which together sample from the full ensemble according to
some desired distribution 7 (x). We will treat such methods in some de-
tail in this chapter. As a basic ingredient, these methods use the simpler
random number generators just mentioned.

Monte Carlo methods have even been constructed for quantum me-
chanical systems. They make use of the Feynman path integral formula-
tion to map a d-dimensional quantum mechanical system to a classically
looking system in (d + 1) dimensional space-time, with a distribution 7
related to the path integral. Such Quantum Monte Carlo simulations also
provide information about spectra and other time dependent quantities.
They are however beyond the scope of the present lectures.



1.2 Direct Sampling Methods

In this section we describe different techniques to draw random numbers
from a distribution g(z), independent of each other. We treat the single-
variable case, since random sampling from multivariate distributions can
always be reduced to single variable sampling. In fact all other generators
(including Monte Carlo) are built on these simple direct methods.

We are thus concerned with a random variable X. It is characterized by
a (possibly infinite) interval zp;, < z < 2., or a discrete set of x-values,
which can be viewed as the outcome of "experiments", and a Cumulative
Distribution Function (CDF) G(\) which specifies the probability that in
a particular realization, i.e. one instance of the "experiment", the outcome
satisfies x < \. It is connected by

by
G(\) = / dx g(x) (1.6)

to the probability density g(x) > 0, also called the Probability Distribution
Function (PDF). It is normalized (G (z/.) = 1). We want to generate re-
alizations of such a random variable, i.e. to generate random values of z,
distributed in the interval [, Zmax] With density g(z).

Note that with a computer program we can never generate truly ran-
dom numbers. Instead we produce "pseudorandom' numbers, usually in
sequential fashion, which should satisfy certain criteria, but will always
be inadequate in some aspects. Some of the simpler criteria are statistical
means, variances, etc., as well as visible correlations of subsequent num-
bers. Note that the actual sequence generated by some generator can be
modified by specifying a parameter, the so-called seed-number.

It is important to realize that the “quality” of any given random num-
ber generator depends on the application for which it is used. A genera-
tor which is very good for one application may fail badly for others, even
closely related ones. One should therefore compare results employing sev-
eral random number generators of different design, especially when precise
results are desired.

1.2.1 Uniform Random Numbers

Most random sampling algorithms have as their basic ingredient random
numbers r which are uniformly distributed in the interval [0, 1], described

by the PDF:
[ 1 relo,1]
u(r) = { 0 otherwise. (1.7)
This results in the cumulative distribution function

" 0 r<o0
Ulr) = /dr'u(r') =¢r 0<r<1 (1.8)
0 1 »r>1.



There are many algorithms. Among the simplest are the linear congru-
ential generators (LCG) which are based on the recursion

Tiy1 = (CL x; + C) mod m,

where the integers a, ¢, and m are constants. These generators can further
be classified into mixed (¢ > 0) and multiplicative (¢ = 0) types. An LCG
generates a sequence of pseudo random integers X, X»,...between 0 and
m — 1. Each Xj is then scaled into the interval (0, 1) (or sometimes [0, 1)).
When m is a prime number, the period of the generator can be up to m — 1.
It depends on the choice of parameters a, c.

One choice of parameters for the LCG sometimes used is a = 16 807 =
7> and m = 23! — 1. This yields a generator (called GGL or CONG or
RANDO) which is given by:

Ry,

Rn = (75 Rn—l) mod (231 — ]_) s Tn = m

It produces a sequence of random numbers r,, uniformly distributed in
(0,1) from a given initial seed number R, < 23! — 1, which for this gen-
erator needs to be an odd number. This generator is known to have rea-
sonably good random properties for many purposes. The sequence is peri-
odic, with a period of the order of 2°* & 2 x 10°. This is not large enough to
prevent recurrence of random numbers in large simulations (which may
or may not matter). Caution: the least significant bits of this and most other
generators have far worse properties than the most significant ones; they
should thus not be used by themselves.

Another known problem of this and other linear congruential gener-
ators is that D-dimensional vectors (x1,zs,...,2p), (Tpi1,Tpia, ..., Tap),
...formed by consecutive normalized random numbers z; may lie on a
relatively small number of parallel hyperplanes.

Operating systems and programming languages usually provide ran-
dom numbers, sometimes like (1.2.1), sometimes of other designs. In many
cases they are good enough. But, again, it depends on the precise problem
and method used whether a given generator is "good" or "bad".

1.2.2 Inverse Transformation Method

We want to draw from a probability distribution function g(z). The cumu-
lative distribution function

T

Glo)= [ d' o)

Zmin

is a non-decreasing function of z. Note that G(x) is constant (i.e. does not
increase) in regions of x where g(x) = 0. When X is a random number
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i+1

Figure 1.1: Bad generator (schematical): Pairs of random numbers lying on
hyperplanes.

drawn from g, then the above definition of G(x) is equivalent to specifying
the probability

P(X <z)=G(x). (1.9)
For uniform random numbers « this relation becomes
Plu<z)==x. (1.10)

We can define an inverse of the cumulative distribution function:
G1(¢) = inf{z|G(x) = ¢} . (1.11)

We need the infimum (or some similar function) here because G(x) can be
constant in some intervals.
Because of the monotonicity of G(x), the function G obeys

Gl <2 & €<G@). (1.12)

Now let us draw £ from a uniform distribution between 0 and 1, i.e. for £ we
use a random number u. Then (1.12) implies

PG (u) <2') = P(u<G()) = G,

where the last equality follows from (1.10). Thus G~'(u) satisfies and
it is therefore a random number distributed like g, as desired.

To repeat, if ¢ is chosen as a uniformly distributed random number,
then the variable defined by

r=GY¢) = inf{z|G(x) = £}

is randomly distributed in the interval [, Tmax] With the desired PDF
g(z). The randomness of x is guaranteed by that of {. Eq. (1.11) is equiva-
lent to solving

xT

£E= /dm’g(m'), (1.13)

Xmin



for (the smallest possible) x. This is called the sampling equation. The in-
verse transformation method is useful if ¢(z) is given by a simple analyt-
ical expressions such that the inverse of GG(x) can be calculated easily.

Example. Consider the uniform distribution in the interval [a, b]:

1

9(x) = ugp(z) = —
We need to solve v a
£ = Gla) = 7—

for z, namely
r=a+{b—a), £e€l0,1]

As another important example consider the exponential distribution

1 S
g(s):XeXp{—X}, s>0, A>0, (1.14)

which describes, e.g., the free path s of a particle between interaction events.
The parameter A represents the mean free path. In this case, the sampling
equation (1.13) is easily solved to give the sampling formula

s=-Aln(l—=¢) or s=—-Aln¢.

The last equality follows from the fact that 1 — ¢ is also a random number
distributed equally in (0, 1].

1.2.3 Rejection Method

The inverse transformation method for random sampling is based on a
one-to-one correspondence between x and £ values. There is another kind
of sampling method, due to von Neumann, that consists of sampling a
random variable from a suitable other distribution and subjecting it to a
random test to determine whether it will be accepted for use or rejected.
This rejection method leads to very general techniques for sampling from
any PDE.
We want to generate random numbers following a PDF g(z) > 0

b

/dmg(x) =1, x¢€la,b].

a

We need to find another PDF h(x) > 0,

b

/dm h(z) =1,

a



which should satisfy
g(z) < ch(z), V€ la,b], (1.15)

with ¢ a constant. Thus, in the interval [a,b], ch(x) is an envelope of the
PDF g(z). (See Fig.[1.2])

The interval [a, b] can also be infinite, in which case h(z) cannot be a
constant because of normalization. The distribution h(x) needs to be easy
to sample. In practice this means that we should be able to compute the
inverse H () of the CDF H(z) = f: h(z)dz. In Fig.[1.2, h(z) is composed
of two parts, the first (e.g. ~ 1/2?) taken to envelope g(z) atlarge z, and the
second constant part at small = in order to avoid the large area underneath
a function like 1/2? at small z (see below). The corresponding CDF H (x)
can still be inverted easily in an analytical way.

Random numbers distributed according to the PDF g(z) are then gen-
erated according to the following procedure:

Algorithm 1 Rejection Method
begin:
Generate a trial random variable z7 from h(x)
Generate a uniform random number r from u(z), Eq. (I.7).
if rch(zr) < g(xr) then
accept xr
else
go to begin
endif

Proof: The probability of accepting a value zr is p(A|zr B) = g(zr)/(ch(xr))
(with p := 0 when h = g = 0). Thus

p(x[B) o< p(x = z7|B) p(AlrrB)
= h(ZL‘T)

x g(xr).

The accepted random numbers z; indeed follow the PDF g(x).
Probability of acceptance:

The overall probability of acceptance P(A|B) is simply the area under g(z)



reject accept

Figure 1.2: The rejection method.

divided by the area under ch(z), i.e. itis 1. Formally:
P(A|B) = dzy p(Azr|B)

dzr p(AlzrB)p(2r|B)

g(zr)
ch(zr) M)

g(er)

dIT

dlET

O — S~

Thus, the bigger ¢, the worse the probability of acceptance becomes. We
should therefore choose the constant ¢ reasonably small, i.e. ¢h(z) should
be reasonably close to g(z). There is usually no need to optimize ¢ much,
since the effect on overall computation time of some calculation in which
the random numbers are used is usually negligible.

However, if we apply a rejection method for a probability distribu-
tion 7 in d dimensions then we will usually get an exponential behaviour

roughly like
d
P(A|B) ~ (1)

C

(unless the dimensions are independent such that we can draw indepen-
dent random numbers for each direction). The rejection method is there-
fore very inefficient in high dimensions. Markov Chain Monte Carlo is then
often the method of choice.



1.2.4 Probability Mixing

This is a simple approach to cases in which the PDF f(z) is a sum of several
PDFs in an interval [a, b]:

N

f(z) = Z a; fi(z), (1.16)

i=1
with
b N
a; >0, fi(z) >0, / dz fi(x) =1, and ZO"' =1
a i=1

We define the partial sums

i
4 = E Q-
j=1

Thus ¢, = 1 and the interval [0, 1] has been divided according to this figure:

o | m | oy | |

0 q g, a, a, 1

Now we choose an equally distributed random number r € [0, 1] and de-
termine the index i for which the condition

qi—1 <1 <g;

is fulfilled. Then we draw a random number according to f;(x). This proce-
dure is correct because «; specifies the importance of the PDF f;(z). This in
turn gives us the probability that the random variable X is to be sampled
using the PDF f;(x).

Example: The function h(z) in Fig. is composed of two parts. We
can draw from h(z) by using separate generators for each of the parts.
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1.3 Markov Chain Monte Carlo: Importance Sampling

Markov Chain Monte Carlo (MCMC) is an efficient approach to perform
sampling in many dimensions, where often the probability density ()
is strongly dominated by only a small part of the total state space. Prime
examples are physical systems consisting of many similar particles (elec-
trons, atoms, ...) which interact with each other. The dimension d of state
space is some multiple of the number of particles, typically d = O(10%...107)
and larger, so that any sort of simple sampling is entirely impossible. In
this lecture we will consider an especially simple model, the Ising model
as an example.

In Markov Chain Monte Carlo, configurations z are created iteratively
in such a way that their distribution corresponds to a desired distribution
7(z). Because of the iterative construction, consecutive configurations are
usually highly correlated. Thus the samples in average values con-
sist of numbers which are also correlated. This is entirely permissible. It
does however require careful consideration of the convergence of sample
means and especially of their statistical errors.

Many methods have been developed over time for different applica-
tions, some of them very efficient. We will be concernced in details just
with the basic "Metropolis-Hastings" method, which is almost always ap-
plicable. An appendix provides an overview over more modern strategies.
In physics, Markov Chain Monte Carlo is often just called “Monte Carlo” |

1.3.1 Markov Chains

Chains of dependent events were first studied by A. Markov in 1906. We
will first collect a number of definitions and properties.

Markov property

A Markov chain is specified in a discrete sequence, usually called (Markov-
or Monte-Carlo-) time. It does normally not correspond to physical time.
The Markov “time” is just t, = n = 0,1,2,.... At each of these times the
system is in one state z;, of the set of possible states

Z17 ZQv R Zk?

which together span the state space S. Example: (2, = Zy, 2, =Z5, x1, =25, ... ).
We shall restrict our discussion to finite state spaces[]

2 The name "Monte Carlo integration" is sometimes used for simple sampling with a
random choice of values of the integration variable x. This should not be confused with
the Importance Sampling of Markov Chain Monte Carlo.

3This avoids cumbersome mathematical issues. Indeed, it is realistic, since the rep-
resentation of a system on a computer using a finite number of bits for the discrete or
"continuous" degrees of freedom corresponds to a finite state space.
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The defining Markov property is that the probability of being in a par-
ticular state Z; at time ¢,,,; depends only on the state at the current time t,,
but not on any previous history.

Transition matrix

The Markov chain is specified by the initial probability distribution 7 (z,t =
0) of states at time zero, and by the transition probability p;; from state Z;
at time ¢,, to state Z; at time ¢,, 1. We demand that the transition probabilities
do not depend on time. Transition probabilities are organized in the transition
matrix:
Pi1 P12 --- Pk
P={p;y=1|: + -~ [, (1.17)
Prk1 Pk2 --- Pk

P is a stochastic matrix, i.e.: all elements of P obey the inequality 0 < p;; <
1, and all row-sums of the & x k matrix are equal to unity:

k
py=1, i=1.. k (1.18)
j=1

The transition probabilities pl(f) from state Z; at time ¢,, to a state Z; at
time t,,,, k steps later are simply (P*),;.

Irreducibility

A Markov chain is called irreducible, if for every pair of states Z;, and Z;
there is a finite number n, such that one can get get from Z; to Z; in n steps
with finite probability, i.e. if the state space is not subdivided into non-
communicating regions. Note that in order to draw samples from some
distribution 7, we only need the chain to be irreducible for the space of all
states for which 7; is larger than zero.

Non-Periodicity

A state Z; has period d, if any return to state Z; occurs only in some multi-
ple of d time steps and d is the largest number with this property. A state
is aperiodic when d = 1. A sufficient condition for aperiodicity of state Z;
is that the diagonal matrix element is not zero: p;; > 0. In an irreducible
chain, all states have the same period; so we can then speak of the chain
having the period df]

Example: A transition matrix in a space of 2 states, which is irreducible but

*For an irreducible chain, non-periodicity is already ensured when p;; > 0 for at least
one state.
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not aperiodic:

(1)

With this matrix one can move from any state to any other state, so the
chain is irreducible. But it is also periodic with period 2, since only an
even number of steps will lead back to the original state.

Regular chain

The transition matrix P is called reqular if some power of P has only
strictly positive elements. This is equivalent to the chain being both ir-
reducible and aperiodic.

Ergodicity

A Markov chain with the same properties, irreducibility and aperiodicity,
is often called ergodic.
Caution: Ergodicity is sometimes defined differently.

1.3.2 Stationarity and convergence
Stationarity, Global balance

The vector of probabilites 7;, with ) . m; = 1, is called a stationary distri-
bution when
T = Z T Pij

This means that when one starts with an ensemble of states occuring
with probabilities m; and performs a step of the Markov chain, then the
resulting ensemble will have the same probabilities for each state.

One can write the equation for stationarity (= “Global Balance”)
in matrix form:

(1.19)

T = wP,

showing that 7 is a left eigenvector of the transition matrix P, and it is a
fixed point of repeated applications of P.
Convergence of a Markov chain

Theorem 1.1 A Markov chain has a stationary distribution if it is irreducible.
Then the stationary distribution 7 is unique.

Theorem 1.2 If the chain is also aperiodic, then it converges to the stationary
distribution, independent of the starting distribution.

n—o0
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This is a central theorem for Markov chains. Equation (1.20) is equivalent
to
lim P" = 1w, (1.21)

n—0o0

i.e.,, P" converges to a matrix in which every row is the distribution .

1.3.3 Detailed balance

A Markov chain is called reversible if it satisfies the detailed balance condi-

tion?]

’77'1' bi; = T pji‘ (1-22)

This is a sufficient condition for stationarity. Proof: We take the sum

>, on both sides of eq. (1.22). Because of >, p;; = 1, we get eq. (1.19)

immediately.

Example: Spread of a rumor

Zy and Z, are two versions of a report, namely, Z;: Mr. X is going to resign,
and Z,: Mr. X is not going to resign. We can write the following transition

matrix:
(7).
qg l—gq

(i) Some person receives the report Z;. It will then pass this report on as
Z, with a probability p and as Z; with a probability (1 — p). Conse-
quently, the report will be modified with a probability p.

to the effect that:

(ii) In the same way, the report Z, will be modified with a probability g.

Realistically 0 < p < 1 and 0 < ¢ < 1. In this simple case we can analyze
the Markov chain exactly, namely by diagonalizing P such that UTPU is
diagonal. Then P" = U (U'PU)" U', and one obtains

1
limP":—(q p>
n—00 p+q q D

q _p
T =, T = .
P+q Ptq

Indeed, this distribution also satisfies the detailed balance condition, namely

and, consequently

P12 T2

P21 1

°The same equation occurs in chemistry for concentrations and reaction rates.
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No matter what the initial probabilities of the reports Z; and Z, were,
they will in the end converge to m; and 7,. Thus the public will eventu-
ally be of the opinion that Mr. X will resign with a probability m; that is
independent of his real intentions.

Markov chains have applications in many diverse fields, among them
statistical physics, evolution of populations, Bayesian analysis of experi-
ments, and many others.

The numerically biggest application of all is quite recent, namely the
original Google page rank algorithm. This rank is the probability in the
stationary distribution of a Markov chain which assigns a constant transi-
tion probability to each link on a web page, and additional tiny transition
probability from any web page to any other to ensure ergodicity.

1.3.4 Metropolis-Hastings method

We want to construct a Markov chain such that it has a desired stationary
distribution ;. This means that we need to find a suitable transition prob-
ability matrix. The Metropolis-Hastings algorithm provides a transition
matrix which satisfies detailed balance with respect to a given distribution
;. If the Markov matrix is also ergodic (irreducible and aperiodic) it will
then converge to 7.

The Metropolis method was the first Markov chain Monte Carlo method,
later generalized by Hastings. It is widely applicable since it is very sim-
ple. For specific applications, there are often much better methods, some
of which are mentioned at the end of this chapter.

We construct the probability matrix p;; for going from a state Z; to some
other state Z;. Let the chain be in a state Z;. Then we perform the following
steps:

1. We propose to move to a state Z; according to some proposal probability
¢;j- It needs to be chosen in such a way that the Markov chain will
be ergodic (irreducible and aperiodic). One needs to carefully make
sure that this is indeed the case.

2. We accept the state Z; as the next state of the chain with probability
p?jccept = min (1, M) : (1.23)
T ij
3. When Z; is not accepted, then the next state of the chain will again

The overall transition matrix p;; is the product of the probability ¢;; to pro-

pose a step from i to j and the acceptance probability p?jccept;

Py = G P (1.24)

15



Proof of detailed balance: We look at the case that the nominator in eq.
(1.23) is smaller than the denominator. The opposite case is just an ex-
change of indices. Then

T Pij = T Qi Py

which is indeed the same as

T Pji = TjG45i Py

1.3.5 Making use of a single chain

With ergodicity and detailed balance satisfied, an algorithm like Metropo-
lis will produce a Markov chain with 7; as the stationary distribution. Re-
gardless of the original state of the chain, after a large amount of steps the
final state will be from the distribution 7.

One could then simulate a large number of Markov chains from some
arbitrary initial state(s) (using different random numbers) and use the en-
semble of final states as a sample of 7. This strategy is inefficient, since it
often takes a long time for the chains to "forget" the initial state, so that one
must have very long chains for each individual sample, and even then the
samples will still tend to be biased.

A much better strategy is to use a single chain (or a few with different
initial states). First one waits for a rather long time to let the chain forget its
initial state. After this “thermalization” one then takes many samples for
measurements from the single chain, with a fairly small number of steps in
between (described later). These samples will all be (approximately) from
7 because of the thermalization, but they will be more or less correlated
with each other. One therefore needs a careful error analysis to make use
of these numbers, which we will discuss in section[1.4

1.3.6 Example: The Ising model

The Ising model was invented to describe ferromagnets. It is one of the
simplest models of statistical mechanics. This model and related ones have
applications in many other parts of physics and beyond. More information
on these models as well as on Markov Chain Monte Carlo can be found in
the lectures on "Phase transitions and Critical Phenomena".

The Ising model is concerned with variables called spins s; living on a
lattice of sites ¢, 7 = 1,..., N, e.g. on a square or 3D lattice with N sites.
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Figure 1.3: A spin configuration of the Ising model.

In the Ising model, the variables take only two values
S; € {—1, +1} .

These two values represent, for example, two spin states of an atom lo-
cated at site i. A completely different incarnation of the Ising model is for
example a binary alloy, where on each lattice site there is either an atom
of species "A" or of species "B". The value of s; then specifies this species.
We will in the following use the language of “spins” and corresponding
magnetism.

In a ferromagnet, spins prefer to be aligned. In the simplest Ising model,
only spins on sites i and j that are nearest neighbors on the lattice interact.
They have an energy

—J 885, J>0

which favors alignment. In addition, a magnetic field i changes the energy
of each spin by —h s;. The total energy of each configuration of spins S =
(s1,82,...,8y) is then

E(S)==> Jsis; — hY s (1.25)
(i) i

The sum extends over all pairs (ij) of nearest neighbor sitesﬂ
The magnetization of a spin configuration S is

M(S) = ) s (1.26)

For the Ising model, the spin configurations S are the states “z” of the
probability distribution 7. It is given by the Boltzmann weight

e PES)

n(S) = ——. (1.27)
®The expression for E(S) can be interpreted as a quantum mechanical Hamilton oper-
ator. Then s; represents the z-component of a quantum mechanical spin. However, there
are no operators S;~ or S;” which would change the value of s;. The Hamilton operator is
therefore already diagonal in the variables s;. It is just a normal function of S, without any
operator effects, and the Ising model is in effect not quantum mechanical but a classical

model of classical variables s;.
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where the normalization factor Z is the partition function

Z =) e, (1.28)
S

The sum extends over all possible spin configurations. For N spins there
are 2V configurations. Therefore simple sampling is impossible except for
very small toy systems.

Expectation values are given by (LI): (f) = >, f(z) n(z).
Some of the interesting observables of the Ising model are:

e Internal energy

(B) =Y E(S) & ——, (1.29)

e Average magnetization of a configuration

(M) = Zs: M(S) ——, (1.30)
e Magnetic susceptibility
X = ) = (M) — ()?) (1.31)

In two or more dimensions, the Ising model exhibits a phase transition:
At low temperatures (large [3), allmost all spins are aligned: the system is
in an ordered, ferromagnetic state.
At high temperatures (low [3), the spins take almost random values and
the system is in an unordered, paramagnetic state. For a 1D system and a
2D square lattice, the model can be solved exactly. All other cases need to
be examined by numerical methods or approximate analytical techniques.

1.3.7 Choice of Monte Carlo steps

Because of its many states, we need Markov Chain Monte Carlo to eval-
uate observables numerically, without the systematic errors of analytical
approximations.

There is a lot of freedom in choosing the Markov transition matrix.
Different choices can affect the efficiency of a simulation drastically, even
by many orders of magnitude, especially in the physically most interesting
cases.

We will stay with the simple Metropolis-Hastings method for the Ising
model. Let the current state “i” of the Metropolis method be the spin con-
tiguration S. We need to propose a change (“update”) to a new state j,
which here we call S, namely S — S’ with some probability ¢gs. We will
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propose the reverse transition S — S with the same probability. Then
¢;; = g;i for the proposal probability, and (only then) it cancels in ((1.23)

et — min (1, L3
: :
Y T Qij

With 7(S) = Le ##5) we get

accept : e_BE(S/) . —BAE
Psg = min (1, m) = min (1, e ) . (1.32)

The acceptance probability thus depends on the energy change AE =
E(S’) — E(S). The proposed update will consist of some spin flips. If we
propose to flip many spins at once, then the energy change will be large
and will be accepted too rarely. For the Ising model, a suitable update pro-
posal is to flip a single spin !

A single step of the Markov chain now consists of two parts:

e Choose a lattice site [ at random. Propose to flip s;, — —s, i.e. the
configuration S’ differs from S only in the value of s;.

e Compute AE. Accept S’ with probability (1.32). If it is accepted, the
next Markov chain configuration will be S'. If it is not accepted, the
next configuration will again be S.

Irreducibility of this procedure is assured: with single spin flips one
can eventually get from any spin configuration to any other. With the pro-
cedure just specified, aperiodicity also holds, because the diagonal proba-
bilites p;; to stay in the same state are finite (except for the lowest weight
state(s)). Detailed balance is satisfied by construction. Thus this is a valid
Monte Carlo procedure which will converge to the Boltzmann distribu-
tion[]

Obviously, the update of a single spin changes a configuration only by
very little. Many such steps concatenated will eventually produce bigger
changes. A useful unit of counting Monte Carlo steps is a sweep, defined
to consist of NV single spin steps, where N is the number of spins in the
lattice. Observables are usually measured once every sweep, sometimes
more rarely (see below).

1.3.8 Thermalization

A Markov chain is started in some configuration z,. For instance, in an
Ising model, z, might be the configuration with “all spins up”; this is

7 In practice, one often moves through lattice sites sequentially instead of at random.
This violates ergodicity slightly but is usually harmless on big systems. In special cases
(e.g. small system with periodic boundary conditions) it can induce a periodic Markov
Chain, i.e. invalid results.
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sometimes called a cold start. Alternatively, the Markov chain might be
started in a random configuration, called a hot start. In any case, the ini-
tial state z,, tends to be far from the equilibrium distribution 7. Therefore,
the system is “out of equilibrium”, and measurements O(X;) may initially
have values far from their average. Theorems [1.1] and |1.2| guarantee that
the system approaches equilibrium as ¢ — oo, but we should know some-
thing about the rate of convergence to equilibrium. We will quantify this a
little later.

One can take measurements before equilibrium is reached. This intro-
duces a bias in the averages. When the number of measurements n — oo,
the effect of the bias vanishes like <, so results eventually converge to the
correct expectation values.

However, the bias can be quite large. In order to keep it small, one
only starts measuring after a fairly long equilibration phase of some nperm
sweeps.

A good rule of thumb for choosing ne,m is about 10-20% (!) of the to-
tal number of sweeps in the simulation. Reason: It is good to have nerm
large to achieve a small bias, while reducing the available number of mea-
surements by 10 — 20% does not increase the statistical errors of averages
significantly.

1.3.9 Parts of a Monte Carlo simulation

A Markov chain Monte Carlo consists of the following parts:

e Choose any starting configuration

e Thermalize for n,m sweeps.
The choice of starting configuration should not make a difference
any more after thermalization ! This can be used as a check.

e Generate n configurations X;, t = 1,...,n, separated by one or more
sweeps, with measurements O, := O(X}). (¢t will from now on only
count the sweeps after thermalization).

e Analysis of the resulting time series (see next section):

— Compute averages.
— Examine autocorrelations.
— Perform error analysis.

— Check against known results.

Thus a simulation can be divided into two parts, the data generation
part and the data analysis. The interface between these two parts consists
of time series of measurements of relevant physical observables taken dur-
ing the actual simulation. Often a part of the analysis can be done during
data generation, without the need to save complete time series.
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1.4 Spectral Analysis of discrete time series

Before we analyze Monte Carlo time series, in this section we consider a
generic stochastic process in discrete time, which may or may not be a
Markov chain. There is a sequence of “times” ¢, = n = 1,2,3... (writ-
ten without unit, for simplicity). Each time separately is associated with a
random variable X,, taking real values x with some PDF gn(:v)

Each realization of the stochastic process is a so-called trajectory with
coordinates z,, = z(t,). It might for example represent the motion of a
particle. Note that there is a PDF for whole trajectories in the space of all
possible trajectories. Expectation values are defined with respect to this
overall PDF.

When a quantity like X,, only depends on a single time t,, then its
marginal PDF is g,. Expectation values for single times t,, are

(Xn) = /xgn(a:) dx . (1.33)

1.4.1 Autocorrelation function

An important issue in the analysis of time series is the question of how
strongly successive z,, are correlated with each other. Another related ques-
tion is that of potential periodicities in the time series. In order to examine
correlations, we look at the covariance of quantities.

We consider only the case that all expectation values are time-independent:

(Xn) = (Xy) = (X)

cov (Xna Xn+t) = cCov (Xl, Xl-i—t) = R(t) ’ (134)

where in the second line we have given the name R(t) to the covariance.
Such time-independent time series are called “stationary” [
Since expectation values are time independent, we can write the co-

variance as
cov(X,Y) = < (X — (X)) (Y —=(Y)) > (1.35)

without time-indices. Note that the covariance measures the correlation of
deviations from the expectation values. As usual,

cov(X,X) = var(X) = (std(X))*. (1.36)

8Note that X might be the energy of a system, or the magnetization, etc. In the gen-
eral notation for a time series used here, each such case has a different PDF ¢(x) for
the values of the energy, or the magnetization, etc.. In a MCMC, these PDFs may all be
due to an underlying distribution 7g (e.g. Boltzmann) in a phase space of configurations
S, with different functions f(S) providing energy, magnetization, etc. Then a notation
(fy = [ f(S)msdS like at the beginning of this chapter (where the configurations were
called “x”) may be more intuitive.

Caution: this is different from a “stationary Markov chain”, which becomes a sta-
tionary time series only after and if it has exactly converged to its stationary distribution
.
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We define the autocorrelation function p(t) (also called autocorrelation
coefficient) between quantities separated by a “temporal” distance ¢ as the
normalized covariance of X,, at some time n with X,,.; at time n + ¢:

cov(X,, Xoit) cov(Xyp, X3) R(t)

plt) = Std(X,)std(Xor)  std(Xo)std(Xy)  R(0) 7

It tells us how much the fluctuations in X (i.e. the deviations from (X)) are
correlated over a time distance t. We will later examine the autocorrelation
function in some detail for Monte Carlo Markov Chains.

1.4.2 Estimate of autocorrelations from a realization of a
time series

Let (X,,) be a discrete time series which is stationary. We want to give
estimates for the most important quantities on the basis of a realization,
i.e. a set of data

L1, oy «.., TN

under the assumption that /V is large enough for reliable estimates.
An estimator for the expectation value (X) is the average value

1 N

One possible estimate for the autocorrelation function p(t) is

—1

S (@5 - ) (50— 7)

-1
N— —\2
ijf (z; — )

which uses 7 as an estimator for (X). However, this estimator tends to
be unstable, since for the first bracket the term 6 which is subtracted is
different from the average of z;, since the sum goes only up to i = N — t.
Similarly for the second factor, and for nominator versus denominator.

A much more stable estimator is obtained by the so-called empirical
autocorrelation function

<

PE(t) = (1.39)

where



is the time series shifted by ¢, and the averages 7(;) and 7 are calculated
with the values of z; and y; which actually appear in the sums:

_ 1
1 N—t 1 N
Yoy = N —¢ ; Yi = N —t¢ j:zut L

By construction, —1 < pP(¢) < 1. Large values of |p¥(t)| indicate a large
correlation (or anti-correlation) between data points at a time shift ¢.

For instance, when |p”(t)| is particularly large for ¢ = m, 2m, 3m in
comparison to other times ¢, then there is a strong indication of a period
T = m in the data set (This does not usually happen in Markov chain
Monte Carlo).

The autocorrelation coefficient p”(¢) is called "empirical” because it refers
to a particular realization of the stochastic process.

1.4.3 Computing covariances by Fast Fourier Transform

The calculation of the empirical autocorrelation function is very useful for
the analysis of time series, but it is very time consuming, since for each
value of ¢, one needs to sum O(N) terms. There are O(NN) possible values
of the time distance ¢. Thus the direct calculation of the autocorrelation
function needs O(N?) steps. This is very expensive, since the generation of
the time series usually takes O(N) time

Fast Fourier Transform (FFT)

A very efficient alternative makes use of the so-called Fast Fourier Trans-
form. The FFT consists of an ingenious reorganization of the terms occur-
ing in a Fourier transform. It allows the calculation of the Fourier series of
a function f(¢;),7 =1,..., N in only O(N log N) steps instead of O(N?). It
works best when N is a power of 2, or at least contains only prime factors
2,3,5. FFT is provided as a routine in numerical libraries.

Convolution Theorem for periodic functions

The second ingredient in the efficient calculation of covariances and auto-
correlations is the convolution theorem.

10T the analysis of Monte Carlo time series, where p(t) will hopefully decay fast, one
usually needs only values ¢t < O(100) < N, which is however still very expensive.
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We start with functions f(¢;), ¢(t;), with ¢, = i (again without units, for
simplicity), defined in the range 1 < 7 < L. We assume that these functions
are periodic with period L.

The Fourier transform is

L
D et f(t (1.39)

J=1

E\H

where w, = 277. We note that

*

If f(t;) is real valued, then  f(—w,) = (f(wn)> . (1.40)

We calculate the convolution

M=

nt) = > f(t 1) g(ty) (141)

j=1
L 1 L 1 L

= Z T Z e“’-’n t ti ) f Z GZWMt] g wm (1'42)
j=1 \/f n=1 L m=1

L . 1 L N

_ Z piwnt Z Z eZ(wn—wm)tj f(wn> f](Wm) (143)

n,m=1 Jj=1
:Enrm
L
— T Z iwnt f wn ) (1.44)

inverse FT of f - §

and see that in Fourier space it corresponds simply to a product.

We can now compute a convolution of periodic functions efficiently
by first calculating the Fourier transforms of f and g by FFT, multiply-
ing them, and finally computing the back-transform by FFT again, with a
computational effort of O(Llog L).
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Correlation

We repeat the calculation for correlation functions. The only change is the
sign of ¢; in the argument of f:

M) =

Ct) = fE+1t5) g(t;) (1.45)
= ; et Z; et el flwn) Glwm)  (1.46)
N —— _
L
- T Z “nt £l §(—wn) (1.47)
1nve;;eFT
Autocorrelation

This is the case f =g.
If f(t;) is real-valued, then we get the simple and very useful result

L 1 L '
FE+15) = VL =) e
) \/z;e

J=1

flwn) (1.48)

Calculation of the autocorrelation therefore involves taking the Fourier
transform, calculating the absolute square, and transforming back.

Non-periodic functions

We usually want to evaluate correlations for non-periodic functions

given on a finite set of NV points, for a finite range of time intervals, 0 <t <
tmas- The trick to do this is by so-called zero-padding. We define

_ [ ft), 1<i<N,
F(t;) = {o, N+l<i<, (1.50)

with L > N + t,,4,. (Similarly we extend a function ¢(¢;) — G(¢;).) Note
that L is at most 2N. Now the functions F' and G are regarded as being
periodic, with a long period L (see figure). The zeros in the definition of
F ensure that f(t +1t;) g(t;) = F(t+t;) G(t;) in the desired range of
arguments 1 < j < N and 0 <t < t,,4,. Also, the right hand side is zero
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Figure 1.4: Zero Padding of a function f.

when L < j < N because of G(t;). Therefore, the desired correlation of f
and ¢ can be calculated as

=

-k

L L
flt+t;) g = ) F(t+t)) — Z et Fwy) G(—wy)
1 7=1 n=1

J

\/_
(1.51)
aslongast < tmax

We can now compute the convolution (or correlation) of nonperiodic
functions of length N by (i) zero-padding, (ii) FFT, (iii) multiplication, and
(iv) back-FFT, with an effort of O(Llog L) = O(N log N) since L < 2N.

N—t
)DL

11 Sometimes one defines the convolution as Zj.v:_ltm” f(t + t;)g(t;) instead of
o Then one should define G(t;) = 0for N + 1 —t;00 < j < L
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1.4.4 Spectrum

In order to see periodicities of a time series, it is useful to look at the
Fourier transformation. We first examine a function

Ft), j=0,41,+2 ...

which is now defined for times from —oo to oo, without boundaries in
time. Its Fourier transform (Fourier series) is

flw) = \/L_ i el f(t), (1.52)

j=—00

with continuous frequencies w € [0, QW)H
The inverse transformation is

f(t;) = \/% /07T et fw) dw . (1.53)

Periodicities in f(t;) become peaks in f(w) and can thus easily be de-
tected. However, f(w) is in general not real valued.
It is therefore useful to examine the so-called “energy” spectral density]"]

2
‘ 2

—zwt7 f )

= ‘ F(w) (1.54)

27T <
j=—00

which by definition is real and positive.
Parseval’s theorem states that the total “energy” in the frequency domain

is the same as that in the time domain:

/ iw)| = > o / flt) £7(t)  (155)
0 J,k=—o0
= > 1P (1.56)

which is also the same as the autocorrelation of f at distance zero.

Usually, the average value of f(t;) is non-zero. Then the sum above
diverges and it is better to look at the Fourier series of the autocorrelation
function R(t) of f(t;), which is called the power spectral density

R(w) = Vﬁ Z e R(t) ,w e [0,2n). (1.57)

t=—00

2When a time step At is used, w € [0, 3%)
13 When f(t) is an electromagnetic field strength, then |f(t)|? is proportional to the

electric power in the field.
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By the convolution theorem, this is the same as the energy spectral density
| f(w)]?, except at w = 0 because of the subtraction of (f)? in R(t).

Example 1: Let only one autocorrelation coefficient be non-zero:
R(£t,) #0, R(ty) =0, Vk#n
for a fixed number n > 1, € N. Then

R(tn)
V2r

(e—inw + einw) —

2cos(nw), weR.

Example 2: Let only the variance R(0) be unequal zero:

then
R(w) = RO weR.

\/27r’

Such an uncorrelated time series is called white noise.

Spectrum of finite length time series

Actual time series, say fi, f2,... fn, have a finite length N, as discussed
before. One can formally write this finite length series as coming from an
infinite series x1, z, ... (similar to zero-padding):

L1<j<N

0, else (1.58)

fi = f(t;) == x;W(t;), where W(t;) := {

using a windowing function W (t;). However, this affects the Fourier trans-
form of f. By using the convolution theorem backwards, one gets

fw) = (2 W)@ = 5 [dra)We-v), 159
i.e. the convolution of the desired & with the Fourier transform of the window-
ing function W, which is a heavily oscillating function ('causing “ringing”)
in case of the "square" window W. Therefore one often dampens the cut-
off of finite series with smoother windowing functions when one wants to
analyze the spectrum.

Reversely, when one has a signal f(¢) that is the convolution of some
desired signal x,, with some windowing function W (e.g. a Gaussian), then
one can try to deconvolve f(t) by dividing its Fourier transform by that of
W. However, this often fails because of noise in the data and division by
small numbers.
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1.5 Statistical Analysis of Monte Carlo time se-
ries

1.5.1 Averages

When the time series data result from an importance sampling MC simu-
lation, the expectation value (O) can be estimated as as a simple arithmetic
mean over the Markov chain:

0= %ZOt . (1.60)

As pointed out at the beginning of this chapter, it is important to distin-
guish between the expectation value (O) which is an ordinary number,
and the estimator O which is a random number fluctuating around the the-
oretically expected value. In principle, one could probe the fluctuations
of the mean value directly, by repeating the whole MC simulation many
timesﬂ Usually, one estimates its variance.

var(0) = ([0-(0)]") = (0%) - (0)’ (1.61)
by first estimating the variance of the individual measurement
05, = var(0,) = (07) — (0,)? | (1.62)

by the sample variance s*(t), (1.4). If the n subsequent measurements were
all uncorrelated, then the relation would simply be

var(0) = Y29 (1.63)

n

For this relation to hold we also have to assume that the simulation
is in equilibrium and time-translationally invariant. (See Sec. ) Equa-
tion is true for any distribution of the values O;.

Whatever form this distribution assumes, by the central limit theo-
rem the distribution of the mean value is Gaussian, for uncorrelated data
in the asymptotic limit of large n. The variance of the mean, Var(O), is
the squared width of this distribution. It is usually specified as the “one-
sigma” squared error €2 = var(0), and quoted together with the mean
value O. Under the assumption of a Gaussian distribution, the interpreta-
tion is that about 68% of all simulations under the same conditions would

yield a mean value in the range [O — std(O), O + std(O)].

14But this is expensive, and still requires a long time for each of the simulations to
thermalize
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Figure 1.5: Time series of successive measurements of the magnetization in an
Ising model at low temperature. The expectation value of the magnetization is
exactly zero. The average here is far from zero.

1.5.2 Autocorrelations

In a simulation with very bad autocorrelations, successive measurements
may for example look like Fig.[1.5, In the time series, we see long correlated
regions. Furthermore, we know that the magnetization (without magnetic
tield) should average to zero. Therefore the negative values throughout
most of the time series must be temporary, and actually most of the time
series, over more than 25000 sweeps, is correlated ! As a result, the average
value is far off its asymptotic value of zero.

In this example the long autocorrelations occur because at low tem-
perature the spin configurations more or less “freeze” into a state with
mostly spin-down (or mostly spin-up). With single-spin-flips, intermedi-
ate configurations with high energies must be overcome to get to the op-
posite magnetization. This will happen only very rarely. The situation is
quite similar to the metastable behavior of real materials (— applications)
even though the Monte Carlo time evolution with the Metropolis algo-
rithm does not correspond to a physical Hamilton-evolution.

Another common reason for long Monte Carlo autocorrelations are
large physical regions of similarly oriented spins. They occur close to sec-
ond order phase transitions, which are physically very interesting to in-
vestigate. These regions have a typical size, which is called the correla-
tion length £. Autocorrelation times with local updates then typically are
of order 7 ~ £2. Note though, that because of their very Markov nature,
measurements from a Markov chain will always be autocorrelated to some
smaller or larger degred”| Thus we always have to take autocorrelations
into account for error calculations.

As we have already discussed, they can be quantified by the autocor-
relation function

_ (O(to) O(to +t)) = (0)* _ o/
polt) = 0% (07 = Y a0yt (l64)

15Except for the rare cases that completely independent configurations can be chosen.
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Figure 1.6: Typical autocorrelation function. Note the log-scale.

The last expression can be obtained by a lengthy calculation using the
spectral representation of the Markov transition matrix P. It contains pos-
itive coefficients ¢;(O) and time scales 7;, with Ti = —log \;, which are re-
lated to the eigenvalues ); of the Markov matrix. These eigenvalues satisfy
I\i]? € (0,1] and are usually real valued. We see that the autocorrelation
function is a sum of exponentials, and it should therefore always be ana-
lyzed on a logarithmic scale. Typical cases are depicted in Fig.

The largest eigenvalue \y = 1 of the Markov transition matrix corre-
sponds to the equilibrium distribution =, since 7 = 7 P. The next largest
eigenvalue determines the largest time scale in the time evolution. It is
called the exponential autocorrelation time .,,(O). For a specific operator O,
the largest time scale 7.,,(O) occuring in po(t) is determined by the largest
eigenvalue with ¢;(O) # 0. It sets the time scale for thermalization of O. In
the autocorrelation function, plotted logarithmically, 7.,,(O) is the asymp-
totic slope, at large time separations t.

1.5.3 Statistical error and Integrated Autocorrelation time

From the autocorrelation function, one can compute the true variance of
the average value O = + Y7 | O;. We now label the n measurements of O
by O;. We assume that the Markov chain has no memory of the initial con-
figuration any more. Its probabilities are then time-translation invariant.

The variance of an individual measurement O, can be expressed by
expectation values:

)

05, = (0f) —(0:)*.

We now compute the variance of the average value O. If the measurements
were independent, it would be equal to 0, /n. In general, it is
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In the second line, we have inserted the definition of O, and in the
third line we collected diagonal terms ¢ = j. The last line is obtained by
using the assumed time translation invariance and writing j = ¢ + t. The
first bracket after the sum is equal to 03 po(t). We arrive at the important
result that the actual variance of O is

2

o2 = %znm(O) (1.65)

with the so-called integrated autocorrelation timd"|

wio) - Lo S0 (1-0)] e

t=1

Equation means that the effective number of measurements in the
Monte Carlo run is a factor of 27;,; smaller than n !

n

Neff = m (1.67)

It is this effective number of measurements which needs to be large in order
to obtain reliable averages, whereas the number of measurements n itself
has no direct meaning for error estimates !

The autocorrelation function po(t) can be estimated from the data by
the empirical autocorrelation function p5(t), . Note that in order to
estimate it reliably, the time series needs to be about O(100) times as long
as the largest time scale 7; occuring in po(t) ! Because of the exponential
decay of po(t) this also implies that the factor (1 — £) does not matter in
practice[|It is therefore often omitted.

1When one performs the sum in (1.66) on Monte-Carlo data, one needs to be careful
since po(t) will eventually vanish into noise. Summing too far into the noise (which is
like a random walk) could seriously influence the measured value of 7.

7When n >> 7.,,, then the autocorrelation function is exponentially small where (1 —
t/n) would matter. Whenn n is not >> 7.,,, then the time series is too short and has to be
extended or thrown out, and (1 — ¢/n) does not matter either.
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Example: Let po(t) = =¥/ be a single exponential, with n >> 7, > 1. Then
(using po(0) = 1 in the second line)

1 - 1 "o _
Tint(0) =~ E‘FZPO@) = —§+Z(e 1/ l)t
t=1 t=0

B 1 1 — (efl/n)nJrl
2 1 —e 1/
1 n 1 1 n 1 1 n
~ -~ ~ 4
2 1 _en 2 " 1-(1-1/) 2

>~ T

For the typical case po(t) = > 52, ¢;(O) e¥/" this means
Tint(O) ~ Z C; T; (168)

when all 7; > 1. In a logarithmic plot, po(t) consists of a sum of straight
lines (but log po(t) itself is not straight when there is more than one term
in in the sum) each of which contributes its inverse slope 7; with a factor ¢;
equal to the intercept with the y-axis. Note that time scale with very small
coefficients ¢; can thus still be important (see Fig.[L.6).

1.5.4 Binning: Determine autocorrelations and errors

The autocorrelation function is rather cumbersome to calculate and to an-
alyze. A much easier determination of errors can be done by binning the
time series. The idea is that averages over very long parts of the time se-
ries, much longer than the autocorrelation time, are independent of each
other (similar to independent Monte Carlo runs), and provide correct error
estimates.

Since we do not know the autocorrelation time in advance, we have to
use blocks of increasing lengths until the error estimate converges, which
means that the blocks are then long enough. We perform the following
steps:

=19

1 2 4 8 16 32 64 128 256 512 k

o2
Figure 1.7: Error estimate by data binning. The value of <~

wards the true variance 0(25 of the mean value O.

N, converges to-
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e Cut the time series of length n into Ny = n/k blocks of identical
length £, and disregard any leftover measurements. Repeat the fol-
lowing procedure for k£ = 2%, 2% 23 ... (When the autocorrelation time
is fairly small, then a less drastic increase of k, even k = 1,2,3,...,,
may work better.) Calculate the block average of each block

k
Z O(i—l)k+t .
t=1

All blocks together have a mean value of Op. The variance of the
single-block averages Op, is

O, =

| =

Np
9 1

_ S S 2
b= N1 > (Op, - Op) (1.69)

i=1
When the block length & = 1, then ¢ is the “naive” estimate o3 .

e The estimate of the variance of the mean Op, is then 0% /Np. When
the block length & > 7,,:(O), then the block averages are uncorre-
lated, and this estimate converges to the correct variance of the mean
O:

E>Tint (O
Correct error” of mean: — o3, Tint(©) o3 (1.70)

This is illustrated in figure

e The longer the block length £, the fewer the number Np of such
blocks. When Np becomes smaller than roughly 100, then the fluc-

g .
“i become too large, as can be

tuations in the estimated variance N

seen in fig. at large k.

e Convergence criterion: The measurement of O can be considered to
2

0%, . .
be converged when N—i stays constant (to within a few percent) over
several bin-sizes.

Then the run has been long enough to overcome autocorrelations,
and this estimate of o as well as the estimate (O) ~ O are reliable.
Since the number of blocks Nz needs to be at least about 100 for sta-
ble results, the simulation must be considerably longer than 1007,
for binning to converge.

A useful early estimate can be obtained just by looking at the time
series: the run should be longer than about 100 times the longest
visible timescale. (Of course longer time scales might become visible
during long runs.)
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wrong and the time series has to be extended a lot, or thrown away !
Example: Magnetization in the Ising model at low temperature: the
exact value is (M) = 0, but the mean M is often far from 0 because
of extremely long autocorrelations.

e From (1.65), the integrated autocorrelation time for the quantity O is
given by the ratio of the last and the first value in the binning plot

(fig. [L.7):

Pi(k — oo
27t (0) = % (1.71)
ik =1)

e Note that autocorrelation times can be very different for different
measured quantities. (Example: Magnetization and energy for the
Ising model). The convergence has therefore to be checked indepen-
dently for each measured quantity. Fortunately, the convergence cri-
terion described above can easily be automated !

However, if some quantities have not converged, then one has to
carefully discuss the validity of other seemingly converged measure-
ments (which may or may not be correct).

1.6 Summary: Recipe for reliable Monte Carlo
simulations

Algorithm.

e We need a Markov Process that is ergodic and satisfies detailed bal-
ance.

e To verify the program, check Monte Carlo results against exact re-
sults when possible (e.g. limiting cases, small systems).
Simulation

o Any starting configuration should provide the same results, unless
properties like metastability are to be analyzed.

o Thermalization: about 10% of the total number of sweeps. This tends
to avoid bias from the starting configuration, but does not increase
statistical errors noticeably.

o Sweeps with measurements. When 7;,.(O) > 1, one need not measure
after every sweep.
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Error analysis

e Check time series by eye ! All visible time scales must be much smaller
than the simulation time.

e Binning: Check convergence for each measured quantity.
e Obtain reliable errors from binning and/or Jackknife.
e For precision results, check that the results are independent of the
random number generator which is used.
Danger

When the system is too large, autocorrelations may be much longer than the
simulation. The simulation can then appear to be converged (including bin-
ning !), but has in fact barely moved in phase space and is wrong.

= Think small !

e One must start with very small systems.
e Check against exact results.
e Inspect for autocorrelations (especially by eye in time series).

e Gradually increase system size.

These essential steps are actually easy to do. They involve a few extra sim-
ulations on small systems, which run very quickly. Inspections for auto-
correlations by eye are very easily done.

With these extra steps for verification, Monte Carlo calculations are very
efficient and can provide reliable results even on extremely large systems.

1.6.1 Jackknife: simple procedure for automatic error prop-
agation

Many interesting quantities are derived indirectly from actual (Monte-
Carlo or other) measurements, and may for example involve ratios of ex-
pectation values, or fits, or a combination of other operations.

There is a very versatile and easy procedure for calculating errors with
automatic error propagation in such cases, called Jackknife. Because of its
generality far beyond Markov Chain Monte Carlo, it is described outside
of the present chapter, in appendix

Note that it can be combined with binning (by using bigger and big-
ger bins in Jackknife) and can then also provide a proper autocorrelation
analysis. In many cases, Jackknife is the method of choice for error analy-
sis.
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1.7 Appendix: Other Monte Carlo algorithms

This appendix provides a very quick overview over some other Monte
Carlo methods, in addition to and beyond the original Metropolis method.

1.7.1 Some more advanced methods

Beyond the simple Metropolis Hastings method with local updates, many
methods have been developed, which can be orders of magnitude better
for suitable problems.

Gibbs sampler = Heat bath. This is a different update proposal. In
an update step, most degrees of freedom are held fixed. Then the dis-
tribution 7 amounts to a (conditional) distribution for the remaining
degrees of freedom. They are sampled directly from this distribu-
tion. The proposed configuration is therefore always accepted. Of
course this requires a method to do the sampling exactly within the
restricted phase space. Note that in practice this method is not nec-
essarily better that single site Metropolis updates.

Example: All spins in the Ising model are held fixed except for spin
s;. In the next configuration it will have value +1 with probability

e—ﬁE(si:-‘rl)

e—BE(si=t1) | ¢ BE(si=-1) -

This probability is independent of the current value of s;.

Overrelaxation. For continuous variables. When all other variables
are held fixed, a variable z; will see some effective potential. In over-
relaxation, the proposal for the new value is not chosen at the mini-
mum of this potential, but instead x; “swings” beyond the minimum.
This strategy anticipates that the surroundings will change in the fu-
ture, likely following z;. It can lead to faster convergence.

Fourier acceleration. Also for continuous variables. Proposals are
made in Fourier space. This is efficient when the Hamiltonian is close
to bilinear, where the Fourier modes are independent.

Cluster methods. For some classical model like the Ising model, and,
more importantly, for a number of important Many-Particle Quan-
tum Models (e.g. the Heisenberg model) there are efficient cluster
methods with almost no autocorrelations and with other advantages.
The clusters are generated stochastically, based on the current config-
uration. The methods work well, because these clusters turn out to
be the physically relevant objects.
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Introduction of additional degrees of freedom. Often, simulations
become much easier when additional degrees of freedom are intro-
duced. This way, barriers in phase space can be overcome, which is
often advantageous, even when a large part of the extended phase
space might be “unphysical”. This is related to the extended ensem-
bles discussed later. One very successful example are “Worm Meth-
ods” in Many Body quantum physics.

Exact Monte Carlo. Also called CFIP ("Coupling from the Past”).
Surprisingly, it is possible to generate configurations which are guar-
anteed to be independent, without autocorrelations, and from the
correct distribution (given a perfect random number generator). How-
ever, each new configuration takes a long time to generate.

See www.dbwilson.com/exact.

Multigrid methods. This is a very wide field in itself, with appli-
cations far beyond Monte Carlo. The strategy is to “coarse grain”
the problem, finding effective degrees of freedom on a larger length
scale, with some effective interaction. If the effective interaction is
known precisely enough, the system can be simulated on the coarser
scale[’’] When only an approximate effective interaction is known,
then it can be used to generate an update proposal, which is then
evaluated for the original variables and interaction.

1.7.2 Combination of algorithms

Sometimes it is advantageous to combine several Monte Carlo algorithms
in order to improve performance.

Hybrid Monte Carlo:
We make use of the Metropolis-Hastings procedure, with eq. (1.23):

preert — min (1, 229
“ ’ i 4ij

Now we use as a proposal probability ¢(z — 2') some procedure which
almost satisties detailed balance with respect to 7. Then pgccepr provides
a “filter” to accept or reject these proposals in order to achieve detailed
balance overall.

Example: In large scale simulations of Quantum Chromodynamics, up-
date proposals are made by a molecular dynamics propagation of the quark
and gluon degrees of freedom, and then accepted or rejected with the full

¥Indeed, this is the strategy in most of physics, except for elementary particle physics
and cosmology !
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QCD weight, which is very expensive to evaluate. This way, larger steps
in phase space and fewer evaluations of the full weight are possible.

A variant of the Hybrid MC method is to split a Hamiltonian: Let

Zm = e P = e‘BHi(O) e_BHi(l) .

If one has a Monte Carlo procedure to simulate ) one can use it in order
to generate update proposals, which are then filtered with 7).

Example: Efficient cluster updates for the Ising model work only with-
out magnetic field. For a small field, it makes sense to use the cluster-

updates as proposals and accept or reject them according to the proposed
change of magnetization.

Random Mixing of methods

When each of the transition matrices P;, P», ... satisfy detailed balance,
then so does the mixture

P =Y AP (1.72)

with A; > 0, Y- \; = 1. One can therefore mix methods with different
strengths, e.g. methods which update different degrees of freedom effi-
ciently. Example: Mix a method which moves in phase space efficiently
with another method that ensures ergodicity.

The following statement is related.

Sequence of methods

When the transition matrices Py, P, ... are stationary with respect to T,
then so is the sequence P, P.... (Proof: PP, = 7Py = ).

Again, this can be used in order to mix several methods.

Note that the analogous statement is not true for detailed balance,
unless the transition matrices P, commute.

1.7.3 Extended ensembles

Often, simulations are stopped by barriers in phase space from exploring
important regions of phase space. This problem appears not only in stan-
dard Monte Carlo simulations of some probabilty distribution 7, but also
in optimization problems in a multitude of areas, which we will discuss
in the next chapter.

Two successful strategies against such barriers are either to reduce their
effective size, or to overcome them. Examples of these strategies are the
so called Multicanonical Ensemble and Tempering. Both are versions of um-
brella sampling.
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log 7(E) N(E)

Figure 1.8: Histogram of how often specific energies occur in a Monte
Carlo. There is a large barrier between small and high energies, which can
be overcome by a suitably chosen new weight function.

Multicanonical ensemble

The probability of configurations with a certain energy E to appear in a
Monte Carlo configuration is proportional to the Boltzmann weight 7(E) ~
exp(—pE). It is also proportional to the number of states N(E) with the en-
ergy E. This number is related to the entropy. Therefore the number of
configurations with energy E in a Monte Carlo simulation is proportional
to

T(E)N(E) .

We now consider the case of a large energy and/or entropy barrier, as
sketched in fig. The barrier between the two populated regions can
often be many orders of magnitude high. For example, in the Potts model
with ¢ > 4, there is a first-order phase transition, with a jump in the aver-
age energy as a function of temperature. The barrier then corresponds to
a surface tension between ordered and disordered phases, and can reach
10'% already for relatively small systems. It is then impossible for Monte
Carlo configurations to move through this barrier. Sometimes, but rarely,
one can devise methods to move from one favorable region directly to the
other. For the Potts model, however, one even needs to explore the barrier
itself in order to measure the surface tension.

The strategy of multicanonical simulations is to reweight energies in
such a way that the histogram of energies becomes approximately flat.
A flat histogram as depicted in fig. (1.8 means that the Monte Carlo will
perform a random walk in energies (!) and will therefore move in energies
fairly quickly, much quicker than the exponentially large time required to
go through the minimum. The change of (unnormalized) weight is

m(E) = e PP s #7(E) = e PEPHE) = W(E)P (1.73)
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with a suitably chosen function f(F), such that the histogram for a simu-
lation with 7 is approximately constant. The histogram does not need to
be completely flat, it just needs to allow transitions between low and high
energies. The function f(E) is the difference between the two curves in
tig. In practise, this function is determined iteratively, by starting with
cases (e.g. small systems) where the barrier is not high["|

The Monte Carlo is now performed with the new weights 7. Fortu-
nately, one can still calculate expectation values with respect to the origi-
nal weight 7, by reweighting the measurements back (this works for any
reweighting function f,):

Oz e o 7,
O)r = 20 Oume 3, Opefom, EEZT _ (Oef)z
X X, et Tt (e}

(1.74)
Indeed, one can also determine expectation values with respect to differ-
ent temperatures The only requirement is that the probability distribution
at the desired temperature is contained completely within the distribution
that is actually simulated (fig. [1.8). Le. one simulates an umbrella of all de-
sired distributions. Note that one can also reweight in quantities other than
the energy.
The multicanonical technique has found important applications in op-
timization problems, notably in the Traveling salesman and related prob-
lems, and in Protein folding. This will be discussed in the next chapter.

Free energy measurements

The free energy F' of a statistical system can be defined via the partition
function by
7 =ePF,

Knowledge of F'is therefore equivalent to knowledge of the partition func-
tion, which in its parameter dependence contains all thermodynamic quan-
tities, and also provides knowledge of the entropy S, via F = U —T'S.

Unfortunately, in Markov Chain Monte Carlo, Z is just a normalization
factor for the sum over all configurations, which in Monte Carlo becomes
the normalization by the number of measured configurations, which does
not give any information about Z.

However, by clever application of the Multicanonical Method (and sim-
ilarly for Tempering, see below), Z or the free energy F' can indeed be
measured.

YNote that there should not be too many values for the argument of the reweighting
function because that many values of f(FE) need to be determined. A quantity like the
energy is ok here, but f should not be independently different for every configuration x.

2Hence the somewhat unfortunate name “multicanonical”
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Figure 1.9: Tempering: Random walk in £.

We first classify the sum over all configurations x into the different en-

ergies:
Z = e = NN e = N Nye P, (1.75)
E

x E z|E

where Nj is the number of states in phase space with energy E (density
of states). We then measure how many configurations of a given energy
occur in a Monte Carlo. The ratio of expectation values is

<NE1> o ‘NvE1€ﬁBE1
<NE2> N NE26_BE2 '

(1.76)

The multicanonical method flattens the distribution of energies in the Monte
Carlo over some chosen range of energies. We can choose to include all
possible energies of the system, also the lowest (or highest), for which the
number of configurations is usually known exactly (e.g. exactly two com-
pletely ferromagnetic states in the Ising model). From this exact knowl-
edge and (L.76), all the other N(E) can be measured, and then Z can be
calculated via (1.75).

Tempering

The strategy of tempering is to overcome barriers by making the temper-
ature a dynamical variable with discrete values f; of 3, which can now
change during a simulation. The extended phase space of the simulation
now consists of the original variables = and the index i of temperature |

Simulated Tempering

The partition function in this extended space for Simulated Tempering is

z = Y3 et = N 7). (1.77)

)

Ziterally, this approach ought to be called “multicanonical”, but it is not.
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One chooses constants ¢; in such a way that the system approximately
performs a random walk in temperatures.

When it is at a sufficiently high temperature, then the system can easily
overcome energy barriers. Indeed, if 3 = 0 is included in the simulation,
the configurations will decorrelate completely whenever 3 = 0 is reached,
cutting off any autocorrelations. When g = 0 is included, simulated tem-
pering also allows the measurement of entropy, which is usually impossi-
ble in Monte Carlo (see below).

When one considers only the configurations at a certain inverse tem-
perature f3;, then implies that they are from the normal canonical
ensemble exp(—p3;E) ! Therefore one can directly measure observables
in the canonical ensemble at any of the 3;, including the properties of the
system at some low temperature, where the barriers are felt fully.

For tempering to work, the ; need to be chosen more densely close to
a phase transition. At a strong first order phase transition, the multicanon-
ical method works better.

Partition function: Equation can be regarded as a partition function
in the space of indices i, with weights Z(;). The Monte Carlo is done in
this space, and the number of configurations [V; at certain temperatures £3;

must then obey

(Ni) _ Zi

N7 (1.78)
Simulated tempering covers a range of 3 values. If one includes 5 = 0, the
situation simplifies. At 5 = 0, the partition functionis Z, = > ¢" = N,,
namely just the total number of configurations in phase space. Thus %
is known, and measurements of (/V;) provide Z; via also for other
temperatures.

Parallel Tempering

In parallel tempering, one simulates all inverse temperatures §; in par-
allel, e.g. on different processors. Occasionally, the interchange of con-
tigurations at neighboring temperatures is proposed, and accepted with
Metropolis probability according to (1.77). For such an interchange, the
constants g; cancel. They are therefore not required in parallel tempering
and need not be determined. As a drawback, the entropy cannot be deter-
mined.

There are many applications of Tempering outside of physics, includ-
ing again optimization problems like the Traveling salesman and Protein
folding, as well as Bayesian parameter determination from measured
data. This will be discussed in more detail in the next chapter.
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Chapter 2

Minimization/Optimization -
Problems

Literature
o W. PRESS et al., Numerical recipes, Cambridge University Press

e F.S. ACTON, Numerical Methods that work, Mathematical Association
of America

Optimization is of enormous importance in physics, engineering, eco-
nomics, information technology and in many other fields. The layout of
electric circuits on a chip, timetables, or the optimum load of a pipeline
system are a few typical examples.

Usually we have a problem which is determined by a set of n real
parameters. Each set of parameter values specifies a state. Together they
span the search space. Each state is mapped to a real number, its cost, by
a cost function. One has to find the specific values of the parameters for
which the cost function develops a maximum/minimum. Often, one also
requires robustness of the solution against small fluctuations of the pa-
rameters.

If the cost function is at least once differentiable in its parameters, then
mathematics will provide us with well defined (deterministic) algorithms
to find at least local maxima/minima of the cost function. Such methods
will be discussed first.

However, the state space is often far too large for such methods, or
there are too many extrema, or the value of the cost function is not differ-
entiable. Then other approaches have to be used, often stochastic methods
similar to Markov Chain Monte Carlo. In these one starts from some state
and modifies it. If the cost function changes to a better value or does not
worsen too much, according to some strategy, then the new state is taken.
This is repeated until an optimum has been found, as specified by some
suitable criterion.
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2.1 Examples

Let us discuss some examples with many continuous degrees of freedom.

1. In many cases, the problem to be solved can be written as a set of
linear algebraic equations. Its solution can be viewed as a minimization
problem

Bx=b <— minHBX—bH2

= min [x'B'Bx — 2Reb'Bx + ||b|’] . (2.1)
X
For large-dimensional matrices B, the direct inversion may easily
exceed present computer power. We will see that iterative minimiza-
tion procedures extend the accessible sizes by many orders of mag-
nitude.

2. In quantum mechanics, the ground state energy E of a system is given
by the minimum of the energy expectation value

(o] #]v)
NI (2.2)

When expressed in a complete orthonormal basis set {|®;)} this is
equivalent to

FEy = min
P

tH
c'Hc
Ey = min

c cfc

where c stands for the vector of expansion coefficients of the ground
state vector and H is the Hamilton matrix in the basis {|®;)}, i.e.:

: (2.3)

ﬁ[‘<1>j>.

A standard approach to finding the ground state energy (and with
less precision also its wave function) is the variational ansatz with a
set of parameters 7), spanning some part of the total Hilbert space.

[Y) = |¥(n)), mn € R" parameters. (2.4)

The minimum energy

(v | )
FEy 7 = min )
T (W) [v(n)

in this n-dimensional space is guaranteed to approximate £, from
above (see introductory quantum mechanics).

(2.5)

However, with many degrees of freedom (many particles, many elec-
trons), the size of the problem grows exponentially and can quickly
become too large.
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3. To compute static or dynamic properties of molecules or solids, one
can take an entirely classical approach, in which only the positions of
the nuclei are accounted for. Empirical forces among the nuclei are
introduced, which mimic parts of the quantum mechanical features.
Usually, only effective two-particle forces are employed, which for
the i-th particle are of the form

F, =Y f(R.R;), (2.6)

J

with R; being the coordinate of the i-th particle. For static quantities,
the equilibrium positions need to be determined, thus the energy
needs to be minimized. Such an approach is for example taken to
model the structure of large proteins from knowledge of their amino
acid sequence.

For the dynamical time evolution of such a system, the equations
of motion can be solved by so-called molecular dynamics techniques,
which will be treated in the next chapter.

4. Asignificant improvement towards a complete quantum mechanical
description can be made by treating the electrons of a material quan-
tum mechanically, while the nuclei are still treated as classical de-
grees of freedom. The nuclei now provide an external potential V.,
for the electrons. This approach is known as the Born-Oppenheimer ap-
proximation. It is often (but not always) justified because the mass of
protons and neutrons is roughly 2000 times larger than that of elec-
trons, so that nuclei tend to move much more slowly than electrons.

There are different possible strategies for solving the electronic part
of the problem. If the system is not too large, one can employ a vari-
ational approach as described above, often together with some ap-
proximation of the electron-electron forces.

5. The most widespread method to calculate materials properties em-
ploys the Born-Oppenheimer approximation and then uses Density
Functional Theory (DFT) for the electronic problem. It is based on two
theorems by Hohenberg and Kohn (1964) showing that for a given
external potential V,,,, the ground state of a many-body electronic sys-
tem is uniquely determined by just the electron density n(x) (!), and
that the ground state energy can be obtained by minimizing a func-
tional (an energy) in the space of all density functions n(x). Kohn and
Sham (1965, Nobel prize for Kohn 1998) showed that the problem
of N interacting electrons can be mapped to /N solutions of a non-
interacting Schroédinger equation, coupled indirectly through n(x),
subject to an effective potential V. ;; which encodes all many body in-
teractions. However, this effective potential is not exactly known and
needs to be approximated.
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The most common approximation method for V. is the Local Den-
sity Approximation (LDA), which approximates V, s (x) to depend only
on the local value of n(x) at the point x instead of the actual depen-
dence on the density at all sites together. It can be improved by in-
cluding a dependence on the gradient of n(x) in so called generalized
gradient approximations (GGA).

In DFT one needs to solve the Kohn-Sham equationd]

H({n},R)¥x(x) = ext(x)
n(x) = Y | 2.7)

kSkFe'rmi

where the effective Hamiltonian H depends on V, ;. These equations
contain a self-consistency condition between n(x) and V.;;, which
can be solved by iterating n — V.;s(n) — n — ... until convergence.

Such calculations are commonly called as coming from “first princi-
ples”, which refers to the exactness of the theorems by Hohenberg
and Kohn. However, since the effective potential V. ;s needs to be ap-
proximated, e.g. by LDA, the results are not exact. Because of the local
approximation in LDA, they neglect part of the non-local many-body
effects, for example spatial correlations, and tend to work badly with
strongly correlated materials and also with phenomena like van der
Waals forces.

Often one is interested in the equilibrium geometry of the nuclei.
Then one needs to minimize the total energy of nuclei and electrons

o E _
%% tOt({R]})’

which is again an optimization problem and obviously a challeng-
ing task as it involves the self-consistent solution of the electronic
eigenvalue problem for each configuration {R;}.

IThere are several software packages for DFT. Standard packages in widespread use
include VASP and Wien2k, both developed in Vienna.
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2.2 Quadratic Problems: Steepest Descent and
Conjugate Gradient

A quadratic form is a scalar, quadratic function of a vector and is of the
form:

flx) = %XTAX —b'x+ec. (2.8)

[See also Eq. (2.1).] Here, A isan N x N matrix, x and b are vectors € RY,
and c is a scalar constant. We restrict the discussion to real-valued problems.

Theorem: If the matrix A is symmetric (i.e. A” = A) and positive def-
inite (i.e. x" Ax > 0 for any non-zero vector x € R") the quadratic form

is minimized by:
(2.9)

To prove this, we compute the gradient of f(x):
1
Viix) = §V (x"Ax) — V (b"x)

1 1
= §ATX —|— EAX — b

Vf(x) = Ax—b (2.10)

Setting the gradient to zero produces (2.9), therefore Ax = b correponds
to an extremum of f(x).

When A is not symmetric, i.e. AT +£ A, then we see from this deriva-
tion that one will find a solution to the system Ax = bwith A = 1 (A" + A)
which is a symmetric matrix.

When the matrix A is also positive definite, then Ax = b corresponds
to a minimum of f(x). To see this, let us assume that x is a point € RY
which satisfies Ax = b. Let e be an “error” term, i.e. a deviation from the
solution vector x.

1
f(x+e) = é(x—l—e)TA(x—l—e) ~bl(x+e)+c
1 1 1
= §XTAX + EeTAe + §(eTb + b'e) —b’x — ble + ¢
bTe
L7 T L 7
= X Ax —b x+c+§e Ae
1
= f(X) + §eTAe.

In the second line we used the symmetry of A to write x’ Ae = b’x, and
also b”x = x”b. If the matrix A is positive definite, then the last term is
positive for all 0 # e € R" and therefore x minimizes f(x).
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Eq. can be solved by a number of methods. A "direct" solution
can be obtained, for example, by Gaussian elimination, the Gauss-Newton
method, Cholesky-decomposition, or a similar method. These methods are
related to computing the minimum directly via the inverse of A:

Vfx)=Ax—-b=0 = x=A"'b. (2.11)

They require O(N?) operations, which can, however, be prohibitive for
large matrices.

In the present chapter, we will examine methods which start from some
initial guess x, and iteratively improve it, x,, = X,,41, moving towards the
minimum of f(x) by using the gradient V f at the current x,,. Let us esti-
mate the computational effort for such methods. The number of degrees
of freedom, i.e. the number of elements of A and b, is of order N2. If one of
these elements is modified, the solution x will change. The gradient V f(x)
has N components of information. A good method based on gradients should
therefore ideally need at most N iterations. The computational effort to com-
pute the gradient is O(N?); to compute it N times, the effort is O(N?).

At first glance, the two approaches seem to be similar as far as CPU
time is concerned. This is not true in practice, though, since with iterative
methods based on gradients, there is usually no need to really perform all
N iterations. In most large problems a much smaller number of iterations suf-
fices to achieve some desired accuracy. Other properties of such methods:

e Gradient methods are especially suited for sparse matrices A. The
effort to compute the gradient is proportional to the number m of
non-zero elements (typically O(mN), with m << N); i.e. the entire
approach is of order O(mN?) instead of O(N?).

e They can do with any amount of memory. There are three possibili-
ties

— keep the entire matrix in fast memory
— read it from hard disk in portions, which can be kept in memory

— generate the matrix elements from scratch as they are needed

e They are well suited for parallelization or vectorization.
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2.3 Steepest Descent: not a good method

The most elementary gradient-based algorithm is the method of steepest
descent. At each step we move in the direction opposite to the gradient of
f(x,), i.e. downhill, until we reach the local minimum in that direction.
This method turns out to fail easily. It can, however, be modified to be-
come the very useful method of Conjugate Gradients, discussed in the fol-
lowing section. Both Steepest Descent and Conjugate Gradient are meth-
ods to minimize quadratic functions (i.e. solve linear equations). They can
be generalized to more general functions, as we shall see.
The outline of Steepest Descent is as follows

Algorithm 2 Steepest descent (draft)

Choose an initial vector xg

for n = 0 to ny.x do
calculate the gradient g,, = V f(x)|
new search directionr,, := —g, = b — Ax,
set x,,11 to the minimum of f(x) in direction r,,
if converged then EXIT

end for

The quantity r,, = b — Ax, is called the “residual”. Its modulus [r| can
be used to judge how well z,, has converged to the solution x.

When we take a step n, we choose the direction in which f(x,,) de-
creases most quickly, and this is the direction opposite V f(x,,) = Ax,, —b.
Suppose we start at the point x,. Our first step is along the direction of
steepest descent. Thus, we will choose a point

X1 = Xg + /\01‘0, rg = b — AXO = —Vf(Xo) (212)

We choose ) to minimize f(x) along the line xo+Aoro ("line minimum”).
The miminum is reached when the directional derivative df (x)/d), is equal
to zero. By the chain rule

rod d e»)
0 = —f(x1) = Vf(xl)T—xl €2 Vf(xl)T rg = —r{ro )
dA dA ——

T
—r{

We find that A\ should be chosen such that r (the residual) and V f(x;) are
orthogonal. Since we always go to the respective line minimum, successive
gradients are perpendicular. This is illustrated in Fig.[2.Tlwhich shows two
successive search directions (gradients) along with the contours of f(x). If
the gradients were not orthogonal, we could still reduce f(x) by moving
further in the direction of the old gradient.

For step n the strategy reads

r, = —Vf(x,) = b—-Ax, (2.13a)
Xpi1 = Xp+ Anlp (2.13b)
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Figure 2.1: The search path follows the inverse gradient of f(x,,) until the
line minimum is reached. There the gradient is orthogonal to the search
direction. Curved lines are contour lines (i.e. constant f).

A simple recursion relation can be derived for successive search directions:

nt1 = —Vf(Xp41) =b— Ax,11 =b - Ax, -\, Ar,
TFnt1 f(%n41) Xn+1 X r

= Ty =T, — VAT, (2.14)

We use the orthogonality of search directions to calculate \,;:

0 = rgﬂrn = rZrn -\ A rfrn (2.15)
rlr

= )\, =" 2.16

r’ Ar, (2.16)

In summary, the Steepest Descent algorithm is given by Algorithm

Algorithm 3 Steepest descent
Choose an initial vector x,

rg = b — AXO
for n = 0 to ny.x do
A, = —’;5"”
r, Ar,

X1 = Xp + Anlp
if converged then EXIT
r, 1 =r, — \Ar,

end for

We illustrate Steepest Descent by the following simple example in N =
2 dimensions.

0.001 0 0.001
A= ( 0 ool ) . b= ( 0002 ) , ¢ = 0.0007. (2.17)
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Figure 2.2: Steepest descent trajectory with initial point (20, —1.9), for dif-
ferent resolutions. Curved lines are contour lines (i.e. constant f).

The initial starting point is chosen to be (20, —1.9). This turns out to be an
unfavorable example for steepest descent, because the eigenvalues of A
are very different from each other.

The trajectories are plotted in Fig. on different scales. The coordi-
nates of the minimum are { = (1,0.2). A 6 digit accuracy takes 76 itera-
tions. We see the oscillatory trajectory on all scales (panels) in figure
This is in strong contradiction to our general consideration that a good
gradient based method ought to yield the exact solution in O(N) steps.
The shortcoming is the orthogonality of the successive search directions.
If the first gradient forms an angle of 45 degrees with the z;-axis, then so
do all following directions since they are orthogonal to each other. Due to
the asymmetric eigenvalues, the contour lines are also strongly asymmetric
and the line minimum is always close to the (z, = 0)-axis. Therefore each
step cannot get far ahead on the z;-axis towards the true minimum.

In the most favorable case, namely for spherical contour lines, i.e. equal
eigenvalues for both principle axes of the matrix A, the iteration would
reach the exact solution within one step.

The relevant parameter determining how slowly the solution converges
is the ratio of the largest and the smallest eigenvalues of the matrix A,
which is called the condition number of A.

In order to overcome the problem of orthogonality of locked search di-
rections, more general directions are required which account for any non-
spherical metric. This is achieved in the method of conjugate gradients.
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24 Conjugate Gradient Method

Conjugate Directions

Steepest Descent often finds itself taking steps in the same direction as
earlier steps. The idea is now to find a suitable set of N orthogonal search
directions dy, dy, ..., dy_1 (they will be ”“A-orthogonal”). Together they
form a basis of RY, so that the solution vector x can be expanded as

X =X+ Y Aid;. (2.18)

The goal is to take exactly one step in each search direction, with the right
coefficient \;. After NV steps we will be done. To accomplish this with low
computational effort will require a special set of directions, and a new
scalar product redefining "orthogonality".

For the first step, we set x; = x( + A\ody. At step n + 1 we choose a new
point at the line minimum

X1 = Xp + And, (2.19)

etc., until xy = x after N steps.

Let us collect a few simple relations which follow directly from (2.18)
and (2.19). It is useful to introduce the deviation (error vector”) from the
exact solution x (which contains the steps yet to be done)

€11 = Xpi1—X (2.20a)
= e, + \d, (2.20b)
N-1
= - ) A\d;. (2.20¢)
1=n+1

Similar relations hold for the residuals r,, namely

rpe1 = —Vf(Xu1) = b— Ax,1 (2.21a)
— b—Ax — Ae,. (2.21b)
=0
N-1
= A D \d;, (2.21¢)
1=n—+1

and also the recursion

r,.1=r, — A\d,. (2.21d)
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Figure 2.3: Sketch of the expansion of the solution x in directions d; (with
xo = 0). This figure is a projection from a higher dimensional space; there-
fore there are more than two "orthogonal" directions d;.

The expansion is sketched in Fig[2.3|
Let us now see what would happen if we would demand that the di-
rections d,, obey the usual 90 degree orthogonality d] d; = 0 for i # j. We
want the search direction d,, to be orthogonal to all other search directions,
including all future directions making up the error vector e, ;;:
0% d’e dle, + dTA,d,.

n©n+1 —
This would imply
_dje,

d’d,,

n

\, —

However, this equation is not useful, because this \,, cannot be calculated
without knowing the e,; but if we knew e,,, then the problem would al-
ready be solved. This solution for A, would also mean that we totally ig-
nore the line minima during search (e.g. when we try to reach the solution
in Fig2.T|with 2 vectors that are at 90 degrees to each other.)

Line minimum

The successful strategy is instead to still follow each search direction d; until
the line minimum ist reached. Thus
d d

!
0 = ﬁf<xn+l) = vf(xn+1)T5Xn+l
= -ri.d, (2.22)
—dTr, + dTAd, \,
and we get
d’r
Ay = 2.23
d? Ad, (2.23)

This equation for the line minimum is valid for any set of search directions.
It contains the current search direction d,, and the current residuum r,,,
which are both known.
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Orthogonality

Eq. (2.22) tells us again that at the line minimum, the current search direc-
tion is orthogonal to the residuum. We rewrite this equation:

N—-1
0 = —dTr, ~d7A Y Ad AT Ae,.. . (224)

n
1=n-+1

Our goal is that all search directions are "orthogonal". As argued above,
this means that d,, should be orthogonal to e, ;. This is consistent with
(2.24), if we use a new scalar product

(u,v)4 == u" Av. (2.25)

to define orthogonality.

We now demand that all search directions are mutually ”A-orthogonal”

df Ad; =0 (i # j) (2.26)

We will construct such a set of “conjugate” directions d;. Since u” Av isa
scalar product, these vectors form an orthogonal basis of RY, in which the
solution vector x can be expanded as in (2.18]).

We are therefore also guaranteed that the solution will take at most N
steps (up to effects of rounding errors).

From (2.21¢) and (2.26) we can deduce

N—-1
dir, = dl, A M\d; =0 form<n, (2.27)

i=n

meaning that the residual r,, is orthogonal in the usual sense (90 degrees)
to all old search directions.

Gram-Schmidt Conjugation

We still need a set of N A-orthogonal search directions {d;}.There is a sim-
ple (but inefficient) way to generate them iteratively: The conjugate Gram-
Schmidt process.

Let {u;} withi =0,...,N — 1 be a set of N linearly independent vec-
tors, for instance unit vectors in the coordinate directions. Suppose that
the search directions d;, for k£ < ¢ are already mutually A-orthogonal. To
construct the next direction d;, take u; and subtract out all components
that are not A-orthogonal to the previous d-vectors, as is demonstrated in
Fig. Thus, we set dg = uy and for ¢ > 0 we choose

1—1
d;=u; + Z Birdk, (2.28)
k=0
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Figure 2.4: Gram-Schmidt conjugation of two vectors. Begin with two lin-
early independent vectors uy and u;. Set dy = uy. The vector u; is com-
posed of two components: u* which is A-orthogonal (in this figure: 90
degrees, in general: A-orthogonal) to dy, and u™ which is parallel to d,.
We subtract u”, so that only the A-orthogonal portion remains: d; = u* =
u;—ut =: uy+/pGedo.

with the f;; defined for & < 4. To find their values we impose the A-
orthogonality of the new direction d; with respect to the previous ones:
1—1

i>j d'fAdj = uiTAdj + Z @‘deAdj

k=0
= u/ Ad; + f;d] Ad; . (2.29)
uTAdj
= L EG 2.30

Note that in the first line, the sum reduces to the term & = j because of
mutual A-orthogonality of the previous search vectors d;, k < i.
Equation provides the necessary coefficients for (2.28). However,
there is a difficulty in using this method, namely that all the old search
vectors must be kept and processed to construct the new search vector.

Construction from Gradients

This method is an efficient version of Gram-Schmidt. We will not need to
keep the old search vectors. The new ansatz here is to choose a specific set
of directions u;, namely
u; = r;. (2.31)
First we now use the fact that the residual is orthogonal to all previous
search directions, (2.27). Together with we get, for i < j and for as
yet general u;:

i—1
1<j T (2.28) T T
= dir; = rj“‘E Birdr;
k=0
0 €29
0 = ulr;. (2.32a)
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In the same way one gets
dlr; =ulr;. (2.32b)

With our particular choice u; = r;, (2.32a) becomes

rTrj =0, i1#7. (2.33)

)

We see that all residue vectors r; will actually be orthogonal to each other.
We can now compute the Gram-Schmidt coefficients (2.30). The recur-
sion (2.21d) implies

T _ T T
I'Z- I'j+1 = I'i I'j — )\Jrz Adj .

The last term corresponds to the nominator in (2.30). Because of the or-
thogonality (2.33), it simplifies to

1.7, .
\; r; 1 1=
0, otherwise,

Thus we obtain all the coefficients needed in (2.28):

T
1 r,r;

57;]' = )\ifl d;-r_lAdi_l,
0, 1>+ 1.

i=j+1

Most of the 3;; terms have now become zero. It is no longer necessary to
store old search vectors to ensure A-orthogonality. We now denote, for
simplification, §; := f;;_1 and plug in \;_; from to get the final form
of the coefficients:

T
3 2.23) T
[ — -

T
d; v
T
(2.32b) r;r;
=
I 1Ti—1

Putting all our results together we obtain the Conjugate Gradient algo-
rithm, which is presented in symbolic form as algorithm 4]

Comments

Note that the first step of the Conjugate Gradient method is the same as
for steepest descent. Convergence is again estimated by the norm of r,,.
The computationally most expensive part of the algorithm is one Matrix-
vector multiplication Ad,, per step. It can be implemented efficiently, espe-
cially for sparse matrices. All other parts are vector-vector multiplications.
Because of rounding errors, orthogonality can get lost during the iteration.
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Algorithm 4 Conjugate Gradient method for quadratic functions

Choose a suitable initial vector x
Setdy:=r)=—-Vf|_=b—Ax
forn =0to N do

a, = Ad,

An = (rgrn)/(dzan)

Xni1 = X + Andy,

i1 =T, — A\a,

671—1—1 = (r£+1rn+1)/(r£rn)

doy1 = Tpp1 + Buadn

if converged then EXIT
end for

It can therefore be advantageous to occasionally calculate the residue di-
rectly asr,, 41 = b— Ax,, which involves a second matrix multiplication.

In each step, the Conjugate Gradient algorithm invokes one multipli-
cation with A. The solution is thus in fact constructed in the space spanned
by the vectors {rq, Ary, A’ry, A’ry, ...}, which s called a Krylov space. There
are a many other related methods also acting in Krylov space. One of the
most important ones is the closely related Lanczos algorithm for computing
low lying eigenvalues of a big (sparse) matrix. It was developed before
CG. Other methods exist for nonsymmetric matrices.

The numerical stability and convergence of CG is again governed by
the condition number of the matrix A. It can be improved greatly by a class
of transformations called Preconditioning. Instead of solving Ax = b, one
solves the equivalent equation M ' Ax = M ~'b. The ideal case would be
the exact solution M ' = A™', giving the identity matrix M ' A with con-
dition number unity. Much simpler transformations can already improve
convergence greatly, e.g. just taking M to be the diagonal of A.

2.5 Conjugate Gradient for General Functions

We are now prepared to apply the conjugate gradient idea to general func-
tions f(x). To this end we expand f(x) in each iteration about the actual
reference point x,, of the n'" step, to second order

f(X) = f(Xn) + bZ(X - Xn) + %(X - Xn>TAn(X - Xn) (234&)
b, = Vf(x)|_ (2.34b)

82
(An)w = B ax,f (x) X (2.34¢)

where the matrix A, is called the Hessian. Since (2.34) is a quadratic form
it can easily be cast into the form (2.8), on which CG (Conjugate Gradi-
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ent) for quadratic problems was based, with one significant modification
though: The matrix (Hessian) A, changes from iteration to iteration as
does the vector b,,. All equations in algorithm dare still valid with the only
modification that the matrix A corresponds to the Hessian A,, of the Tay-
lor expansion about the reference point x,,. The iteration scheme 4| remains
valid, with the modification that A has to be replaced in each iteration by
the respective Hessian A,,. This implies that we have to be able to compute
the Hessian. Is is available analytically only in rare cases, and the numeric
computation is inefficient. Fortunately, A,, enters only in conjunction with
the iteration scheme for the gradients and in the expression for \,. These
steps can be modified. First of all, we replace the update rule for r,.; by
the definition

rpp1 = —Vf(X)’

Here we merely require the knowledge of the gradient instead of the Hes-
sian. Secondly, the parameter ), is obtained more directly via

Xn+1 :

mgn f(x, +2dy) = A\,

which is approximately solved numerically. Equations (2.26), (2.27), and
(2.33) are, however, no longer valid for |i — j| > 1, since the matrix A
changes from iteration to iteration. If the conjugacy relation was still
valid then the arguments given for quadratic problems would still hold
and convergence would be reached within at most NV steps. This is, of
course, not the case for arbitrary non-quadratic functions.

The corresponding algorithm is presented below.

Algorithm 5 Conjugate Gradient method for general functions

Choose a suitable initial vector x
do =TIy = —Vf‘xO
for n = 0 to ny.x do
miny f(x, + Ar,) =\,
Xpt+1 = Xp + Andy,
Tpp1 = —Vf Xni1
Brt1 = (rgﬂrnﬂ)/(rgrn)
dpy1 =1 + Brpad,
if converged then EXIT
end for
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2.6 Stochastic Optimization

Nonlinear problems often have more than one minimum. Gradient meth-
ods like Conjugate Gradient (CG) only yield a local minimum in the vicin-
ity of the initial point. If there are not too many minima, one can start
CG at different initial points (chosen at random) to obtain the global mini-
mum. However, there are many problems not accessible to this procedure.
If there are many minima, then CG with random start points is very inef-
ficient.

Combinatorial problems. Traveling Salesman.

Some examples that are not suited for gradient-based methods are the fol-
lowing combinatorial problems:

o The Traveling Salesman problem (TSP). There are N cities. A salesman
has to visit each city once, and the length of the trip has to be mini-
mized. The function to be minimized is of the form

o (ing1 i=11)

f({l}) = Z |Xiu+1 — Xi,

with |xiu .1 — X;, | the distance between two consecutive cities within
the list {i}. The locations x; of the cities are fixed. The total distance
travelled depends on the order in which the cities are visited. The
notation {7} stands for a list of indices in this order. The number of
possible sequences is N!. For large N, they cannot be enumerated
directly.

More realistic applications contain additional terms and constraints
in the cost function.

1

15 16/\2 3

14 4
e Redistribute the integer numbers 13 >5
from 1 — 16 in a way that the sums D
6
along all edges have the same value. \ /
There are 16! possible index arrange- 10 O
ments. \/

9
e Time tables at schools, etc.
Note that in these combinatorial examples, there is a discrete set of
possibilities. Therefore the function to be minimized does not have any

derivative in the space of possibilities, and methods like Conjugate Gradi-
ent cannot be applied.
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Complexity classes

Combinatorial problems (and related others like search problems) can be
extremely hard computationally. There is a large area of computer science
dealing with just the classification of such problems. One of the "simplest"
complexity classes is called "P" the class of all problems which can be
solved in polynomial time, i.e. the number of steps to solve the problem
grows with the "size" (like the number N of cities in the traveling salesman
problem) "only" polynomially. The Traveling Salesman probably does not
belong to this class, which means that there are cases which require an
exponential number of steps.

A more difficult fundamental class is called NP. It is the class of prob-
lems for which the solution, once specified, can be verified in polynomial
time. This definition says nothing about how long it may take to find the
solution, which might be exponentially long. (Note that NP stands for non-
deterministic polynomial because such problems could be solved on a non-
deterministic Turing machine (which can branch at every step) in polyno-
mial time. It does not stand for "non-polynomial".)

The most difficult problems in NP are called NP-complete, namely
those to which every other problem in NP can be transformed in poly-
nomial time. All NP-complete problems are equivalent in this sense. It is
known that the Traveling Salesman is in fact an NP-complete problem, as
are many other problems in graph-theory, networks, sorting, partitioning,
data compression, etc..

It is very likely (but not proven) that NP is larger than P, i.e. that there
are indeed problems which can not be solved in polynomial time. If NP
where the same as P, then there would be a polynomial time algorithm
for all the myriad important problems known to be NP-complete.

There are other problems which are known to be outside P, and others
which are not solvable even on a quantum computer (called QMA). In
fact, there are so many proposed complexity classes that one speaks of
the complexity zoo. However, for almost all of these classes, their supposed
relationship is not mathematically proven ! One does not even know for
sure whether there are problems that a quantum computer can solve faster
(in the sense of polynomial versus non-polynomial) than a classical one.

It is also important to note that the classification is in terms of worst case
problems of a given type. A "typical” or an "average" instance of a problem
class may be much easier to solve. For example, the Traveling Salesman
problem can sometimes be solved for thousands of cities. The situation
becomes still better when one allows approximations to the optimum.

On the other hand, problems with "polynomial time" solutions may
in practice involve such high powers of N that they become intractable -
which may already be the case for N* when N is very large.
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There is a great variety of optimization methods for such difficult prob-
lems. We will introduce some of the most fundamental ones.

No method is perfect

No method provides a guarantee to find the global optimum of an arbitrary
function, except by exhaustive search (or analytic solution). In order to
gain some confidence in any solution, it is therefore always advisable to
perform several independent optimizations, with different starting points
and different random number sequences.

It is important to note also that in many cases one wants to find a good
robust solution insensitive to small parameter fluctuations rather than the
true global optimum of the cost function.

2.6.1 Classical Simulated Annealing
Literature:

e S. KIRKPATRICK, C.D. GELLAT, JR., and M.P. VECCHI, Simulated An-
nealing, Science 220, 671 (1983).

The most well known stochastic optimization algorithm is Simulated
Annealing. Its approach is borrowed from physics, specifically from ther-
modynamics. The method models the way that liquids freeze and crystal-
lize during an annealing process. At high temperatures, the particles can
move freely. Differences of potential energies of various configurations are
overcome by the particles due to their high kinetic energy. When the liquid
is cooled down slowly, an ordering process sets in, thermal mobility is lost
and some optimal configuration (e.g. an ideal crystal) may be achieved.
This is a configuration where the cost function (free energy) attains its ab-
solute minimum. However, if the liquid is cooled down too quickly, no
ideal crystal is obtained and the systems ends in some local minimum
of the energy (meta-stable state). This corresponds to a poly crystalline
or amorphous state. We try to find the global minimum by simulating
the slow cooling process on the computer. To this end we introduce an
artificial temperature T and an artificial (!) probability distribution pg(x|T'),
where x now is some point in the parameter space of the problem. The
cost function to be minimized is denoted by f(x) and can depend on a set
of variables x that is either discrete or continuous. In Classical Simulated
Annealing (CSA), we choose

1
pe(x|T) = Ee*f(x)/T, (2.35)

which corresponds to a Boltzmann distribution. Thus we treat f like an en-

ergy in statistical mechanics. Here Z is a normalization factor which corre-
sponds to the partition function of the canonical ensemble, Z = J_e/)/7.
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Figure 2.5: Example of a cost function f(x) with two minima (thick solid
line) and the Boltzmann weight pg(x|T") (thin solid lines, without scale) for
various temperatures 7T'.

We can also define the expectation value of f(x) ata given temperature 7'
by
(e =X pe(xIT) £x) 2.36)

In order to find the minimum, we will employ a Monte Carlo simulation
with the weight function (2.35). As an example, figure 2.5 shows the cost
function (thick solid line)

f(z) = 2* — 162 + 5z . (2.37)

Figure also depicts the Boltzmann weight (thin solid lines) for vari-
ous temperatures. At temperatures much higher than the potential barrier,
T > 50, the Boltzmann distribution is rather flat. As soon as the temper-
ature is lower than the potential barrier, e.g. at T = 20, the weight out-
side the double-well is almost zero and two separate peaks develop. If
the temperature is even lower than the difference of the two minima, e.g.
at ' = 10, the weight in the local minimum becomes negligible and the
probability is concentrated merely around the global minimum.

It is the purpose of the distribution pg to assign a high probability to
states x where f(x) is small, i.e. states x close to the global minimum.
A "random walker” will spend a long time near the optimum state. The
important difference with respect to gradient based methods like CG is the
possibility for the walker to also go uphill and thus leave a local minimum.
The probability to do so depends on temperature. The minimum of f(x)
as well as the corresponding state x are found by cooling.

An implementation of the Classical Simulated Annealing (CSA) method
requires the following three parts

1) Move in configuration space, 2) Probability Distribution and Ac-
ceptance of states, and 3) A cooling scheme
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ad 1: Move in configuration space In the vicinity of the current point x,,
(n is the step index) we create a trial point x; at random.

For continuous problems, the probability distribution of the trial point
x; (i.e. the proposal probability) is typically chosen to be a Gaussian

0o (Xy — %) oc | [ e Ceemenli/20%) (2.38)

of a certain variance o around the current point x,,. If the curvature of f(x)
in various directions differs significantly, it is expedient to use a p, which
employs different variances in different directions, or, more generally, the
covariance matrix C of f(x) instead of the variance o:

= ) ocexp { 5~ %,)C -, |

As an example for a discrete problem, we look a the Traveling Salesman.
The tour is represented by a list of indices {i1,is,...,iy} indicating the
order in which the cities are visited. One possibility is the so-called lin-2-
opt move. It consists in reversing a part of the trajectory:

ETRUNE SENTE B SURRUNY FESTE Y SUR DU 75 SIS U SRR SENTE I DEEUE SUCEY SO SRR 19 9
(2.39)

The advantage of such a move is that the change in cost function can be

small and is computed quickly. Here it is

fHY) = fHi}) =% %, +X0,%,,, — X, X, — X3, X,

with X; X;, = |x;, — x;, | the distance between the cities v and 1 in config-
uration {:}.

ad 2: Probability Distribution and Acceptance of states We are free to
choose any procedure which will lead us to the minimum, while provid-
ing the possibility to also move uphill. In Classical Simulated Annealing
one chooses the Boltzmann Distribution (2.35). A common choice for the
acceptance step is to use the Metropolis probability

a . pe(x:|T) } . _BAf
p*“=min<1l,———= % = min(l,e , 2.40
(L (.e) (240

which happens to satisfy detailed balance. We thus generate a Markov
chain with which we can calculate expectation values at a given temperature
T

.1
(f)r = lim =Y f(x) (2.41)
by averaging over the Markov chain at that 7.
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Real problems often display several different (length) scales in parameter
space. Consider as an example the traveling salesman. Towns will typically
come in several agglomerations. The distance from one town to another
strongly depends on whether the town is in the same agglomeration or
not. Thus we have two different length scales:

e Distance between towns of the same agglomeration.
¢ Distance between different agglomerations.

The existence of different scales is reflected by the way the "energy" de-
creases when we lower the temperature. At extremely high temperatures,
agglomerations do not play a role. The salesman travels at random. In the
cooling procedure, the order of the agglomerations to be visited will be
decided on first. Only then the trip inside each agglomeration is fixed.

In order to learn more about the behaviour of the system, we use the
analogy with statistical physics. We denote the cost function f({i}) ex-
plicitely as an energy E({i}) = f({i}). During the simulation for one
specific temperature 7" we calculate

(B)~ LS B(i)), and (B~ 3" E({i})
{d}

{a}

with the variance

(AE?) = (%) — (E).
Here, > @) indicates the sum over configurations simulated at the current
temperature. This allows us to introduce a specific heat C'y; defined as

O(E) _ (AE?)

Cu 5T T (2.42)
The last equality follows from (2.35) and (2.36). The specific heat is large
when the energy changes quickly as a function of temperature (see fig.[2.6).
In a statistical physics system this is typically associated with a phase
transition. We get a first cooling rule: Away from "phase transitions" we
can cool down quickly, since the energy (and thus the Boltzmann weight)
varies slowly. However, we have to be careful in the vicinity of such "phase
transitions", and the specific heat Cy with its rapid variation around phase
transitions is a good indicator of critical regions.

ad 3: Cooling Strategy An important step is the choice of the initial tem-
perature Tj. At this temperature it should be possible to cover the best part
of the configuration space and it is a rough rule of thumb that at this tem-
perature at least 80% of the configurations should be accepted. This can
easily be achieved by choosing some value for 7, and performing n steps.
When more than 80% of the steps are accepted, then 7, may be a good
choice, otherwise we double 7; and try again.
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Figure 2.6: Cost function (solid line) and "specific heat" (dotted line) of the
traveling salesman problem with two length scales L, and L,

To proceed in the simulation, we let the walker do a n steps at every
tixed temperature 7.

One simple choice for the temperature sequence is to lower it according
to a simple formula, e.g.

Ty
ke
with some exponent g. Sometimes even a very fast exponential cooling
like T}, = Ty ¢" is used. A fixed cooling sequence has the drawback of not
taking into account any "phase transitions", where the simulation could
get stuck more easily.

One can devise a more adaptive cooling strategy which takes into ac-
count the rate of change of the function f, i.e. the "specific heat". We need
to make sure that the walker can move back and forth in energy space.
Therefore the energies in the canonical distribution of configurations at
temperature 7}, should overlap those in the canonical distribution at the
next temperature T} ;. The widths of these distributions is related to the
specific heat and one can show that the step in temperature should be
bounded

k (2.43)

Ty — Tis1 - d
T, VCh

where 0 is a small number related to the desired acceptance rate.

During the annealing process it is expedient to choose the trial points in
such a way that an acceptance rate of about 50% is achieved (in both direc-
tions). We can for example measure the acceptance rate during N = 100
steps. If it is below 40% we decrease the size of the moves, if it is above
60% we increase the size of the moves, otherwise the proposal distribu-
tion is acceptable. (Note that changing the proposal distribution during
the update violates detailed balance, but does not disturb the search for
the global minimum).

(2.44)
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Algorithm 6 Classical Simulated Annealing (CSA)

Choose a suitable initial vector x
Ty =TF
for j = 0 t0 jax do
for/ =0tondo
generate trial state x; according to p,(x; — x,,)
compute g = min(1, p(x;) /P ()
ifqg=1;%x,,1 =z else
random number r € [0, 1)
ifq>r x,1 =xelsex, 1 =Xy,
end for
determine 7},
if converged then EXIT
end for

2.6.2 Fast Simulated Annealing

One shortcoming of the CSA method is that due to the exponential char-
acter of the Boltzmann distribution, only short moves, or rather small mod-
ifications, are allowed. Therefore it takes a long time to escape from a local
minimum.

Instead of the Gaussian (2.38), Fast Simulated Annealing (FSA) uses the
CAUCHY function as a proposal probability distribution. The D-dimensional
Cauchy distribution is given by

T
[(Ax)? + 77

p2(AX|T) = (2.45)

D41
2

where D is the dimension of the vector x of parameters. Due to its long
ranging tails (namely an unbounded variance), the Cauchy distribution
has the advantage to allow occasionally larger changes in configuration
space, while the short range moves are still Gaussian distributed with a
variance o2 =2 T?/(D + 1).

Formally, it has been shown that under some assumptions on the func-
tion to be minimized, the Gaussian proposal may need a tempera-
ture schedule 7'(t) ~ m, (which means an exponential number of steps
), whereas under the same assumptions the Cauchy distribution needs
only T'(t) ~ 5.

In figure b), CSA and FSA are compared based on the double well
potential discussed before. The temperature entering the proposal
distribution is adjusted every 100 steps to ensure 50% acceptance rate. For
each annealing step n, the lowest energy (value of the cost function) is
stored in E(n). The entire annealing procedure, covering nm.,, = 10000
steps is repeated 1000 times and average (E(n)) is computed for each
value of n separately. We see that FSA is indeed superior.
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Figure 2.7: a) Comparison between Gaussian and Cauchy proposal dis-
tributions. b) Average minimum energy (i) vreached in step NV for Fast
Simulated Annealing (FSA, solid red curve) and Classical Simulated An-
nealing (CSA, dashed black curve).

2.6.3 Other variants
Alternative Acceptance methods

Note that for optimization purposes one does not need detailed balance!
(It does however help in order to map the region of attraction of the op-
timum, i.e. its stability.) The proposals mentioned here do not satisfy de-
tailed balance nor stationarity. Thus they do not lead to a simultation of the
canonical distribution of a statistical system. Nevertheless they are well
suited for finding the minimum of f.

o Threshold Acceptance: A new configuration x; is generated. If the cost
function satisfies f(x;) < f(x,) + T, with T some tolerance level
(threshold), then x; is accepted. This allows rather effectively to leave

local minima. During the iteration the threshold is continuously re-
duced.

e Deluge Algorithms: Accept new configurations x; only if f(x;) > T
with T the acceptance level. T" is continuously increased during the
iterations; the landscape is ‘flooded” until only the summits of the
mountains, and finally only the summit of the biggest mountain is
above the water level.

Multicanoncial ensemble

This method, describe in more detail in section moves through pa-
rameter space efficiently by using an auxiliary cost function f(x) which
is almost constant. It is constructed from the actual cost function f(x) by
mapping and then "filling up" its local minima. Trapping can be avoided
in this way, so that the global minimum of f(x) can be found better. This
method is quite successful for, e.g., protein folding.
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Tempering

A severe drawback of Simulated Annealing is that the temperature is al-
ways lowered. Once the walker is stuck in a local minimum, it will stay
there. In Tempering (section the temperature is allowed to fluctuate
randomly like any other parameter, between a very low and a very high
bound. The temperature steps are not prescribed from outside, but instead
decided with Metropolis decisions. When the temperature is high, a local
minimum can be left. Tempering is therefore somewhat like an automatic
multiple run of Simulated Annealing with many starting configurations
and many temperature sequences.

2.7 Genetic algorithms

A genetic algorithm takes its approach from nature. It simulates the natu-
ral evolution of a population of individuals (candidate solutions) from gen-
eration to generation, with steps of inheritance, mutation, and selection.
There are many varieties of such algorithms.

Each individual solution is characterized by a “genome”, representing
one point in the parameter space of the cost function (” fitness”) to be opti-
mized. The genome is traditionally represented by a set of bits, but it can
also be comprised of real or integer numbers, or more complicated objects.
The cost function needs to be evaluated very often, and an efficient imple-
mentation is therefore important.

Initialization.

The optimization starts with an initial population of typically hundreds or
thousands of individuals. They can be chosen at random, or according to
initial guesses, in areas of parameter space where solutions are likely to be
found. For each individual, the cost function is evaluated.

Iteration.
The following steps are then iterated:

o Selection. A part of the population is selected. This selection is based
on fitness. However, it is not appropriate to select just the best solu-
tions. One needs to include some randomness in the selection in or-
der to insure genetic variety in the population. Otherwise the method
will quickly tend towards a local optimum instead of the global one.

e Reproduction. Pairs of solutions are selected. The genomes are com-
bined to generate one or more new solution, for example by a crossover,
where up to some bit position, the bits from the first solution are
taken, and then those from the second one.
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e Mutation. Some information in the new solution is randomly mu-
tated, often with carefully chosen probabilities and mutation steps.

e Evaluation and Selection. For each new solution, the cost function is
evaluated. The new generation is then selected based on the cost
function, either completely from the new generation, or including
the previous one. It will on average have higher fitness than the pre-
vious generation.

Termination.

The above iteration is ended when a suitable condition has been reached.
Common choices are

e A good enough solution is found.

e The quality of solutions has reached a plateau and does not improve
any more.

e A maximum cost (number of iterations, computer time) has been
reached.

Genetic algorithms can often find good solutions quickly, even when the
cost function has a difficult shape.

Optimizing the method.

Similar to other methods, these algorithms have a tendency towards a local
optimum instead of the global one. Of course this depends on the shape of the
cost function. One needs to maintain sufficient genetic diversity to coun-
teract such tendencies, for example by imposing a penalty for populations
that are too homogeneous.

Genetic algorithms tend to be efficient at finding the neighborhood of
an optimum solution, but less efficient at finding the optimum itself. It can
be helpful to combine genetic evolution of a population with steps in which
an optimum is approached more directly.

In general, the details of the algorithm, such as selection processes and
mutations, as well as data representations should be tuned to the class of
problems to be solved. For example, when the genome is specified by in-
teger numbers, with the usual power-of-two representation in bits, then
mutations of one or a few bits are likely to cause a catastrophic change
of the cost function. It is much better to use Gray coding. In this represen-
tation of the integer numbers, sequential integers differ by only 1 bit (!).
Mutations of one or a few bits will then lead to nearby integer numbers.
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Applications.

Genetic algorithms are particularly good for complicated combinatorial
problems. Common applications include the following

e Time tables and scheduling (including the Travelling Salesman prob-
lem).

e Design of networks (Electronic circuits, computer networks, loca-
tions of mobile-phone transmitters, water distribution, ...)

e Molecular structure optimization, protein folding.
e Data fitting.

e Preparation of neural networks.

Related Methods.

e Ant colony optimization uses many agents (ants) to find local optima
in parameter space and to move on from there.

e Particle swarm optimization simulates the way that e.g. a swarm of
tish or a flock of birds communicates. Many individuals are simu-
lated which fly through parameter space. In each step, the informa-
tion on good solutions that an individual finds is communicated to
its neighbors up to some distance. Each individual adjusts its course
and speed to this information. Often the overall best solution found
so far is communicated to each individual immediately in order to
improve convergence.

o Simulated Annealing can be seen as a limiting case of a genetic algo-
rithms, with a population of only one individual.

Optimization of average fitness.

In some situations it is appropriate to formulate the problem such that one
has to optimize the average fitness of a population instead of the maximum
fitness. An example is again the set of locations of mobile-phone transmit-
ters. Instead of viewing the complete set as an “individual”, and simulat-
ing a populations of such sets, one can declare each transmitter to be an
individual, characterized by its location. An examples of algorithms which
optimize the average fitness are Bacteriological algorithms, which take their
clues from populations of bacteria.
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Chapter 3

Molecular Dynamics

Literature

e D.FRENKEL, B. SMIT, Understanding Molecular Simulation, Academic
Press, 2001

e J.M. THIJSSEN, Computational Physics, Cambridge University Press,
2007

e M. GRIEBEL ET AL,, Numerische Simulationen in der Molekiildynamik,
Springer Verlag, 2004

An important field of research is to describe macroscopically observ-
able properties of matter on the basis of microscopic kinematics and dy-
namics of molecules. However, the simultaneous motion of a large number
of interacting bodies cannot be described analytically. One approach is to
make simplifiying assumptions which allow a fast solution, like in thermo-
dynamic calculations. Then it is hard to estimate the influence of those sim-
plifications on the solutions. In complex situations, direct numerical sim-
ulations are a better alternative. There are essentially two approaches to
determine physical quantities over a restricted set of states, namely Monte
Carlo (MC), which samples from a static equilibrium ensemble and which
we have treated before, and Molecular Dynamics (MD), which can also be
applied in nonequilibrium situations.

3.1 Overview

3.1.1 Equations of motion

The general idea of Molecular Dynamics is to let a system evolve in time
by integrating the equations of motion of many individual interacting parti-
cles together. It is widely used to study classical systems. With some ap-
proximations, quantum systems can be studied as well. (See also chapter

2.1).
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One is for example interested in the motion of atoms in molecules and
solids. Due to their much lighter mass, the electron dynamics is usually
much faster than that of the nuclei and it is in most cases a good approxi-
mation to treat the dynamics of the nuclei classically (Born-Oppenheimer
approximation), i.e. by Newton’s equation of motion

i’z‘a(t) = ﬁFz [I‘(t),t] =. fia[r(t)vt]v (3.1)

where z;, is the a-th coordinate of particle i. The vector r stands for the
collection of coordinates {z;, }. Similarly, we introduce the vector f for the
set { fin }, and get the equation of motion:

i(t) = fr(t), 1]. (3.2)

On an atomic scale, the forces acting on the nuclei originate from the di-
rect Coulomb interaction between the nuclei plus the indirect contribution
stemming from electrons. The latter are often approximated by param-
eterized potentials (usually two-particle potentials, e.g. Lennard-Jones),
which are often determined empirically for a specific situation.

More precision and generality can be achieved by quantum mechani-
cal calculations for the electrons, but they are much more expensive. They
usually involve Density Functional Theory (DFT, see also chapter 2.T). It
can be combined with diagonalization of a reduced electronic basis set
at each step of the Molecular Dynamics calculation. Alternatively, in the
so-called Car-Parinello method, the evolution of the electronic degrees of
freedom is instead calculated more cheaply by using the Kohn-Sham en-
ergy density from DFT.

“Molecular Dynamics” is also applicable to classical dynamics on macro-
scopic scales, with appropriate forces and time scales, up to the simulation
of the motion of whole galaxies, subject only to gravitation.

Often, one wants to determine results on a large spatial scale, which
however depend on microscopic details. Then it is necessary to perform
some sort of coarse-graining of the microscopic variables in order to treat
them on a larger scale; and the new variables may in turn also have to be
coarse-grained, etc., in order to get to a macroscopic scale.

MD is widely used for studying many-particle systems. It is a simu-
lation of the system as it develops over a stretch of time. The dynamics
coincide (more or less) with the actual evolution of the simulated physical
system. This is a big advantage over Monte Carlo calculations, which are
designed to sample from an equilibrium distribution and do not usually
incorporate actual dynamics, since the evolution from one Monte Carlo
configuration to the next is designed for efficient sampling, but often has
nothing to do with the real time evolution of a system. Molecular dynam-
ics calculations resemble actual experiments on a system, including prepa-
ration, time evolution, and measurements.
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3.1.2 Equilibrium and Nonequilibrium

MD is most often used to extract equilibrium properties of a system. Since
Newton’s equations of motion are solved, the energy is constant during a
simulation. The system follows trajectories of constant energy in phase
spacell] This is the microcanonical ensemble. After an initial equilibration,
the average of measured quantities over a long time should sample the
whole microcanonical ensemble (ergodic hypothesis).

Although the microcanonical ensemble is simulated, one usually de-
fines an effective temperature, using the average kinetic energy per degree

of freedom,
Lm0 1k T,
—m; v, ) =i = eff -
2 g Breld

In a system of V particles, one averages over the total number of degrees of
freedom Ny, where Ny ~ 3N in 3 dimensions, to define an instantaneous
temperature at time ¢:

1

N
Teff(t> = ]{jBNf Z TTI,Z'VZ-2 . (33)

The relative fluctuations of this temperature will be of order 1/,/N;. One
can also sample the actual canonical ensemble of fixed temperature, as
discussed later.

Molecular Dynamics can also be used to simulate Nonequilibrium prop-
erties, for example the time evolution starting at a specific initial state.
One prominent example is the Weather Forecast (which also includes non-
particle equations of motion like fluid dynamics). We shall touch on some
aspects of nonequilibrium systems in subsequent chapters.

3.1.3 Boundary conditions

For finite systems, boundary conditions are important. Most equilibrium
MD simulations are performed for periodic boundary conditions (pbc),
which means that the finite system is surrounded by identical systems
with exactly the same configuration in phase-space. Forces act across the
boundary of neighboring replicas. The angular momentum is not con-
served when pbc are imposed. Another common situation are open bound-
ary conditions (obc). The reason for pbc is that otherwise too many parti-
cles are at the surface of the system. For example, in a simple cubic crystal
of 1000 atoms, almost 50% of the atoms are in the outer layer, and for 10°
atoms there are still 6% on the surface.

1One needs to carefully distinguish these “system trajectories” in the total phase space
of N particles from the individual “particle trajectories”.
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3.1.4 Time scales

The time integration for many particles together cannot be done exactly. It
has to be performed approximately in many small time steps of some size
At, such that the result becomes formally exact when the time step size
goes to zero.

However, for any At, errors will accumulate and the calculation will
always become too inaccurate after some time. As a matter of fact, the tra-
jectory of each individual particle will deviate rather quickly from its true
course. One would therefore want to make At very small. Note that with
proper integration schemes, ensemble averages over many particles fortu-
nately remain useful much longer than individual particle trajectories.

On the other hand, the maximum time ¢ which can be reached with
some computational effort, i.e. with some number n of iterations, is ¢t =
nAt. In order to reach a physically interesting large time ¢, one wants a
large value of At. If one wants to to time-averaging, then the maximum
time needs to be much larger than physical correlation times. We note that
there is a tradeoff between accuracy and maximum time. In any case, At
needs to be small enough that the relevant errors (difficult to estimate) at
the maximum time are still acceptable.

The actual time scales will very greatly from system to system, depend-
ing on whether one simulates, e.g., argon atoms or galaxies. For liquid ar-
gon, which can be described reliably by simple Lennard-Jones pair forces,
the typical time step used in the numerical integration of the equations of
motion is about 10~ seconds, which means that with 10° time steps, a
total simulation time of about 10~® seconds can be covered. For galaxies,
the time steps may be many years.

We will see that during a time step, the force acting on a particle is as-
sumed to be constant. This can be taken to be a criterion for choosing a suit-
able length 7 for a time step in the given physical situation. When some
particles are very close together and forces change quickly, it can be advan-
tageous to subdivide a time step just for these particles in order to keep a
larger time step overall.

The number of particles which can be simulated will be limited. This
corresponds to a finite system size which will also become noticeable after
some time. One should expect to observe differences to the true evolution
when the particles have travelled on more than half the linear system size.
In practice, noticeable effects tend to show up considerably later.

The applicability of MD is limited by the times and system sizes which
can be reached, and also by the physical approximations in the equations
of motion (e.g. lack of quantum mechanics or approximate treatment).
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3.2 MD at constant energy

If the forces acting on the particles depend on the their mutual relative
position, then energy and total momentum are physically conserved. By
design, particle number and volume are usually conserved as well. Time
averages then correspond to the microcanonical or (NV E) ensemble. The
rough structure of the MD algorithm is

e Initialize, then loop:

Calculate forces

Integrate equations of motion for a small time step At.

For equilibrium calculations, let the system settle for some equilibra-
tion time,

Then per form measurements.

As a diagnostic tool, check that the energy does stay constant to some
desired precision.

The following discussion will be worded mostly for an equilibrium
simulation of a gas or a liquid of particles.

3.2.1 Initialization

The number N of particles and the finite size volume need to be specified.
As an example, we will use periodic boundary conditions with a box of
size L°.

For equilibrium calculations, an effective “temperature” is usually of
greater interest than the total energy and might therefore be specified as
an input parameter. (Actual simulations in the canonical ensemble will be
discussed later). The particles are assigned initial positions and velocities.
Typically, the positions are chosen on a regular grid or at random, while
the velocities v; are generated according to the Boltzmann distribution

p(vg) o e—mva/(2kBT)
A vanishing total momentum is achieved by subtracting the mean mo-
mentum from all particle momenta.

3.2.2 Force calculation

This is usually the most time-consuming part of an MD-simulation.
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As an example, we will consider the Lennard-Jones pair potential

wi) = 4= |(9)" = (9] (34

between particles i and j, with r the distance between them. All particles
shall have the same mass m.

From now on, we express everything as dimensionless quantities in
terms of reduced units, taking o as the unit of length, € as the unit of energy,
and m as the unit of mass. (Then the unit of time is 01/m/e and the unit of
temperature is ¢/kp.) Note that different original problems and scales can
correspond to the same set of reduced parameters. In reduced units, the
Lennard-Jones potential becomes

wo = (507 ()] 63)

Every particle interacts with every other particle. Within the box, there
are therefore O(N?) interactions. With pbc, there are also the interactions
with the infinite number of replicas (,,periodic images”) of every particle.

Cut-off

For an interaction which decays quickly with distance like the Lennard-
Jones potential, it is convenient to cut off the forcéE at some radius .. When
r. is small enough, . < é, then a particle ¢ interacts with at most one copy
of particle j (see figure 3.1)

The cut-off neglects interactions beyond r.. Their total contribution to
the energy can be estimated approximately as

_Np [7 2
Utait = —5~ /T dr 4mr® (u(r) — u(re)) . (3.6)

c

Let us calculate the force on particle i. Assume that we use p.b.c. and
cut off the forces at some radius r. < £. We now loop over all other par-
ticles ;7 # i and calculate the smallest distance between ¢ and j on the
periodic lattice (e.g. in direction z: r, = min(|x; — z;|, L — |z; — x;|). When

2A sharp cut-off of the potential would cause an infinite force at distance r., unless all
energies are shifted to obtain zero potential at r. first.

1 J 1 J 1 J

Figure 3.1: Periodic boundary conditions in 1d, with two particles i and j.
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re < £, there will be at most one instance of each particle j (in the original
box or in the periodic copies) with a distance smaller than the cut-off ra-
dius .. For these particles, we need to calculate the force on particle i. In
x-direction it is

~ Ou(r)  Or Ou(r) 7y Ou(r)
) =, =" o = v D
which for our Lennard Jones system becomes
48r, 1 1
falr) = = (ﬁ—ﬁ) : (3.8)

Improved scaling for finite range interactions

We need to repeat the force calculation for all N particles, i.e. N(N —1)/2
pairs. The computational effort in a direct approach therefore scales like
N2, whereas the time integration step will only scale like O(N). When
there are many particles the force calculation would be a prohibitive bot-
tleneck. Fortunately, we can get much better scaling, even like O(N), also
for force calculations.

In case of finite range interactions (or finite cut-off), the key is clever
bookkeeping. A simple and very good approach are so-called cell lists.Let
r. be the maximum range of the force (e.g., the cut-off). We divide our
box of size L3, L > r,, into cells of size 72 or slightly larger. Initially, we
go through all particles and we make lists of the particles contained in
every cell, one list for each cell. This is an O(V) operation. After each time
step (or when a particle moves), the lists are updated. Each particle ¢ in
a cell interacts only with particles j in the same cell or in immediately
neighboring cells. The number of these particles is not of order N: when
the system becomes larger at finite density, then the number of cells grows,
but the number of neighbors to consider remains the same on average. If
M is the average number of particles per cell, the force calculation will
now scale like O(N M) instead of O(N?).

Figure 3.2: Cells: with cutoff r., particle ¢ interacts only with particles in
the same cell or in directly neighbouring cells.
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Improved scaling for infinite range interactions

Coulomb and gravitational interactions are important cases. They are long
range, and often cannot be cut off without large undesirable effects. Then
the force calculations would scale like N2,

Fortunately, there are again methods to reduce the scaling, to about
O(N log N). The two main strategies are so-called Tree-algorithms and Particle-
Mesh methods. The description below will be worded for gravitational
forces. The goal is to calculate, for each particle i, the total force acting
on this particle

=3 G —7) m) (39)
JF

where () contains the 1/r? dependence.

In Particle-Mesh methods, space is divided into a finite number of grid
(=mesh) points. Each particle is assigned to one grid point, or its mass
(or charge) is distributed over several neighbouring grid points. Note that
(3.9) is a convolution. On a grid, it can be evaluated in Fourier space in
O(N log N) time by using the Fast Fourier Transform and the convolution
theorem | When particles can be very close together, this method would
need a very finely spaced grid, thus extremely many grid points for the
whole system. It can be improved considerably, by separately calculating
the forces from particles which are in some close neighborhood of particle
i (the "particle-particle” part of the method), and using the grid and FFT
only for particles with are further away, so that for them the grid approx-
imation is acceptable. The distinction between “near” and “far” need not
be abrupt, since one can always write

flr) = Jr)h(r) + f(r)(1 = h(r)) = facar(r) + frar(r))

with any function h(r) that separates "near” from “far”. Without FFT, this
becomes the (slower) old method of “Ewald-sums”. The desired O(N log V)
scaling is achieved with FFT. Corresponding methods are called ”particle-
particle particle-mesh” (= PPPM = P3M), or particle-mesh Ewald (PME)
method, etc. They are often applied to calculating Coulomb forces in crys-
tals. Then periodic boundary conditions can be helpful to reduce finite
size effects. Their use requires that the system is charge-neutral, because
otherwise the forces from the infinitely many periodic images would di-
verge. In cases without periodic boundary conditions, one needs to use
zero-padding in the Fourier Transforms in order to avoid artifacts.

3 Alternatively, instead of using , one can first calculate the potential ®(7) and then
obtain the force by differentiation in space (by finite differences) or by multiplikation with
k in Fourier-space.
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In Tree methods, space is divided into a hierarchical grid, organized like
a tree, as illustrated for two space dimensions in figure 3.3. The tree root
represents the whole system. It has four children (eight in 3 dimensions),
representing a subdivision of space into four squares. If a subdivision con-
tains one or more particles, it is again subdivided, until at the end, each
final node corresponds to zero or one particle. Therefore, in dense regions
of space, the tree extends further. Each node stores the center of mass and
the total mass of all the nodes below it.

We can now calculate the force on a particle i: In the Barnes-Hut tree
method, the tree is traversed starting from the root. Each node represents
a region with spatial size d, at some distance r from particle . If d/r is
smaller than some threshold, then this region is relatively far away and its
effect on particle ¢ is approximated by the center of mass of that region,
stored in the node. If d/r is larger than the threshold, then more detail is
necessary, thus the children of the node need to be visited, etc. Tree meth-
ods are advantageous when the distribution of particles is very inhomo-
geneous, for example in astrophysics. As for almost all methods, many
variants exist.

NW NO
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@) @)
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SW EY) SW SO @) o O
° [ )

Figure 3.3: Barnes-Hut tree method, two-dimensional example. Left:
space is subdivided into a hierarchical grid. Right: tree structure corre-
sponding to the grid on the left. (From beltoforion.de/article.php?a=barnes-hut-
galaxiensimulation, 10may 2019,
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3.2.3 Time integration: Verlet and Leap-frog algorithm

We will integrate the equations of motion in discrete time steps of length
7. We will concentrate on one of the most widely used algorithms, which
is both simple and reliable, the Verlet algorithm. We start with a Taylor
expansion of the coordinates of a particle:

r(r) =r(0) + 7 #(0) + %f((}) + %'ﬁ«'(o) +0O(r)
r(=7) = r(0) = 7 #(0) + TH(0) — LF(0) + O(r)

= (1) +r(—7) = 2r(0) + 72 f[r(0), 0] + O(r*).
The Verlet algorithm cuts away the O(7?) part. Thus
r(7) = 2r(0) — r(—7) + 7 £f[r(0), 0] (3.10)

at each time step. At the very first step, one would need r(—7), which
is not known. Instead one employs the initial condition with a simpler

discretization )

r(r) = (0) + 7 v(0) + % £[r(0), 0. (3.11)

for the first time step. The corresponding discretization error is O(7?),
which occurs just once.

VERLET ALGORITHM

r(t+7)=2r(t) —r(t —7) + 72 flr(t),1], t=1,27,...

where Equation can be used to obtain r(7) initially. The error in
a single time step is O(7*). However, one can see after some calculation
that the error after n steps is n(n + 1)/2 larger. (It becomes quadratic in
n because Verlet contains a discretized second derivative of r.) Therefore
the overall error for the position of a single particle in a fixed background
after a time 7' = n1 is O(7?). We shall see below that the overall errors for
the interacting many-body system actually tend to grow much faster.

The Verlet method does not use velocities, except at the first step. In
order to calculate velocities, e.g. for obtaining the kinetic energy, one can
use

r(t+7)—r(t—7) = 2rv(t) + O(?). (3.12)
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There is an alternative formulation of the Verlet algorithm which is
more robust against rounding errors. From

v(1/2) — v(—7/2)

T

=v(0) + O(7?)
we obtain
v(7/2) = v(—7/2) + 7 £f[r(0),0] + O(7%).

We use, likewise, for the positions

r(r/2+71/2) —r(1/2—1/2)

=1(7/2) + O(7?)

which leads to
r(7) =r(0) + 7 v(7/2) + O(T?).

This approach is called the leap-frogf| algorithm due to the way r and
v interchange in time. Space-coordinates are computed at 0, 7, 27,... and
velocities are calculated at intermediate times 7/2,37/2, .. ..

LEAP-FROG ALGORITHM

rit+7)=rt)+7-v({t+7/2) t=0,7,...
v(t+7/2)=v(t—7/2)+ 7 f[r(t),1] t=r,27,...
v(r/2) :V(O)—l—%«f[r(O),O]. t=

Let us consider one more modification. We use
r(t+7)=1(t)+71-v(t)+ =i(t)+ O(?)

=r(t)+7-v(t)+ %f[r(t), t] + O(r%)
v(t+7)=v(t) + Tt +7/2) + O(T7).

This approach would require the knowledge of (¢ + 7/2), which can be
approximated by

F(t+7) +1(t)
2

— ¥ (t+7/2) + O(r2) .

We obtain the

4German: Bockspringen
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VELOCITY-VERLET ALGORITHM

r(t+7)=1r(t)+7-v(t)+ %f[r(t}, t]

V(t +7) = V() + 7 {Rle(t), 1] + £le(t + 7). 04 7]}

This form is equivalent to the other two schemes as long as all compu-
tational steps are performed with infinite accuracy, but it is less susceptible
to numerical errors.

3.2.4 Stability

Several properties are important for a good time integration scheme. They
are all satisfied by the Verlet-algorithm and its variants.

First of all, energy needs to be conserved, both short-term and long-
term. This is a very difficult requirement for MD methods. In fact, there are
a number of schemes (like so-called , predictor-corrector” schemes) which
use higher order expansions in 7 and thus seem to allow bigger time steps
7. However, their long-term performance is worse than that of the Verlet
algorithm !

One criterion that such methods often do not satisfy is the time reversal
symmetry of Newton’s equations of motion.

Another one is that of preservation of volume in phase space. All trajecto-
ries of a system that correspond to a particular energy F are contained in
a specific volume in phase space. If we let Newton’s equations of motion
act on all points in this volume, we end up with exactly the same volume.
A method which does not conserve phase space volume may eventually
spread over all of phase space, and then cannot conserve energy.

Symplectic integrators perform time steps which correspond to a canon-
ical transformation in phase space. They do conserve phase space vol-
ume. One can construct such symplectic time evolution methods with a
fairly recent approach that has been adapted from Quantum Monte Carlo,
namely the use of time evolution operators looking like exp(7H ), together
with subdivisions of the Hamilton function (e.g. into kinetic and potential
energy) and approximations like the Baker-Hausdorff equation (“Trotter-
Suzuki-approximation”). The Verlet algorithm can be written in such a
way. One can show that symplectic integrators follow the exact time evo-
lution of a slightly different (but very complicated) Hamilton function,
which differs from the desired Hamiltonian only by terms of order 7 or
smaller.

There is, however, a another big stability concern. The trajectories of
a system goverened by Newton’s equations of motion depend sensitively
on the initial conditions, even with exact time evolution.

84



When #(0) is perturbed by a small amount 0 - €, where €'is a unit vector,
then z(t) will typically change by exp(tA(€)). There are as many exponents
A(€) as there are directions in phase space. For a Hamiltonian system, one
exponent will always be zero (corresponding to €' || ©(0)), and the others
will occur in pairs £ (corresponding to conservation of phase space vol-
ume). The largest positive A is usually called the Lyapunov exponent.

Thus two system trajectories which are initially very close will diverge
from each other as time progresses ! This is the so-called Lyapunov-instability.
Therefore even tiny integration errors and numerical errors in MD will
lead the simulated trajectory to diverge from the true one.

For the calculation of, e.g., trajectories of satellites in space this can be
devastating. Fortunately, one is usually interested in averages, over parti-
cles and over time, which behave much better.

3.2.5 Measurements

The equilibrium thermodynamic (ensemble) average of any quantity is ob-
tained via averaging over time. For an observable O the expectation value
reads

(0) = lim %/0 dtO(1).

T—oo

For instance, the inner energy U = (E). We have already mentioned
the kinetic energy, which defines the so-called instanteneous temperature.
One can also measure the pressure. For pairwise additive interactions one
can write

1
where d is the dimensionality of the system and V' is the volume. This is
actually the relation for a canonical ensemble, but is often employed also
at constant L.

Other important quantities are correlation functions like the so-called
radial distribution function ¢(r), which is proportional to the density-density
correlation function. Care has to be taken to evaluate these correlations ef-
ficiently, e.g. by FFT, in order to avoid O(/N?) scaling.

3.3 Example: Harmonic Oscillator

Here we consider the harmonic oscillator since it allows to asses the stability
of the algorithm analytically. The equation of motion for the 1D harmonic
oscillator is

P = —w? .
For ¢t > 0 the Verlet algorithm reads

ot +71)—2z(t) +z(t —7) = —7* 2(t), (3.14)
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For ¢ = 0 we need to specify the initial conditions. We have v = f and,
therefore, v(7) ~ v(0) 4+ 7 f[x(0)]. We take the initial condition v(0) = 0 and
the initial Verlet time step then is

7_2

z(r) = 2(0) — EW%(O)' (3.15)

Egs. (3.14) can be expressed in matrix form if we use the assignment x,, =
x(n 7) for n € Ny:

-2 2 0
1 -2 1
1 =21 X = —T2Wx.
1 -2
M

(Zero matrix elements are supressed.) Thus, the eigenvalue equation Mx =
Ax has to be solved for the given eigenvalue A\ = —7%w?. We will now solve
wt 3

this equation analytically. Since x(t) = e'“* is the exact solution for the har-
monic oscillator, we try the ansatz

T, =", (3.16)

The general condition (3.14) for 7 > 0 reads "+ — 2¢7n 4 i) =
—(Tw)? '™ or rather

eia —9 + e*'ia — —(TCL)>2.

Hence, o is given by
1 — (7w)?/2 = cos(a). (3.17)

This implicit equation for « has real solutions only for
—1< (tw)?/2-1<1

or rather
0< 7w <2

In other words, the discretization has to obey at least T < 2, otherwise «
becomes complex and the solution obtains exponentially increasing
components, as we will see later. However, the time evolution becomes im-
precise already much earlier (see below). Equation always has two
roots, namely +a. Hence, the general solution obeying the initial condition
reads

z(nt) = Ae’™" + Be " = acos(an + ¢),
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with parameters which are fixed by the initial condition z(t = 0) = z(0) =
a cos(p). We still have to satisfy v(0) = 0, i.e. eq. (3.15).

acos(a + @) L acos(p) — (T;) acos(p)
= acos(p) [1 — (T;) ] .

Because of Eq. (3.17), the last line is also equal to a cos (¢) cos (o). Thus

cos(a + ) = cos(y) cos(a)
cos() cos(p) — sin(a) sin(p) = cos(p) cos(a)
sin(p) = 0.
The solution therefore reads

T, = xg cos(an). (3.18)

(In the original continuum representation this would read () = z(0) cos(%?),
which would correspond to the exact solution if ¢ = w.) For 7w < 1,

Eq. (3.17) yields

042

1—(tw)?/2~1~— 5 + O(a?)

o= TW.

Thus the numerical solution indeed approaches the correct solution for
7 — 0, with an error of O(a*) = O((7w)*). Obviously, there is a tradeoff
between the accuracy and the total time that can be simulated by a fixed
number of iterations.

Figures 3.4 and [3.5/show the time dependence of z(t) for different pa-
rameters 7w. We see that the simulation is stable over many periods, if
Tw < 1, while it goes off course at larger 7. As anticipated, the trajectory
diverges for Tw > 2.

We now estimate the number of periods until the discretization error
becomes significant. The result of the Verlet algorithm oscillates with fre-
quency «/7. According to Eq. the position at time ¢ = n7 is given by
x¥(t) = xgcos(an). A characteristic time t* at which the result has become
completely wrong is when z¥(t*) = —z(t*), i.e. when the phase error is 7:

lwt* —at™ /7| =7
e —
Jw—a/r]

The number N* of periods 7" = 27 /w corresponding to t* is:

t* wT

N'=—=——.
T 2|wr—aq|
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Figure 3.4: Simulation of the harmonic oscillator with wr = 0.1. The exact
solution is represented by the blue line, and the MD results by red circles.
According to Eq. it takes V* = 1200 cycles for the Verlet algorithm
to go completely off course.
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Figure 3.5: Top left: Simulation of the harmonic oscillator with the foolish
choice wr = 1. The result of formula (3.19), N* = 12, is corroborated by the
simulation. Top right and bottom: Simulations for w7 = 2 and wr = 2.001.
The phase becomes complex for wr > 2 leading to an exponential increase
of the amplitude. (”"dt” in the figure is 7 in the main text).
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Together with an expansion of Eq. (3.17) to order o*, with cos v ~ 1— %2+g_:
this leads after a few lines to

(wr)?
fwr —af = <L
and hence
. 12
N* =~ r (3.19)

Alternatively, if a certain number N* of stable periods is required, the con-
dition for the discretization reads

/3
o
wr K N

*

or

I >
— T
T 3’

which gives the number of partitions of one period.
For example, N* = 1000 corresponds to T'/7 = 57 partitions.

3.4 Generalizations

Canonical ensemble

The "effective temperature” can be adjusted in an MD simulation by rescal-
ing all velocities during equilibration. However, this is still the micro-
canonical ensemble of constant energy

In order to obtain a true canonical ensemble, one can employ the ”An-
derson thermostat”: The system is coupled to a heat bath. The coupling
works through occasional impulsive forces that act on randomly selected
particles. It can be considered to be a Monte Carlo move which transports
the system from one energy to another. The collisions with the heat bath
are designed such that all constant energy shells are visited according to
their Boltzmann weight.

Hybrid Monte Carlo

Molecular dynamics, even a not-so-good scheme, can be employed to greatly
improve the performance of some Monte Carlo calculations. In this method,
the Molecular Dynamics evolution is used to provide a new proposal config-
uration for the next Monte Carlo step. In order to provide the MC configu-
ration with dynamics, artificial momenta are introduced, and chosen ran-
domly according to some distribution. The only requirement on the MD
simulation is time reversal symmetry. By way of a fairly long time evolu-
tion, the system can move far in phase space, while keeping its total energy
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(actual energy plus small artificial kinetic energy) approximately constant,
so that the new configuration will likely be accepted in the Monte Carlo
step. Changes of energy are achieved by changing the articificial momenta.
This method has for example been in very successful use for simulations
of QCD (Quantum Chromodynamics, the theory of quarks and gluons).

Nonequilibrium simulations

Molecular dynamics is also able to to look at the time evolution of a system
starting from a special initial situation and /or with external non-conservative
driving forces. Then there is no time averaging, so that great care has to be
taken to integrate the equations of motion as precisely as possible.

Agent based simulations

The general approach of a simulation of invidual “particles”, interacting
and following specific rules in their time evolution has been carried over
into many other fields, where one usually speaks of “agent based simu-
lations”, including e.g. financial markets, evolution, or the flow of dense
crowds of people at large events.

Beyond Molecular Dynamics

When Molecular Dynamics is not feasible, e.g. because the necessary in-
tegration times cannot be reached with sufficiently small time steps, then
one has to resort to coarser pictures. They can be based on the more tradi-
tional formulation of solid bodies or of fluids as continuous media obey-
ing differential equations like e.g. the Navier-Stokes equation. For solid
matter, these are often treated by the Finite Element Method (FEM). There,
space is partitioned into finite regions (the , elements”), for example trian-
gles on surfaces. The differential equation to be solved is rephrased as a
variational problem. The solutions are approximated by a linear combina-
tion of a finite set of functions. The coefficients of this linear combination
are then the solution of a (linear or nonlinear) minimization problem, for
which techniques like conjugate gradient can be used.

For liquids the difficulties are greater. Depending on the precise prob-
lem, Computational Fluid Dynamics (CFD) uses a large variety of discretiza-
tions of space and of integration methods, often with phenomenological
additional interactions, for example to describe turbulence. MD, on the
other hand, can describe turbulence directly, on a microscopic scale, al-
though currently only with unrealistic parameters like extremely large
forces, in order to make it fit within the space and time available.
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Chapter 4

Finite Element Method

Literature: (tiny selection from an enormous number of publications)

e KJ. Bathe, Finite Element procedures, 2nd edition, Pearson 2014
(1043 pages, comprehensive).
Available as pdf at www.mit.edu.

e Aurélien Larcher, Niyazi Cem Degirmenci, Lecture Notes: The Finite
Element Method, 2013.
Concise and readable mathematical treatment, 40pp. Pdf available as
course literature at www.kth.se/social /course/SF2561.

e Multiphysics cyclopedia, The Finite Element Method (FEM).
https:/ /www.comsol.de/multiphysics/finite-element-method.
The present chapter including figures is mostly based on this expo-
sition.

The Finite Element Method (FEM) is an efficient approach to discretiz-
ing and numerically solving partial differential equations (PDEs) for some
quantity u(x, t) (static or time dependent), which may describe quantities
like the temperature distribution of a complex body, or mechanical shifts,
electric currents, fluid flow, etc. . The method and its many variations have
been developed since about the 1960s, with first beginnings much earlier.
It is very widely applied especially in engineering, and many software-
packages are available. The present chapter provides a brief introduction.

Discretization and basis functions

A basic ingredient of the Finite Element Method is the approximation of
the desired solution u(x, t) of the PDEs as a linear combination of a care-
fully chosen finite set of basis functions 1;(x) (also called shape functions).

u(x,t) ~ up(x,t) = Zui(x,t) i(x) . 4.1)
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Figure 4.1: Example for a set of local linear basis functions in one spa-
tial dimension, and the corresponding approximation (thin red lines) of a
function u(x) (blue line) as a linear combination of these basis functions.
Left: equally spaced nodes z;. Right: adaptive discretization.

An example is provided in Fig. 4.1| The finite number of coefficients makes
the problem variational. FEM is related to the Ritz variational approach.

In order to obtain suitable basis functions, space is divided into small
“elements”, for example line segments in 1d, triangles in 2d, or tetraedra
in 3d. The corner points of these elements are called “nodes”. The basis
functions are usually chosen to have support only on a single or a few
spatial elements, i.e. to be very local in space, and each even to be zero at
the position of all nodes except one.

Examples with linear basis functions on a triangular grid are provided

in Fig.[4.2]
Differential equation: example

As an example we will look at the temperature 7'(x, ¢) in a solid. The rele-

vant equation is

oT
pCpE + Vq = g(T,x,1), (4.2)

where p is the density, C, the heat capacity, q(x,?) is the heat flux, and

g(T,t,x) is a heat source, which might vary with temperature and time.
The heat flux itself depends on temperature as q = —kVT, where k is

the thermal conductivity, so that the differential equation for 7'(x, t) reads

T
pCa

by + V(RVT) = g(T,x,1). (4.3)
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Triangular elements — Triangular elements

Figure 4.2: Example for a set of local linear basis functions on a 2 dimen-
sional triangular grid. There is one basis function for each node. Left: Basis
functions for nearest neighbor nodes have a non-zero overlap. Right: Basis
functions for nodes at farther distances do not overlap.

The temperature is further determined by the initial condition T'(x, )
and by boundary conditions.

We will now specifically look at a steady state, i.e. a time-independent
situation. Then %I = 0 and (4.3) becomes

V(=kVT) = ¢(T,x) inQ, (4.4)

where () is the spatial domain of the body which we want to describe.
Typical boundary conditions are:
(1) the temperature on some boundary 0€2;:

T(X) = To(X) on th (45)

(2) the heat flux normal to some surface d¢2; might be determined by an
ambient temperature 7,,;, or it might be zero on some surface 9f23:

(—kVT) -n=h(T —Tymp) on 0y, (4.6)
(—kVT) -n=0 on 0. 4.7)

Here n is a unit vector normal to the respective boundary.

Integral “weak form” of the differential equations

The original physical problem is in continuous space and the differential
equations have to be satisfied at every point x. When the solution is ap-
proximated by basis functions on discrete finite elements, derivatives be-
come problematic. For example, the first derivative of u(x) in Fig. is
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discontinuous, so that the second derivative is defined only in the sense of
a distribution. Such problems can be avoided by multiplying the PDE by
a test-function ¢(x) and integrating over space. Eq. (4.4) becomes

/ V- (=kVT) pdV = / g(T) p dV (4.8)
Q Q
This relation has to hold for any test function from a suitable Hilbert space.
The solution 7'(x) is also assumed to belong to such a Hilbert space. This
is the so-called “weak formulation” of the PDEs, which needs to hold only
in an integral sense instead of a every point x. When the solution is differ-
entiable enough, then together with the boundary conditions, eq can
be shown to be equivalent to the original PDE (see e.g. Larcher et al.).

Galerkin approach

In the Galerkin approach, the test functions are taken from the same Hilbert
space as the solution function. Eq can be integrated by parts (Green’s
first identity) to obtain

/(kVT) - VedV + / (—kVT) -mnpdS = /g(T)godV. 4.9)
Q o0 Q

We now approximate the solution as a linear combination of a finite
number of basis functions 1); like in eq. (4.1

T(x) & Ti(x) = Y Ti(x) (%) . (4.10)

These basis functions span our Hilbert space. Eq. (4.9 has to hold for every
test function, which in the Galerkin approach are taken from the same
Hilbert space. Thus it is sufficient if eq. holds for every basis function
1; as a test function. We then obtain the discretized form of eq.

S /Q (K96 Vi dv + Y /8 KTV n S - /Q o3 T vV

(4.11)
(Note that on the right hand side, ), 7;%; is not a factor, but the argu-
ment T of (7). If there are N basis functions v;, then eq. is a system
of N equations for N unknowns 7;, which is now suitable for numerical
treatment.
Often, the “source term” ¢(7') is a linear function of 7". Then eq. is
linear in 7; and can be written as a set of linear equations (!):

AT, = b, (4.12)

for which many numerical approaches are available, for example Gauss
elimination, Jacobi, Gauss-Seidel, or Conjugate Gradient methods. Here,
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T}, is the vector of unknown coefficients 7;. The matrix A is called sys-
tem matrix or stiffness matrix (referring to early applications in structural
mechanics). In FEM, it is usually not symmetric.

When the source function is nonlinear, then one can write a similar
equation, but with the vector b now a nonlinear function of the unknown
coefficients 7;, and more expensive non-linear numerical solvers like e.g.
the Newton method need to be employed.

It is very beneficial to use basis functions v; that are very local in space,
like in figure 4.2 Then the integrals in eq. are non-zero only for (e.g.)
basis functions on nearest-neighbor nodes (!). Therefore the matrix A be-
comes sparse (namely almost diagonal) and thus much easier to solve.

Time dependence

In time-dependent cases, the time derivative in (4.3) needs to be included.
In discretized form, we then get, similar to (4.11),

0G5 [ av + S [4ve) v av @

+ ;Ag(—kﬂvwi)-n¢j ds = /Qg(;Twi) Wi dV

where now the coefficients 7T; are time-dependent, while the basis func-
tions in this equation are still taken to be time-independent.

One could generalize FEM to 3+1 dimensional elements, which is how-
ever computationally very demanding. Instead, time is treated separately,
with two different approaches, both involving finite time steps At. One
can approximate the time derivative as

0T, Taini — Toy
o~ At
Let us assume that we already know the coefficients 7} ; at time ¢t and want
to obtain 7; ;4 a;.

The first approach is similar to Molecular Dynamics. Equation (4.13)
is written for the coefficients T, at time ¢. Then T} ;4 A, only occurs in the
time derivative and can be directly computed. This is called an explicit time
integration scheme and requires very small time steps At for stability and
accuracy.

In the second approach, Equation is instead written for the coef-
ticients T; ;. o at time ¢ + At. Now the known coefficients 7; ; only appear
in the time derivative and we get a linear system of equations for 7; ; as,
which needs to be solved at every time step. This "implicit method” allows
for larger time steps, but each step is more expensive.

In practice, FEM routines switch between these approaches automati-
cally, and also employ higher order polynomial expressions for the time
derivative instead of the simple difference equation (4.13).

(4.14)
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Error estimates

One way to estimate the reliability of an FEM solver for a specific problem
is the “method of manufactured solutions”, in which a related problem with
exactly known solution is treated by the solver. The output can then be
compared to the known exact solution.

Example: suppose we have a solver for the Poisson equation

V2u(x) = g(x) in Q (4.15)
with boundary conditions
u(x) =0 on 9f. (4.16)

We now take a freely chosen function v(x) (for example the output of the
solver for our actual problem) for which v(x) = 0 on 012, take g(x) =
V?5(x), and compute an approximate solution 7,(x) to (4.15) with our
solver. We know that the exact solution to this problem is ©(x) and we can
now examine the difference to v, (x). Note that when we take v(x) to be a
previous output from our solver and and use the same discretization and
basis functions for the error estimate, then this method does not provide
information about any features lost by the discretization.

Formally exact error bounds for specific quantities can sometimes be
obtained a posteriori (see Larcher et al.). However, they involve bounds
on matrix elements of the inverse of the adjoint of the matrix A, which
are very difficult to obtain reliably in a numerical calculations, so that an
actual bound may become too large to be useful.

Other error estimates may be obtained from the (potentially mislead-
ing) convergence of results when using smaller and smaller elements.

Basis function refinements and mesh adaptations

The basis functions need not be linear functions on their elements like in
Figs.[4.T|Jand[4.2] In figure[4.3] first and second order Lagrange elements are
shown, on square spatial elements. Higher order basis functions have the
advantage of better approximating the true solution u(x) on a given dis-
crete mesh. On the other hand, there are more higher order basis functions,
so that the computational effort increases. Alternatively, one can therefore
use simple basis functions on a finer mesh.
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Figure 4.3: The shape functions (basis functions) for a first-order (left) and
second order (right) square Lagrange element. The corresponding 1d func-
tions would be Lagrange polynomials.

S No mesh refinement

Adaptive mesh refinement

Figure 4.4: Temperature around a heated cylinder subject to a flow, com-
puted without (top) and with (bottom) mesh refinement.
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The spatial discretization elements can and should of course be adapted
to the problem. One can for example use spatial elements with curved
boundaries to better represent a given body. The adaptions can also be
done iteratively according to a first approximate solution, e.g. by using a
finer grid where more precision is needed, for example because of large
gradients. An example is shown in figure
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Appendix A

Errors (Uncertainties)

A.1 Error specification

Stating a numerical result without providing an error estimate is meaningless.

Unfortunately, missing or completely erroneous error specificationsﬂ are a
remarkably common and important problem, even and especially in ev-
eryday life. One should note that an implicit error specification is already
and often unintentionally passed along via the number of digits specified
in a result.

Some examples:

A statement like “the national debt of Austria next year will increase by
13,427,853,974.48 Euros”, the kind of which is sometimes found in news-
papers, would imply that this sum is known to a precision better than one
Euro. Here it is obvious that this cannot be true. But what is the actual
precision ? Is it on the one million Euro level ? Or more like one billion or
even more ? In the latter (probably more realistic) case, only the first or the
tirst two digits of that long number have any meaning.

“The distance between Vienna and Graz is 145.5827345 km”. The last
digit corresponds to a tenth of a millimeter. Can this be true ? Distance
between which points ? The following year, the distance is quoted 2.3 cen-
timeters larger. Are Vienna and Graz splitting apart ?

Such numbers with many digits often result from blindly reading off
and quoting a number from some display or from a computer screen. They
can lead to a lot of confusion.

Obviously, these numbers need some realistic error estimate in order
to be useful. An efficient way to specify errors on numbers with numerous
digits is an expression like ”"145.5827(12)”, where the digits in brackets are

! A better name would be “uncertainty” of a result, but “error” has become standard.
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the error of the same number of preceeding digits, meaning here that there
is an error of "12” on the digits “27”. One still needs to add information
on whether this a one-standard-deviation error or whether it corresponds
for example to two standard deviations (both common).

A.2 Polls and histograms: simple error estimates

Another unfortunate everyday example is in the specification of the re-
sults of polls, e.g. for political parties. One week it may be that party A
is reported at ”32.18%"” and next week at ”31.45%" and a big discussion
begins on why the numbers have dropped. But is the difference signifi-
cant ? What is the error of those 4-digit specifications ? Results similar to
polls commonly occur in measurements or in numerical calculations, in
the form of histograms which are to approximate some probability distri-
bution.

Let us try to obtain an easy to use simple error estimate for such num-
bers. A more precise discussion can be found in the following section on
Bayesian analysis.

We examine a histogram with a total number N = ). N; of entries,
where N, is the number of entries in bin number i. We first want to obtain
an error estimate for N;. With one specific value for 7, we can treat this as
a Bernoulli problem (binomial distribution): how many events belong to
bin number ¢ and how many do not ? The variance for N; for the binomial
distribution is

% = Np(1-p). (A1)

where p; is the probability for bin i, of the underlying probability distribu-
tion from which the events in the histogram were drawn. We can make a
simple estimate

pi = — (A.2)
from the data, with normalization ) |, p; = 1. The Bayesian analysis in the

next section will show us that this estimate is good when N; > 1 and not
so good for small values of N;. With this estimate, we get

Ni

for a single standard deviation. As long as N; does not come close to NN,
this can even be approximated in the very simple form

on, ~ /N (A4)

which can be a take-home message for rough estimates. (Even when £ is
as large as 3, this simple form only introduces an error of a factor of v/2).
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Translated to p;, this becomes

1 1 N,

1 N;
W NN N pi(l—p) = N N(l_ﬁ)’ (A.5)

in which we see the very important \/LN dependence, related to the central

limit theorem 2

Let us look at examples: a typical poll has between 400 and 1000 par-
ticipants. If the ”32.18%” mentioned above came from a poll with about
N=1000 participants, then what is the approximate error ? Eq. gives
on, = /322(1 — 0.322) =~ 15, not too far from the simple estimate /322 =~
18. Thus the one-sigma (!) error in p; is about o5 = 1.5% ! Therefore the
difference to the second poll result of ”31.45%" is not at all significant !

We learn that the results of the polls really need to be specified together
with an error estimate.

A.3 Histograms: Bayesian analysis

Let us now try to do a better analysis of histogram data, using the Bayesian
approach. We shall see that the results for large V; are very similar, but for
small N; we will obtain better and more sensible results both for p; and for
the error estimate[]

The simple analysis in the preceding section used the approximation
pi ~ X This is a frequentist approach. When N; = 0, then the estimate
pi = 0 results, as well as the clearly wrong estimate of o,, = 0: there is no
data in bin i, yet the error-estimate has the value zero ?

We look again at the situation where we have a set of NV numbers, clas-
sified into n; bins i of width b;, plus an additional bin ”r” for any remain-
der of the data, outside of the range of the histogram, i.e., we actually
classify the data into n;, + 1 classes. Bin number ¢ contains /N; numbers.

The numbers are assumed to be drawn independently from an under-
lying probability distribution with probabilities p; for bin ¢ and p, for the
remainder. We want to obtain an estimate for p; from the numbers NV;, with
normalization ) *, +p, = 1, as well as an error for this estimate.

Let us already look at the result of the Bayesian analysis, shown in
Fig. for the case of an example. Here the bin widths b; = b are cho-
sen constant for simplicity. The black line corresponds to the underlying
real distribution p;, usually not known, for which we want to obtain an
estimate. In the example, this distribution has two peaks and is zero in be-
tween, except for two bins in the middle, where p; is small but nonzero. The

bar heights h; are normalized with respect to integration over x, h; = f*.

ZFor histogram bars of width b; we get h; = p;/b; and o, = 7}, /b;, like in |i
3Thanks go to Florian Maislinger for initiating this section and for contributing most
of it, including the calculations and figures.
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Figure A.1: Example data (left) and resulting bar plot of a normalized his-
togram h; after the Bayesian analysis (right).

Fig.[A.2shows more details, with the same Bayesian results on the right
hand side, in comparison to the result of the simple frequentist analysis
on the left hand side. The two plots have different bar heights. The total
number of data N = 300 here is fairly small, such that the differences
become clear. The insets provide detail. One of the bins in the middle has
N; = 0, which results in the strange frequentist estimate of p; = 0, with
zero error. For the same bin, the Bayesian analysis gives a finite estimate
for p; and a finite error.

Let us start the analysis. For a given bin i, we can again regard the
distribution as binomial:

N
p(N; | pis N, B) = (

N') pY (L—p) (A.6)

We are interested in the distribution for p; so we need to invert the
distribution above with Bayes theorem.

p(
[ NiJN7B =

(A7)

We now need a prior, which expresses any previous knowledge. We
will use

p(pi | N,B) oc (1 —p)™ " . (A.8)
This is the marginalized distribution of the flat prior:

p(p17p27 <o oy Pnys Pr | Na B) X 5(1 - Zzlbzlpm _pT) 3 (A9)
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Figure A.2: Motivation for the Bayesian inference. If only a few numbers
(N = 300) are generated, the basic frequentist method (h; = b%%) indicates
that there is no density and zero error. Inset: Zoomed in around the center
area where the probability distribution function has a small weight.

i.e. we assume that a priori each bin (including the “rest” r) has equal

probability. With (A.8), (A.7) becomes

I —Nitnp—
p(pi| Nio N B) = — it (1—py)" (A.10)

The normalization constant can be calculated using the integral

I'(p) ['(q)

T(p+q)’ (31D

1
B(p.q) = /wpl (1-2)""dz =
0

which is the so-called Beta-function. Here I'(n) is the Gamma-function. For
integer arguments, I'(n + 1) = n!, and the integral simplifies to

(o) d _atbt A12
/Ox (1—2) de = CETFSH (A.12)

(which can also be obtained directly by iterating partial integratins) and
our normalization becomes

lz/p(mNi,Nﬁ) dp;

1 . Nt
:E/ Pl (1 — p) NN Ay,
0

- Z (N +ny)!

= 2| N NB) = o i (1 — py)N Nt
(A.13)
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Now we have everything to compute the first and second moment of
the probability distribution and with this the expectation value and the
standard deviation.

1
(pi) Z/ pi p(pi | Niy N, B) dp;
0

o (N—l—nb)! (Ni—f—l)! (N—Ni—i—nb—l)!
N (N —=N;+n,—1)! (N +ny + 1)! ’
thus
N;+1
) = it Al4
(pi) N +ny+1 ( )
and
1
W)= [ o] N NB) ap
0
B (N + ny)! (N; +2)! (N —=N; +n,—1)!
N (N = N; +n—1)! (N +ny + 2)!
 N+2  Ni+1
N4+ +2 N+ny+1
N;+2
=~ ()
N —|— Ty =+ 2
The standard deviation o,, = 1/ (p2) — (p;)* can be simplified using (A.14

and becomes

= V- = i -] A1)

We can convert the p; to bar heights h;, normalized such that the inte-
gral over z is unity: the probability to generate a number in bar i is the
integral over the bar height h;, thus

x;+b;
(pi) = / h; dz = b; h; (A.16)

With this we can compute the bar height and error for a normalized
histogram:

=L ) a1

)

(A.18)

1
Op; = b—O'p
i
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A.3.1 Limit of large numbers

N;+1
N+’I’Lb+1 °

N; and N, it can be quite different from the simple frequentist result 2,
but for large N; and N it becomes similar.

Error estimates are quite different when NV; is small, as we already saw
in the figures. We can rewrite o2 by plugging (A.14) into (A.15) :

9 1 N; +1 ] N; +1 1 N; 1 N;
ol = —— ] & = = —— .
Pi N+4+ny+2 N+mny+1 N +ny+1 N N N

(A.19)

Let us compare: the Bayesian result for (p;) is For small numbers

The right hand side is the frequentist result, and the approximation be-
comes valid for large numbers, N > n, and N; > 1. Fig. shows that
indeed the results at large N and NV, are similar.

Frequentist Bayesian
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Figure A.3: If sufficiently many numbers (here N = 5000) are generated,
both methods converge to the same result and yield an acceptable solution.

A.3.2 Conjugate prior

The Bayesian analysis for a binomial distribution which we have just per-
formed can actually be written in a more general form. Eq.[A.8is a special
case of the conjugate prior of the binomial distribution

a—1 _ \B-1
¢ (1—-q)
(o = s A.20
Pa.p(q) B d) (A.20)
which is the so-called beta-distribution, with parameters «, §.
Bayes’ theorem can be written as
p(pi|Ni, N, B) = (Vi ) plpi ) (A.21)

[ dg p(Ni|g, N, B)p(q|N, B)
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When we now have N; data in bin i (i.e. N; successes and N — N; failures
in the binomial process), and use the conjugate prior p, s(p;), we get the
posterior distribution

(M)pN(1 = p)N=Ne pe=t(1 = p;)P' / Blov, B)

p(pilNi, N, B) = (A.22)
Jo da(R) a1 — NN g1 = q)P / B(a, B)
Ni+a—1¢q _  \N—-N;+B-1
_ D (1—pi) (A23)
B(N;+1,N — N, + 1)
= Pa+N,,g+N-N; (Pi) (A.24)

(For @ = 1,3 = 0 the result is indeed the same as the previous result in
A1)

We see that we obtain another beta-distribution, now with parameters
a+N;and S+ N — N,, i.e., a increased by the number of successes and /3 by
the number of failures of the binomial events. In this sense, the parameters
a and f of the prior distribution can be interpreted as counts of previously
performed measurements, thus making the term “prior knowledge” very
explicit here, and allowing the new posterior distribution to be used as the
prior distribution to take account of additional events.
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A4 Jackknife: General purpose error analysis with
automatic error propagation

Data are often combined in complicated nonlinear ways to obtain results,
including fits, and fits of fit-results, etc. It is then next to impossible to
apply standard error propagation. One example are quantities expressed
like (A)/(B), where A and B correspond to measured quantities.

Another example is the autocorrelation function of a Markov Chain
Monte Carlo calculation, for which it is very difficult to compute error
bars. When the slope of the autocorrelation function is fitted, reliable errors
on this slope are even more difficult to obtain, in part because the values
of the autocorrelation function at different time distances are correlated
among each other.

A surprisingly easy solution in many cases is provided by "resampling"
techniques, in which partial samples of all data are taken several times and
analyzed. We will concentrate on the Jackknife method ] A closely related
but less useful procedure is called bootstrap.

To explain Jackknife we will use the analysis of a Monte Carlo time se-
ries as an example. We start by cutting the data (time series) into N5230
blocks. The number 30 is chosen so that the relative error of the calculated
error will be reasonably small, namely of order 1/+/30. The blocks should
ideally be uncorrelated. For Monte Carlo this means that they should be
much larger than the autocorrelation times (which have to be determined
separately). One can also combine Jackknife and Binning, i.e. start with
small blocks and successively increase the block size until the error con-
verges.

Error calculation

Analyze the data Np + 1 times: We first perform an analysis of the full data
set, arriving at a number which we call R (This number can e.g. be the
autocorrelation function at some time distance ¢, or it can e.g. be a fitted
slope of the autocorrelation function).

Then we perform another N analyses, each time leaving out one of the Ng
blocks, providing results RY), j = 1,..., Np, with an average R(4"). The
fluctuation of these results tells us about the statistical error. However, the
RY are highly correlated amongst each other, since they use almost the
same data. The correct variance of the overall results is given by

B—l ol

= Z (RY) — R@)? (A.25)

*Named for its versatility.
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which is (Np — 1)? times the usual estimator of the variance of a mean.

Bias

Usually , the result R(0) is corrected for a “bias”, with the overall result

R = RY9 — Bias, Bias = (Ng—1)(R* — R"). (A.26)

However, this bias is usually much smaller than the statistical error
of R and therefore unimportant. It can be used as a diagnostic tool: When
"Bias” is of the same size as the statistical error or larger, then there is likely
a problem with the data like an outlier, that is a strongly deviating data point.

Stability

A very big advantage of the Jackknife approach ist that all the analyses involve
almost all the data. Therefore procedures like fits are very stable, provid-
ing a set of N + 1 stable results (e.g. for the slope of the autocorrelation
function) and a reliable statistical error.

In contrast, in the more naive approach of analyzing small single bins
one by one to compute a variance, quantities like fit-results may become
meaningless.

We see that Jackknife is a very general and versatile error analysis with au-
tomatic error propagation, even through successive highly nonlinear data
processing like fits.

In the related bootstrap method, random samples of Ny data points are
taken many times and analyzed. This method cannot be used for time-
series, since the sequential nature of events gets lost.
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