Numerical Methods in Physics
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Instructor: Ass. Prof. Dr. Lilia Boeri
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http://itp.tugraz.at/LV/boeri/NUM_METH/index.html
(Lecture slides, Script, Exercises, etc).



TOPICS (this year):

Chapter 1: Introduction. 23

Chapter 2: Numerical methods for the solution of linear inhomogeneous systems. f:@
Chapter 3: Interpolation of point sets.

Chapter 4: Least-Squares Approximation.

Chapter 5: Numerical solution of transcendental equations.

Chapter 6: Numerical Integration.

Chapter 7: Eigenvalues and Eigenvectors of real matrices.

Chapter 8: Numerical Methods for the solution of ordinary differential equations: initial
value problems.

Chapter 9: Numerical Methods for the solution of ordinary differential equations: marginal
value problem:s.



Last week(22/10/2013)

Linear Systems: Direct (LU decomposition) vs indirect methods (Gauss-Seidel).
Direct methods, iterative improvement of the solution (reduce roundoff).
Direct methods, special cases: tridiagonal matrices.

Indirect methods: iterative solution for sparse matrices.

Indirect methods: Gauss-Seidel iteration rule.

Band matrices: definition and properties.

Gauss-Seidel iteration for band matrices, storing information and efficiency.

Gauss-Seidel method with over and under-relaxation.



Linear Systems

Methods of Solution (humerical):

‘Ax=b‘

Direct Methods:
No methodological error, BUT computationally expensive; roundoff errors can be large.
LU decomposition.
Iterative Methods:
Simple algorithms; roundoff is easily controlled. The solution is approximate (truncation).

Gauss-Seidel method.



Direct Methods:

Ax=b - l7X=y

Two-steps procedure:

1) LU decomposition (Doolittle and Crout): Reformulation of the Gaussian elimination. A real
matrix can always be represented as the product of two real triangular matrices Land U, i.e.

A

A=L-U

2) The two auxiliary systems are solved through back and forward substitution:

U-x=y ley=b

Back Forward



Gauss-Seidel Method:

iterative method for linear inhomogeneous sets of equations.

[ Advantages: simplicity; the matrix of coefficients is not changed during the iteration. Very efficient
for systems with a sparse matrix of coefficients.

t+1 t t .
x = x - A (i=1,...,n)
() — (O O
Ax;” = x, E a;X;
ii J=1(j=i)

Starting from an initial vector x, (starting vector) one obtains a sequence of vectors x®*, which

converges to the exact solution: limx"’ —x

{—>00

In practice, the iteration stops when a given precision is reached: | xi(t)-xi(t-1)|< €

For sparse matrices, only a few terms survive in the equation for the AXi'S.



Efficiency of direct Methods:
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Efficiency of the G-S method compared to LU decomposition for a Laplace equation (sparse matrix).



This week(29/10/2013)

Least Square Approximation: Definition of the problem.

Statistical distribution of experimental data: normal and Poisson distribution.
Statistical properties of the fitting parameters.

Model Functions with Linear parameters.

How is this implemented in practice?



Least Squares Approximation

Optimal Fitting of a data set




Least-Squares Approximation:

Basic problem: Data collected from experiments form a discrete set. Physical processes
are typically described by mathematical expressions, which employ real numbers. These
are easily manipulated with the standard tools of algebra (integrals, derivatives, etc).

How to reduce a discrete set to a continuous function?

& Interpolation: Find an analytical expression (polynomial) which passes
exactly through all experimental points.

) Least-squares approximation: Find the best possible analytical formula to
approximate the behaviour of the n experimental points.



Example:

We wish to measure the resistivity of a metallic conductor:

'
N
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ALANARRANAN

The data points (Voltage: V; Current I) follow Ohm’s law, but are affected by
an experimental error.

V=R-I
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Due to experimental errors, the data do not lie exactly on top of a straight line
(Ohm’s law), but only approximately.



—
Least-Squares Approximation:

Mathematical Formulation: Given a set of n points (x,/y;), we wish to find a curve f(x)
which approximates the points as closely as possible taking into account possible
uncertainities due to measurement errors. We also would like to be able to assign
different weights to the points through suitable weighting factors.

x> = Egk [ —f(xk;a)]2 — min
k=1

Y Experimental values

X ? Weighted error sum

g, > 0 Weighting factors (statistical)
f(xk ;Q) Model function

a=a, ,aq Model (fitting) parameters



Statistics: The quality of the results of a LSQ fit depends on the statistical quality of the
data to be fitted (y,). The statistics of the y,.s is defined in terms of their expectation

value (E,) and standard deviation (o).
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j=1,...N Number of measurements



Standard Deviation (0,): measures the spread of the y,’s around their expectation

value E,.
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Gaussian normal distribution:

It is useful to describe experimental analogue measurements.

P(x;u,0)= ! -exp(—(x_m)

V2o 207

Parameters:

u Median of the distribution

2
(O Standard Deviation O Variance

Central limit theorem: the mean of a random variable is distributed approximately
normally, irrespective of the form of the original distribution -> very common!!!

Standard normal distribution: p=0, 0=0.



Normalized Gaussian distribution:

We will assume that our measured (y) values have a normal distribution, with median =
expectation value, and standard deviation=exp. standard deviation.

P(y-E)= ! *eXp —M

J2no 20°

P(y-E) describes the probability with which a specific distance (y-E) between the
measured value y and its expectation value occurs.

The standard deviation indicates the spread with which the measured values are
distributed around their expectation value E.

Data-sets with a smaller o are “more accurate”.



y=Ex0 Inflection points (P’ (y)=0).




Geometrical Meaning of the Standard Deviation:
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I
Poisson’s statistics:
The Poisson’s distribution is a discrete probability distribution that expresses the probability

of a given number of events occurring in a fixed interval of time and/or space if these events
occur with a known average rate and independently of the time since the last event.

k -\
Ae

k!

Ppois(X = k) =f(kaA) =

Properties:

EX)=A Expectation Value

var(X)=A  Variance

In a Poisson’s distribution the expectation value and variance are equal.



The Poisson’s distribution can be applied to systems with a large number of possible events,
each of which is rare.

Example: Counting Experiment (radioactive decay):

where A could be a radioactive substance, D a radiation detector, Z a
digital counter and T a clock.

D is a digital counter; the number of counts has a Poisson distribution.



Statistics in the LSQ method:

' = Egk 2 —f(xk;a)]2 — min
k=1

The weighting factors g, depend on the statistics of the experimental data sets y,:

Normal distribution (analogic)

gk — Poisson distribution (digital)

Yk



Normal matrix of the LSQ fit:

For the weighted error sum X2 we can define a normal matrix as:

1 0%y°
[N]"j:Eaaaa
i0Y;

Its inverse is the covariance matrix, which gives important information on the
statistical properties of the fitting parameters:

‘ C=N" ‘ Covariance Matrix
O, =+/C; Standard deviation of the a’s (fitting parameters)
V,=—fF— Correlation coefficients for the a/’s: (| cij|<1)

C..C

Measure how strongly the i-th and j-th parameter influence each
other.



Variance and Standard Deviation:

Variance

Standard Deviation

q Number of fitting parameters

N - q Number of degrees of freedom

Quality of the LSQ fit: In case of an ideal model for N>>1, V has approximately a
normal distribution with E=1 and o=0,,. If V lies significantly outside the interval:
[1-0,,1+0,] the fit is bad!



Model Functions with Linear

Parameters




Model functions with linear parameters:

A model function with linear parameters has the form:

fsa)=Ya, @;(x)

Here, ¢,(x) are arbitrary (linearly independent) basis functions. f(x,a) is linear in
the fitting parameters, not in x. In the special case in which one uses as basis

function a straight line: ¢;(x)=f;;, (x; a;,a,) we have the linear regression.

lin

Linear Regression:

f(xa,a,)=a +a,x




Model functions with linear parameters, LSQ formula:

Inserting the expression of the model function with linear parameters in the

expression for the weighted error sum we have:

2
X Egk Ea @, (x,) — min
j=1
Deriving with respect to the fitting parameters we get:
_—2Egk(pz(xk) Vi Eajqﬂj(xk) =0 i=1,
da, k=1 =1

Which can be recast in linear set of m equations:

Eafzgkqpi(xk )qu (x,) = Egkyk(pi(xk)
k=1 k=1

j=1



This inhomogeneous linear set of m equations is (in matrix form):

Aa=ﬁ

N

A

o, ] o, = > g0 (x )pix,)

k=1

b = Egkyk%(xk)
k=1

One can define a normal matrix, given by:

N 2 2
N [nij] nij:l 4 Egk¢(xk)¢(xk) ;




Standard Deviation of the fitting parameters:

We consider the linear regression formula (g=2):
f(x;a,,a,)=a +a,x
The least-squares formula gives:
n
2 2 .
X = Egk [yk _a_bxk] —min<a= aopt’b = bopt
k=1

The normal matrix of the problem is given by:



The optimized parameters (a_,.and b__.) can be obtained from:

o a)[ A
b )7\ B

/3)1 = Egkyk’ /32 = Egkxkyk
k=1 k=1

opt

with:

This gives:

a=da =/310£22—/520512 b=>b =/320£11—/310521
2

opt D opt D

D is the determinant of the normal matrix:

2
D = a0y, =),



The covariance matrix is the inverse of the normal matrix:

CoN- = l Gy =0y,

D —Q,, o

The diagonal elements give the standard deviations of the fitting parameters:

2 _ O 2 _ @
o =22 o’ =2U
D D
a=a,, +*0,, b=b,,+0,

We will now show that the same result can be obtained using the Error Propagation
Rule (EPR).



Error Propagation Rule:
The fitting parameters are function of the x, y components of the data points:
a=a(X}yeccs X 3 V(5.5 Y,) D=b(Xsccs X3 Y 5.5 Y,)

We can then use the standard formula for the error propagation. Given a function
f(x) of n variables (x,,...,x,), with errors Ax,,..., Ax,, the error on the function is given by:

= Ftnx) = f(X)
Fx)= T Af(x)
(A (X)) = ( o ) (Ax,)’ +. +( o ) (Ax Y

0x, 0x

n




I
Applying this to the expression for the standard deviations gives:

o=) (j—“) o(x,)’ +(§—“) a(y)’

=1 | \ 9% Vi
- , , ]

S| 0b ob
o.=Y||—| o(x)’+|—| o(y,)’
b ; (axl) l 3y, Y |

If we assume that there is no statistical error on the x/’s, and that the y/'s have a normal
distribution, we have:

1
(72()’1)

o(x)=0 8 =

And thus:

n 2 n 2
o - i(a_“) . o= l(%)
o | &\ 9y, o | &\ 9y,



To calculate the partial derivatives we have to recall:

_ _ b, — B, b= _ p.a, — i,
a opt ? opt
D D
Lo
o = E 8 Q= E 8iXe O = gkxlf - =0;
k=1,n k=1,n k=1,n ayl
By =Egkyk’ B, =Egkxkyk ﬂ—gl, ﬁ_glxl
k=1 k=1 ay, dy,

Substituting in the expressions for the standard deviations we get:

2
1[1
o, = E_ D — (a8 - 12g1x1)]

- 2
1
(7 = —_— el 04 + X
E;, z _D( 1281 18 z)]



We obtain (for example for a):

2
N1 1
(75 = E_l_(azzgz _alzglxl)] =

=8 LD
11 Y
3o

1 n
= Fzgl [(azz B O{lle)]z =
=1

1 2.2 2 2
=7 E 2,8.8: [xkxk, -2X,X. X, +X; xkxk.]
Lk,k'

Renaming the indexes of the sum in the last two terms we obtain:

n n n n 2
o, = # Y 888X | X — X% | = %Egmf Y&y guxi- (E 81xz)
Lk.k' k=1 =1 k'=1 [=1



We thus obtain:

_ L

a22

2 2
O DE X, =
“ D? Hg" “D

i.e. the diagonal terms of the covariance matrix give the standard deviation for
the fitting parameters!!!!



In summary (LSQ with linear model parameters):

Input the experimental data set: x,, y, and the statistical weights g,
Choose a set of basis functions ¢,(x):  f(x;a) = Eaj @, (x)
j=1

Construct the auxiliary linear problem: Aa=f3

A

A=la,] = igkw,.(xk )i(x,), Bi = Sgkykfpi(xk)

Solve the linear problem (LU decomposition); Find optimal fitting parameters.

opt
q )

a” =(a",...,a
Calculate the covariance matrix (standard deviations of the fitting parameters).

Calculate the value of the optimal fitting function on the given data points: f(xk;aopt)

Evaluate the weighted error sum. X~ = Egk [yk —f(xk;a)]2
k=1



This week(29/10/2013)

Least Square Approximation: Definition of the problem.

Statistical distribution of experimental data: normal and Poisson distribution.
Statistical properties of the fitting parameters.

Model Functions with Linear parameters.

How is this implemented in practice?



