Numerical Methods in Physics

Numerische Methoden in der Physik, 515.421.

Instructor: Ass. Prof. Dr. Lilia Boeri
Room: PH 03 090
Tel: +43-316-873 8191
Email Address: |.boeri@tugraz.at

Room: TDK Seminarraum Time: 8:30-10 a.m.
Exercises: Computer Room, PH EG 004 F

http://itp.tugraz.at/LV/boeri/NUM_METH/index.html
(Lecture slides, Script, Exercises, etc).



TOPICS (this year):

71 Chapter 1: Introduction.

7  Chapter 2: Numerical methods for the solution of linear inhomogeneous systems.
72  Chapter 3: Interpolation of point sets.

71 Chapter 4: Least-Squares Approximation.

71 Chapter 5: Numerical solution of transcendental equations.

?  Chapter 6: Numerical Integration.

?  Chapter 7: Eigenvalues and Eigenvectors of real matrices.

71 Chapter 8: Numerical Methods for the solution of ordinary differential equations: initial
value problems.

2  Chapter 9: Numerical Methods for the solution of ordinary differential equations: marginal
value problem:s.



Last Week (15/10/2013)

Linear Systems: Definition and applications.

Solution: Direct vs iterative methods.

Gaussian methods: LU decomposition.

A practical example: 3x3 square matrix (step-by-step).
Strategies to reduce the error: partial pivoting.

Stability of the solution: Condition numbers.

Programs for the LU decomposition: LUDCMP and LUBKSB.

How to use the programs for LU decompositions (inhomogeneous systems, matrix inversion,
determinant of a matrix).



This week(22/10/2013)

Linear Systems: Direct (LU decomposition) vs indirect methods (Gauss-Seidel).
Direct methods, iterative improvement of the solution (reduce roundoff).
Direct methods, special cases: tridiagonal matrices.

Indirect methods: iterative solution for sparse matrices.

Indirect methods: Gauss-Seidel iteration rule.

Band matrices: definition and properties.

Gauss-Seidel iteration for band matrices, storing information and efficiency.

Gauss-Seidel method with over and under-relaxation.



Linear Systems

Definitions:
a, x,+a,x, +--+a, x, =b,

Ay X, + 0y Xy +--+a,, X, =b,

a x +a,x,+--+a, x, =b

with:

by [by]+...|5,| =0

Inhomogeneous linear system of equations.

det( 121) =0 The problem is non-singular and admits a solution.



Methods of Solution (numerical):

Direct Methods:

No methodological error, BUT computationally expensive; roundoff errors
can be large.

LU decomposition (Doolittle and Crout) (Gaussian Elimination).

Iterative Methods:

Simple algorithms; roundoff is easily controlled. The solution is
approximate (truncation).

Gauss-Seidel method.



Direct Methods:

Ax=b - l7X=y

Two-steps procedure:

1) LU decomposition (Doolittle and Crout): Reformulation of the Gaussian elimination. A real
matrix can always be represented as the product of two real triangular matrices Land U, i.e.

A

A=L-U

2) The two auxiliary systems are solved through back and forward substitution:

U-x=y ley=b

Back Forward



I
Iterative Improvement of the Solution:

Direct methods do not introduce any methodological error. But the effect of roundoff can be
severe. There is the possibility of improving iteratively the solution:

A'x=Db

X RealSolution A-x=Db X'=X+0X Approximate Solution
The approximate solution can be reinserted into the original equation:

AX'=A-(X+0x)=b+0b
(Ax-b)+A-0x=0b

The error on the solution can be estimated from:
A - Ox =‘ - X =X'-06x

Residual Vector Corrected
Solution



Iterative method: The corrected solution x’ can then be re-inserted into the original
system, until the method converges, i.e. until there is “no difference” between the result
at at nt" and (n+1)% iteration.

A-xXx=Db

Sb =(A-x'—b)

U

X —Xx' A-0x=0b

U

X =X'-0Xx




Practical Implementation

(using LUDCMP and LUBKSB)

Save the original (A) matrix in an auxiliary array (LUDCMP overwrites the original
matrix).

Solve the system Ax=b using LU decomposition(LUDCMP + LUBKSB); the solution is x’'.
Find the residual vector 6b=-b+Ax’.
Find the solution of the system Abx=6b.
x=x"-6x

lterate points 3)-5) with x as the new x’ until the exit condition is met (typically, | x|
or |6x|/x’ smaller than a given threshold).



ASP(LJ):=A(1,J) Save the original (A) matrix in an auxiliary array

LUDCMP (AN,INDX,D,KHAD)

LUBKSB (A,N,INDX B X) Solve the system Ax=b using LU decomposition.
I=1(1)N
SUMDP:=-B(I) Find the residual vector b=-b+Ax’.
J=1(1)N

SUMDP:=SUMDP + DBLE(ASP(LJ))*DBLE(X(J))

RES(I):=SUMDP

LUBKSB (A,N,INDX,RES,DELX) Find the solution of Abx=6b.
I=1(1)N
X(I):=X(I)-DELX(I) x=x"-6x

(Condition, under which the iterative method should stop)

(Result and return)




e
More on direct methods

(Effect of roundoff error in ill-conditioned systems)

Example (5x5 matrix):

0.10000E+01 0.50000E+00 0.33333E+00 0.25000E+00 0.20000E+00 j 0.228333E+01
0.50000E+00 0.33333E+00 0.25000E+00 0.20000E+00 0.16667E+00 j 0.145000E+01
0.33333E+00 0.25000E+00 0.20000E+00 0.16667E+00 0.14286E+00 j 0.109286E+01
0.25000E+00 0.20000E+00 0.16667E+00 0.14286E+00 0.12500E+00 j§ 0.884530E+00

0.20000E+00 0.16667E+00 0.14286E+00 0.12500E+00 0.11111E+00 J 0.745640E+00

Eigenvalues

X =X, =X;=x,=x;=1.0 Exact solution



Hadamard’s condition number (K,,):

| det(A)|

2 2 2
K, (A)= o, =~Ja +a’ +..+a’

a,a,...a,

For this problem: K(A)=0.55 x 1019,

K, (A)<0.01 Ill-conditioned
KH (A)>0.1 Well-conditioned
Numerical Solution:
X ( I) 3 (numeri cal) T i_ 0.228333E+01
0.9999459E+00 ' 0.2283330E+01 0.145000E+01
0.1000955E+01 @ 0.1450000E+01

S

0.9960009E+00
0.1005933E+01
0.9971328E+00

0.1092860E+-01
0.8845300E+-00
0.7456400E+-00

0.109286E+01

0.884530E+00

0.745640E+00

The eigenvector is off, although the eigenvalues are correct!!!



Direct Methods

Special cases



Tridiagonal matrices: In linear algebra, a tridiagonal matrix is a matrix that has nonzero
elements only on the main diagonal, the first diagonal below this, and the first diagonal
above the main diagonal.

/ )
b, ¢ O 0 o\ x ) ( » )
612 b2 C‘2 0 O X2 1”2
X 12
r_| 0 a b c 0 N
Cn—l
0 0 b ) U )
\ no )

The tridiagonal matrix of coefficients can be rewritten in terms of three vectors:

b (main diagonal), a and c (lower and upper secondary diagonal).



The determinant of a tridiagonal matrix is given by a continuant of its elements.

Simple continuant of a series of n numbersa,, ..., a.:
KO)=1
K(1)=aq,
Kn)=a,Kn-1)+Kn-2)

Extended continuant of three sequencesa_, b, c_:

n’ ¥n, *n*

K(@0)=1
K1) =aq,

Kn)=a Kn-1)-b, _c,  Kn-2)



Solve through LU decomposition:

1 0 0 0 ol & & O
m, 1 0 0 0ol 9 % <
0O my; 1 0

L ol
O O 171 o o o

|

u, =b,
y1=1




Structure chart 6 — TRID(A,B,C,R,N.X)

Y(1):=R(1)
U(1)=B(1) u, = b,

\U(1)=o.o / Y1 =1
Y N

(Exit with error message!)

J=2(1)N

M:=A(J)/U(J-1) J
U(J):=B(J)-M*C(J-1)

PANCEL AT j=2m

(Exit with error message!)

Y(J):=R(J)-M*Y(J-1)

X(N):=Y(N)/U(N)

x,=y,/u,
J=N-1(-1)1 .
X = —c;rx)
X(3):=(Y(3)-C(I)*X (J+1))/U(J) j=n-1,..,1

(return)




Indirect Methods

Gauss-Seidel Method




I
Gauss-Seidel Method:

iterative method for linear inhomogeneous sets of equations.

[ Advantages: simplicity; the matrix of coefficients is not changed during the iteration.
Very efficient for systems with a sparse matrix of coefficients.

Definition: a sparse matrix is a matrix populated primarily with zeros. By contrast, if a
larger number of elements differ from zero, then it is common to refer to the matrix as a

dense matrix. The fraction of zero elements (non-zero elements) in a matrix is called the

sparsity (density).

Sparse matrices represent weakly connected systems;

Many applications in different fields (network theory,
graph theory, data analysis).




Given a linear set of equations:

a, X, +a,x, +---+a,x, =b,

Ay X, +aypX, +--+a,,x, =b,

a, x, +a,x,+--+a, x =b

If all the elements on the main diagonal are non-zero, we can write:

Xy

Xy

1

Ay
1

a2

(a12x2 +ax;+--+a,,x, — bl)

(a21x1 + Ay X, o+ a,, X, — bz)

1 n
X, =—— E a,x; —b,
a

i \ j=1(j=i)

General

Formula



x=C-x+f

1 n
i\ j=1(j=i)
-a; / a, [ # ]
- {Cu} Cyj =+ ,




Gauss-Seidel Iteration rule:

(1+1) (1) (1) -
x," =x" = Ax, (i=1,...,n)
(1) _ (t) (t)
Ax;” = x; E a;x;
ii Jj=1(j=i)

Starting from an initial vector x, (starting vector) one obtains a sequence of vectors xt),

which converges to the exact solution:

lim x*”

[—>00

eX

Exit conditions:

1) The desired precision is reached (x!-xt1 < )

2) The maximum number of iterations is reached.



Band Matrices: a band matrix is a sparse matrix whose non-zero entries are
confined to a diagonal band, comprising the main diagonal and zero or more
diagonals on either side.




Storage: The most economical way to store a band matrix is to treat it as a 2xz

array (z is the number of diagonals with non-zero elements).

(-de feTt

di i=row; k=diagonal.

S(k)= vector with relative positions.



Indexing: Besides the dik array, one defines an indexing vector s(k), to keep track of

the position of each sub-diagonal with respect to the main diagonal.

~

0 Main diagonal
s(k)=41 +(=)1 First lower (upper) diagonal

+(=)t t"lower (upper) diagonal

~

The mapping between the original a;’s and the new storage scheme is given by:

a.=d, Jj=s(k)+1

i=1,....n k=1,....z



e
Gauss-Seidel Iteration rule for band matrices:

+) _ (0 (1) .
x, " =x —Ax; (=1,...,n)

l

(1) (1) (2)
Ax;”’ = x, + E dzkxs(k)ﬂ'_bi

i, o | k=1(k=ky)

The sum contains only a few terms for which:
O<s(k)+1=n

Convergence criterion (empirical): All linear systems in which the elements on the main
diagonal dominate the other matrix elements have a good chance of converging with

the G-S method.

Precision: Since there is no accumulation of roundoff errors upon successive iterations,
the GS method is more accurate than direct methods.



Practical Implementation (GAUSEI):

INPUT parameters:

N: Order of the system.

NDIAG: Number of non-zero diagonals in the band matrix.
S( ): INTEGER array containing the relative positions of the diagonals.

DIAG( , ): Array with the matrix elements: the first index specifies the
matrix row, the second the diagonal.

F( ): Inhomogeneous vector of the system.
TMAX: Maximum number of iteration steps.

W: Relaxation parameter (see section 2.7.6).

IREL: IREL # 1: absolute error tolerance

IREL = 1: relative error tolerance

TOL: Absolute or relative error which has to be reached during the iteration.



Practical Implementation (GAUSEI):

OUTPUT parameters:
SOL( ): Solution vector.

T: Number of iteration steps performed by GAUSEL

ERROR: Logical variable for error diagnostic: After the execution of GAU-
SEI ERROR is 'false’ if the required precision has been reached, and
‘true’ if

e not all the elements on the main diagonal are different from zero.

e the required precision has not been reached within TMAX itera-
tion steps.

important internal variables:

KO: Index of the main diagonal.
DX Iteration-correction value according to Eq.(2.24).

ISCH: Control variable for the precision.



How does it work?

Check which of the given NDIAG diagonals is the main diagonal, using the definition
of S(K). Save the kO index.

Check if the main diagonal contains zero (if this is the case, exit the program).

Perform the G-S iteration xt*1=Cx!+f, until the exit condition is met.

(t+1) (1) (1) .
x; U =x —Ax; (=1,...,n)

l

(1) _ (f) (1)

l
l ko k= l(k?ﬁko)



ERROR:= false.

K0:=0
K=1(1)NDIAG
Check which of the given
S(K) =10 NDIAG diagonals is the main A
— diagonal.
KO0O=0 A
ERROR:= trte. |77

(return 'no main diagonal’)

Check that the main diagonal
doesn’t contain zeroes.

I=1(1)N
SOL(I):=0.0
>\ DIAG(LKO) = 0.0
ERROR:= .true.
(return 'main diagonal contains zeroes’)




TZ=O

ISCH:=0

I=1(1)N

S1:=0.0

K=1(1)NDIAG

J:=S(K)+I

K#KO0.and. J >0 .and. J <N

Sl:sl+DIAG(I,K)‘SOL(J) ......

DX:=W*((S1-F(I))/DIAG(I,K0)+LOES(I) i

() _ (D) (1)
=X E d'kxs(k)+i_b'

SOL(I):=SOL(I)-DX

Y IREL =1

ERR:=| DX /SOL(I) | ERR:= | DX |

ERR > TOL A

IsCH\=r |7

T:=T+1

T > TMAX .or. ISCH=0

ISCH=0 Exit condition A

print: ’No convergence’

ERROR:= .true.

(return)




Relaxation parameter in the GS method:
The usual G-S iteration:
X(t+1) _ X(t) _ AX(I)
can be modified introducing a relaxation parameter w:

(1) (1)

x" = x _w- Ax
<1 Under-relaxation.

w3 =1 Standard Gauss-Seidel.

> ] Over-relaxation.

Which oftens speeds up convergence.



Example: Use of relaxation:
xX+2y=3
x—4y=-3

There is an ideal value of w:

Empirical rules:
w must be smaller than 2.
For many important systems 1<w,.,<2.

In these cases: 0

W;gear = - \/;m

0.65

0.70

0.75
0.8

20
18
15
14

0.85
0.9

12
12

0.95
1.0
1.05

21
31
48




Efficiency of the Gauss-Seidel Method:

Occupation of the matrix of coefficients for
a Laplace equation.

Prozent

Efficiency of the G-S method compared to
LU decomposition (memory storage).

Zahl der Spelcherplaetze

Zahl der Stuetzpunkte



This week(22/10/2013)

Linear Systems: Direct (LU decomposition) vs indirect methods (Gauss-Seidel).
Direct methods, iterative improvement of the solution (reduce roundoff).
Direct methods, special cases: tridiagonal matrices.

Indirect methods: iterative solution for sparse matrices.

Indirect methods: Gauss-Seidel iteration rule.

Band matrices: definition and properties.

Gauss-Seidel iteration for band matrices, storing information and efficiency.

Gauss-Seidel method with over and under-relaxation.



