Numerical Methods in Physics

Numerische Methoden in der Physik, 515.421.

Instructor: Ass. Prof. Dr. Lilia Boeri

Room: PH 03 090

Tel: +43-316-873 8191

Email Address: I.boeri@tugraz.at

Room: TDK Seminarraum **Time:** 8:30-10 a.m.

Exercises: Computer Room, PH EG 004 F

http://itp.tugraz.at/LV/boeri/NUM_METH/index.html (Lecture slides, Script, Exercises, etc).

TOPICS (this year):

- **♂** Chapter 1: Introduction.
- Chapter 2: Numerical methods for the solution of linear inhomogeneous systems.
- **7** Chapter 3: Interpolation of point sets.
- Chapter 4: Least-Squares Approximation.
- Chapter 5: Numerical solution of transcendental equations.
- 7 Chapter 6: Numerical Integration.
- 7 Chapter 7: Eigenvalues and Eigenvectors of real matrices.
- Chapter 8: Numerical Methods for the solution of ordinary differential equations: initial value problems.
- Chapter 9: Numerical Methods for the solution of ordinary differential equations: marginal value problems.

Last Week (15/10/2013)

- Linear Systems: Definition and applications.
- Solution: **Direct** vs iterative methods.
- Gaussian methods: LU decomposition.
- A practical example: 3x3 square matrix (step-by-step).
- Strategies to reduce the error: partial pivoting.
- Stability of the solution: Condition numbers.
- **Programs** for the LU decomposition: **LUDCMP** and **LUBKSB**.
- How to **use** the programs for LU decompositions (inhomogeneous systems, matrix inversion, determinant of a matrix).

This week(22/10/2013)

- Linear Systems: Direct (LU decomposition) vs indirect methods (Gauss-Seidel).
- Direct methods, iterative improvement of the solution (reduce roundoff).
- Direct methods, special cases: tridiagonal matrices.
- Indirect methods: iterative solution for sparse matrices.
- Indirect methods: Gauss-Seidel iteration rule.
- Band matrices: definition and properties.
- **Gauss-Seidel** iteration for **band** matrices, storing information and efficiency.
- **Gauss-Seidel** method with over and under-relaxation.

Linear Systems

Definitions:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

. . .

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

 $\hat{A}\mathbf{x} = \mathbf{b}$

with:

$$|b_1| + |b_2| + \dots + |b_n| \neq 0$$

Inhomogeneous linear system of equations.

$$\det(\hat{A}) \neq 0$$

The problem is non-singular and admits a solution.

Methods of Solution (numerical):

- Direct Methods:
- No methodological error, BUT computationally expensive; roundoff errors can be large.

LU decomposition (Doolittle and Crout) (Gaussian Elimination).

- Iterative Methods:
- Simple algorithms; roundoff is easily controlled. The solution is approximate (truncation).

Gauss-Seidel method.

Direct Methods:

$$\hat{A}\mathbf{x} = \mathbf{b}$$
 $\hat{U}\mathbf{x} = \mathbf{y}$

Two-steps procedure:

1) LU decomposition (*Doolittle and Crout*): Reformulation of the Gaussian elimination. A real matrix can always be represented as the product of two real triangular matrices **L** and **U**, *i.e.*

$$\hat{A} = \hat{L} \cdot \hat{U}$$

2) The two auxiliary systems are solved through back and forward substitution:

$$\hat{U} \cdot \mathbf{x} = \mathbf{y}$$

Back

$$\hat{L} \cdot \mathbf{y} = \mathbf{b}$$

Forward

Iterative Improvement of the Solution:

Direct methods do not introduce any methodological error. But the effect of *roundoff* can be severe. There is the possibility of *improving iteratively* the solution:

$$A \cdot \mathbf{x} = \mathbf{b}$$

$$\mathbf{X}$$
 Real Solution $A \cdot \mathbf{x} = \mathbf{b}$ $\mathbf{x}' = \mathbf{x} + \delta \mathbf{x}$

$$\mathbf{x}' = \mathbf{x} + \delta \mathbf{x}$$

Approximate Solution

The approximate solution can be reinserted into the original equation:

$$A \cdot \mathbf{x}' = A \cdot (\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$$

 $(A\mathbf{x} - \mathbf{b}) + A \cdot \delta \mathbf{x} = \delta \mathbf{b}$

The error on the solution can be estimated from:

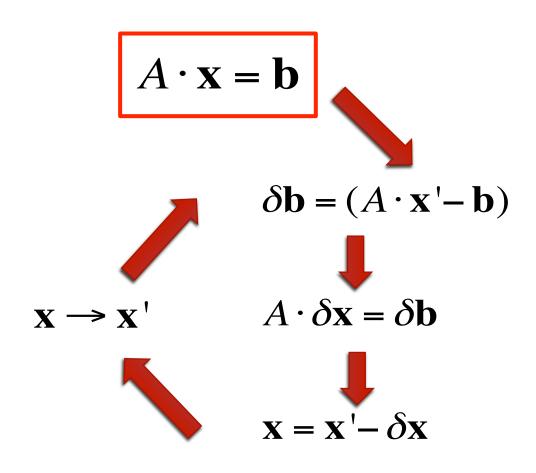
$$A \cdot \delta \mathbf{x} = \delta \mathbf{b}$$

$$\mathbf{x} = \mathbf{x}' - \delta \mathbf{x}$$

Residual Vector

Corrected Solution

Iterative method: The corrected solution \mathbf{x}' can then be re-inserted into the original system, until the method converges, i.e. until there is "no difference" between the result at n^{th} and $(n+1)^{th}$ iteration.



Practical Implementation

(using LUDCMP and LUBKSB)

- 1) Save the original (A) matrix in an auxiliary array (LUDCMP overwrites the original matrix).
- Solve the system Ax=b using LU decomposition(LUDCMP + LUBKSB); the solution is x'.
- 3) Find the residual vector $\delta \mathbf{b} = -b + A\mathbf{x}'$.
- 4) Find the solution of the system $A\delta \mathbf{x} = \delta \mathbf{b}$.
- 5) $x=x'-\delta x$
- Iterate points 3)-5) with \mathbf{x} as the new \mathbf{x}' until the exit condition is met (typically, $|\delta \mathbf{x}|$ or $|\delta \mathbf{x}|/\mathbf{x}'$ smaller than a given threshold).

I=	1(1)	N				
	J=1(1)N					
		ASP(I,J):=A(I,J) Save the original (A) matrix in an auxiliary array				
LU	DC	MP (A,N,INDX,D,KHAD)				
LU	ВK	SB (A,N,INDX,B,X) Solve the system Ax=b using LU decomposition.				
	I=1(1)N					
		SUMDP:=-B(I) Find the residual vector δb =-b+Ax'.				
		J=1(1)N				
		SUMDP := SUMDP + DBLE(ASP(I,J))*DBLE(X(J))				
		RES(I):=SUMDP				
	LUBKSB (A,N,INDX,RES,DELX) Find the solution of $A\delta x = \delta b$					
	I=1(1)N					
		$X(I):=X(I)-DELX(I)$ $\mathbf{x}=\mathbf{x}'-\mathbf{\delta}\mathbf{x}$				
(C	ondi	ition, under which the iterative method should stop)				
(R	esul	t and return)				

More on direct methods

(Effect of roundoff error in ill-conditioned systems)

Example (5x5 matrix):

$$a_{ij} = \frac{1}{i+i-1}$$

Eigenvalues

$$x_1 = x_2 = x_3 = x_4 = x_5 = 1.0$$

Exact solution

Hadamard's condition number (K_H):

$$K_H(A) = \frac{|\det(A)|}{\alpha_1 \alpha_2 ... \alpha_n}, \qquad \alpha_i = \sqrt{a_{i1}^2 + a_{i2}^2 + ... + a_{in}^2}$$

For this problem: $K_{H}(A) = 0.55 \times 10^{-10}$.

$$\begin{cases} K_H(A) < 0.01 & \text{Ill-conditioned} \\ K_H(A) > 0.1 & \text{Well-conditioned} \end{cases}$$

Numerical Solution:

x (exact)	$\bar{\mathbf{x}}$ (numerical)	$A \cdot \bar{\mathbf{x}}$
1.	0.9999459E+00	0.2283330E+01
1.	0.1000955E+01	0.1450000E+01
1.	0.9960009E+00	0.1092860E+01
1.	0.1005933E+01	0.8845300E+00
1.	0.9971328E+00	0.7456400E+00

0.228333E+01 0.145000E+01 0.109286E+01 0.884530E+00 0.745640E+00

The eigenvector is off, although the eigenvalues are correct!!!

Direct Methods

Special cases

Tridiagonal matrices: In linear algebra, a tridiagonal matrix is a matrix that has nonzero elements only on the main diagonal, the first diagonal below this, and the first diagonal above the main diagonal.

$$T = \begin{pmatrix} b_1 & c_1 & 0 & 0 & \dots & 0 \\ a_2 & b_2 & c_2 & 0 & \dots & 0 \\ 0 & a_3 & b_3 & c_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \dots & b_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} r_1 \\ r_2 \\ r_3 \\ \vdots \\ \vdots \\ r_n \end{pmatrix}$$

The tridiagonal matrix of coefficients can be rewritten in terms of three vectors:

b (main diagonal), **a** and **c** (lower and upper secondary diagonal).

The **determinant** of a **tridiagonal** matrix is given by a **continuant** of its elements.

Simple continuant of a series of n numbers a_1 , ..., a_n :

$$K(0) = 1$$

$$K(1) = a_1$$

...

$$K(n) = a_n K(n-1) + K(n-2)$$

Extended continuant of three sequences a_n , b_{n_i} , c_n :

$$K(0) = 1$$

$$K(1) = a_1$$

...

$$K(n) = a_n K(n-1) - b_{n-1} c_{n-1} K(n-2)$$

Solve through **LU decomposition**:

 $y_1 = r_1$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ m_2 & 1 & 0 & 0 & \dots & 0 \\ 0 & m_3 & 1 & & & 0 \\ \vdots & & & & & & \dots & 0 \\ 0 & 0 & \dots & & \dots & 1 \end{pmatrix} \begin{pmatrix} u_1 & c_1 & 0 & 0 & \dots & 0 \\ 0 & u_2 & c_2 & 0 & \dots & 0 \\ \vdots & & & & \dots & 0 \\ \vdots & & & & \dots & 0 \\ \vdots & & & & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots \\ \vdots & & & & \ddots & \vdots \\ \vdots & & & & \ddots & \ddots \\ \vdots & & & & \ddots & \ddots \\ \vdots & & & & \ddots & \ddots \\ \vdots & & & & \ddots & \ddots \\ \vdots & & & & \ddots & \ddots \\ \vdots & & & & \ddots & \ddots \\ \vdots & & & & \ddots & \ddots \\ \vdots & & & & \ddots & \ddots \\ \vdots & & & & \ddots & \ddots \\ \vdots & & & & \ddots & \ddots \\ \vdots & & & & \ddots &$$

$$m_{j} = a_{j} / u_{j-1}$$
 $u_{j} = b_{j} - m_{j} \cdot c_{j-1}$
 $j = 2, ..., n$
 $y_{j} = r_{j} - m_{j} \cdot y_{j-1}$

Structure chart 6 — TRID(A,B,C,R,N,X)

Y(1):=R(1) U(1):=B(1)					
V = 0.0 N					
(Exit with error message!)					
J=2(1)N					
M:=A(J)/U(J-1) U(J):=B(J)-M*C(J-1)					
$V \qquad \qquad V(J) = 0.0$					
(Exit with error message!)					
Y(J):=R(J)-M*Y(J-1)					
X(N):=Y(N)/U(N)					
J=N-1(-1)1					
X(J):=(Y(J)-C(J)*X(J+1))/U(J)					
(return)					

$$u_1 = b$$
$$y_1 = r_1$$

$$m_{j} = a_{j} / u_{j-1}$$
 $u_{j} = b_{j} - m_{j} \cdot c_{j-1}$
 $j = 2,...,n$
 $y_{j} = r_{j} - m_{j} \cdot y_{j-1}$

$$x_n = y_n / u_n$$

$$x_j = (y_j - c_j \cdot x_{j+1}) / u_j$$

$$j = n - 1, ..., 1$$

Indirect Methods

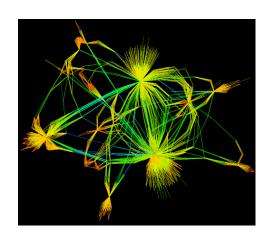
Gauss-Seidel Method

Gauss-Seidel Method:

iterative method for linear inhomogeneous sets of equations.

Advantages: simplicity; the matrix of coefficients is not changed during the iteration. Very **efficient** for systems with a **sparse** matrix of coefficients.

Definition: a **sparse** matrix is a matrix populated primarily with zeros. By contrast, if a larger number of elements differ from zero, then it is common to refer to the matrix as a **dense** matrix. The fraction of zero elements (non-zero elements) in a matrix is called the **sparsity** (density).



Sparse matrices represent weakly connected systems;

Many **applications** in different fields (network theory, graph theory, data analysis).

Given a **linear** set of equations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

. . .

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

If all the elements on the main diagonal are non-zero, we can write:

$$x_1 = -\frac{1}{a_{11}} (a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n - b_1)$$

$$x_2 = -\frac{1}{a_{22}} (a_{21}x_1 + a_{23}x_3 + \dots + a_{2n}x_n - b_2)$$

$$x_i = -\frac{1}{a_{ii}} \left(\sum_{j=1(j \neq i)}^n a_{ij} x_j - b_i \right)$$

General

Formula

$$x_i = -\frac{1}{a_{ii}} \left(\sum_{j=1(j \neq i)}^n a_{ij} x_j - b_i \right)$$

$$\mathbf{x} = \hat{C} \cdot \mathbf{x} + \mathbf{f}$$

$$\hat{C} = \left\{ c_{ij} \right\}$$

$$\mathbf{X} = \hat{C} \cdot \mathbf{X} + \mathbf{f} \qquad \hat{C} = \left\{ c_{ij} \right\} \qquad c_{ij} = \begin{cases} -a_{ij} / a_{ii} & i \neq j \\ = 0 & i = j \end{cases} \qquad f_i = \frac{b_i}{a_{ii}}$$

The **Gauss-Seidel Iteration rule** derives from the following expression:

$$x_i = x_i - \left[x_i + \frac{1}{a_{ii}} \left(\sum_{j=1(j \neq i)}^n a_{ij} x_j - b_i \right) \right]$$

Gauss-Seidel Iteration rule:

$$x_i^{(t+1)} = x_i^{(t)} - \Delta x_i^{(t)}$$
 $(i = 1,...,n)$

$$\Delta x_i^{(t)} = x_i^{(t)} + \frac{1}{a_{ii}} \left[\sum_{j=1(j \neq i)}^n a_{ij} x_j^{(t)} - b_i \right]$$

Starting from an initial vector \mathbf{x}_0 (starting vector) one obtains a sequence of vectors $\mathbf{x}^{(t)}$,

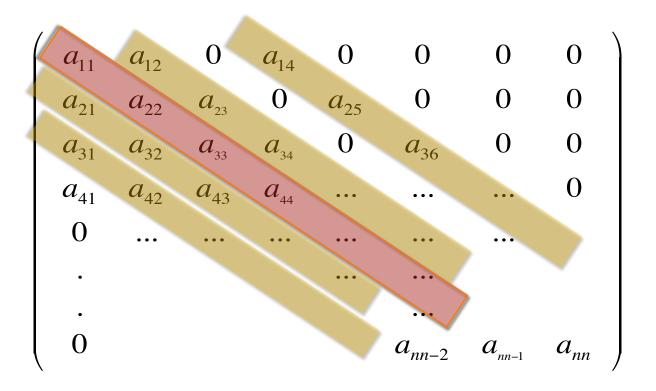
which **converges** to the **exact** solution:

$$\lim_{t\to\infty}\mathbf{x}^{(t)}\to\mathbf{x}$$

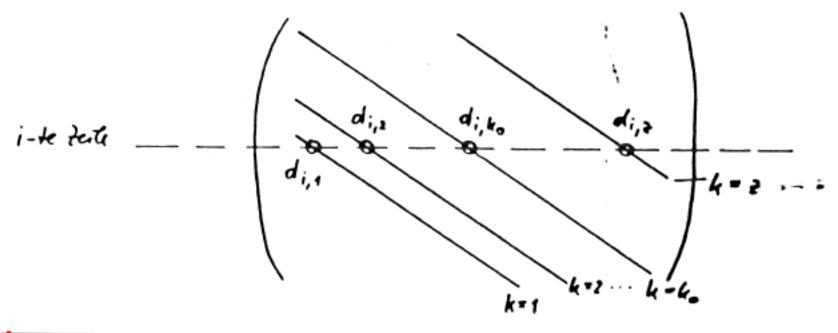
Exit conditions:

- 1) The desired **precision** is reached $(x^t-x^{t-1} < \varepsilon)$
- 2) The maximum number of iterations is reached.

Band Matrices: a band matrix is a **sparse matrix** whose non-zero entries are confined to a diagonal band, comprising the main diagonal and zero or more diagonals on either side.



Storage: The most economical way to store a band matrix is to treat it as a 2xz array (z is the number of diagonals with non-zero elements).



d_{ik}: *i*=row; *k*=diagonal.

s(k)= vector with **relative positions**.

Indexing: Besides the dik array, one defines an indexing vector s(k), to keep track of the **position** of each sub-diagonal with respect to the main diagonal.

$$s(k) = \begin{cases} 0 & \text{Main diagonal} \\ +(-)1 & \text{First lower (upper) diagonal} \\ +(-)t & t^{th} \text{ lower (upper) diagonal} \end{cases}$$

The mapping between the original a_{ii} 's and the new storage scheme is given by:

$$a_{ij} = d_{ik}$$

$$a_{ij} = d_{ik} j = s(k) + i$$

$$i = 1, ..., n$$

$$k = 1, ..., z$$

Gauss-Seidel Iteration rule for band matrices:

$$x_i^{(t+1)} = x_i^{(t)} - \Delta x_i^{(t)} \qquad (i = 1, ..., n)$$

$$\Delta x_i^{(t)} = x_i^{(t)} + \frac{1}{d_{i,k_0}} \left[\sum_{k=1(k \neq k_0)}^{z} d_{ik} x_{s(k)+i}^{(t)} - b_i \right]$$

The sum contains only a few terms for which:

$$0 < s(k) + 1 \le n$$

Convergence criterion (empirical): All linear systems in which the *elements on the main diagonal dominate* the other matrix elements have a good chance of converging with the G-S method.

Precision: Since there is **no accumulation** of roundoff errors upon successive iterations, the GS method is **more accurate** than direct methods.

Practical Implementation (GAUSEI):

INPUT parameters:

N: Order of the system.

NDIAG: Number of non-zero diagonals in the band matrix.

S(): INTEGER array containing the relative positions of the diagonals.

DIAG(,): Array with the matrix elements: the first index specifies the matrix row, the second the diagonal.

F(): Inhomogeneous vector of the system.

TMAX: Maximum number of iteration steps.

W: Relaxation parameter (see section 2.7.6).

IREL: IREL \neq 1: absolute error tolerance IREL = 1: relative error tolerance

TOL: Absolute or relative error which has to be reached during the iteration.

Practical Implementation (GAUSEI):

OUTPUT parameters:

SOL(): Solution vector.

T: Number of iteration steps performed by GAUSEI.

ERROR: Logical variable for error diagnostic: After the execution of GAU-SEI ERROR is 'false' if the required precision has been reached, and 'true' if

- not all the elements on the main diagonal are different from zero.
- the required precision has not been reached within TMAX iteration steps.

important internal variables:

K0: Index of the main diagonal.

DX: Iteration-correction value according to Eq.(2.24).

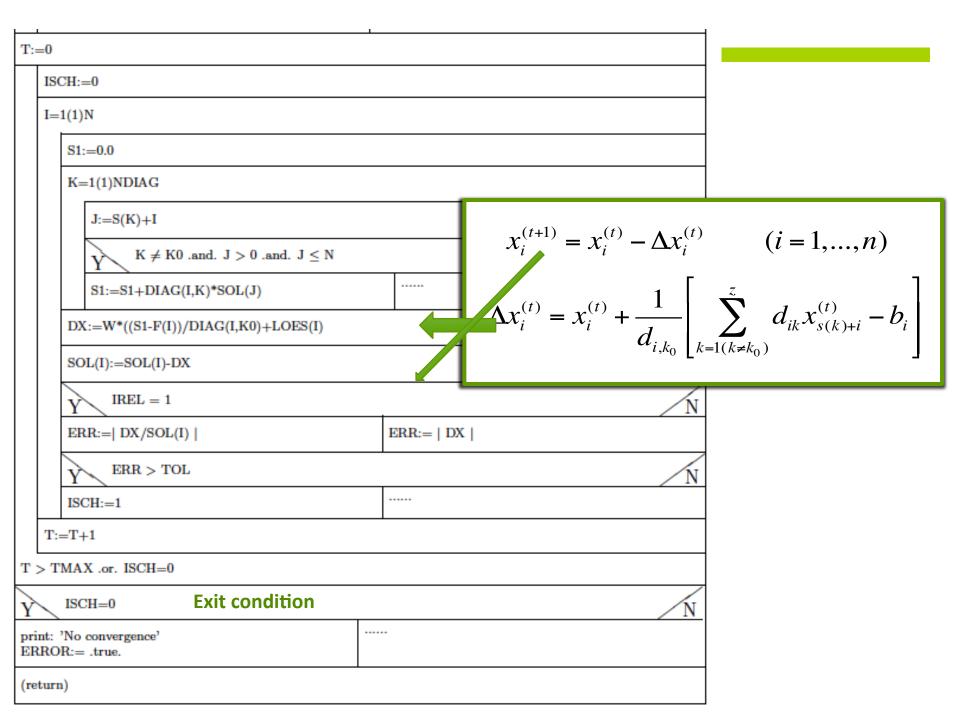
ISCH: Control variable for the precision.

How does it work?

- 1) Check which of the given NDIAG diagonals is the main diagonal, using the definition of S(K). Save the k0 index.
- 2) Check if the main diagonal contains zero (if this is the case, exit the program).
- 3) Perform the G-S iteration $\mathbf{x}^{t+1} = \mathbf{C}\mathbf{x}^t + \mathbf{f}$, until the exit condition is met.

$$\Delta x_i^{(t)} = x_i^{(t)} + \frac{1}{d_{i,k_0}} \left[\sum_{k=1(k \neq k_0)}^{z} d_{ik} x_{s(k)+i}^{(t)} - b_i \right]$$

K=1(1)NDIAG $Y S(K) = 0$ $K0:=K$	Check which of the given NDIAG diagonals is the main diagonal.	N
Y K0 = 0 ERROR:= .true. (return 'no main diagonal')		/N
I=1(1)N SOL(I):=0.0 DIAG(I,K0) = 0.0	Check that the main diagonal doesn't contain zeroes.	



Relaxation parameter in the GS method:

The usual G-S iteration:

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \Delta \mathbf{x}^{(t)}$$

can be modified introducing a **relaxation parameter** ω :

$$\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \boldsymbol{\omega} \cdot \Delta \mathbf{x}^{(t)}$$

$$\omega \left\{ \begin{array}{l} <1 & \text{Under-relaxation.} \\ =1 & \text{Standard Gauss-Seidel.} \\ >1 & \text{Over-relaxation.} \end{array} \right.$$

Which oftens speeds up convergence.

Example: Use of relaxation:

$$\begin{cases} x + 2y = 3 \\ x - 4y = -3 \end{cases}$$

There is an ideal value of ω : 0.85 < ω_{ideal} < 0.9.

ω	t	
0.65	20	
0.70	18	
0.75	15	
0.8	14	
0.85	12	ı
0.9	12	۱
0.95	21	
1.0	31	
1.05	48	

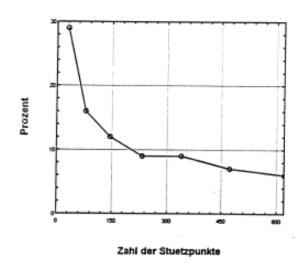
Empirical rules:

- \sim ω must be smaller than 2.
- For many important systems $1<\omega_{ideal}<2$.
- In these cases:

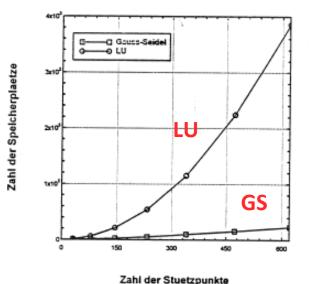
$$\omega_{ideal} = \frac{2}{1 + \sqrt{1 - \lambda_1^2}}$$

Largest eigenvalue of C.

Efficiency of the Gauss-Seidel Method:



Occupation of the matrix of coefficients for a Laplace equation.



Efficiency of the G-S method compared to LU decomposition (memory storage).

This week(22/10/2013)

- **Linear Systems:** Direct (**LU decomposition**) vs indirect methods (**Gauss-Seidel**).
- Direct methods, **iterative improvement** of the solution (reduce roundoff).
- Direct methods, special cases: tridiagonal matrices.
- Indirect methods: iterative solution for sparse matrices.
- Indirect methods: Gauss-Seidel iteration rule.
- Band matrices: definition and properties.
- **Gauss-Seidel** iteration for **band** matrices, storing information and efficiency.
- **Gauss-Seidel** method with over and under-relaxation.