Numerical Methods in Physics

Numerische Methoden in der Physik, 515.421.

Instructor: Ass. Prof. Dr. Lilia Boeri

Room: PH 03 090

Tel: +43-316-873 8191

Email Address: I.boeri@tugraz.at

Room: TDK Seminarraum **Time:** 8:30-10 a.m.

Exercises: Computer Room, PH EG 004 F

http://itp.tugraz.at/LV/boeri/NUM_METH/index.html (Lecture slides, Script, Exercises, etc).

Important notice (exam):

Exams for the lecture in numerical methods in Physics will take place in my office PH3.108, starting 20th of January 2013.

For the winter semester, I will offer dates in the weeks:

- **20**th-26th of January
- **7** 27th − 31st of January
- **3** 3rd-9th of February.

A list with available dates and slots is available today at the end of the lecture and during the exercises, and then I will paste it outside my office. You can register writing your name on the list, up to 14th of January.

There will be additional dates in May-June and October 2014.

TOPICS (this year):

- **♂** Chapter 1: Introduction.
- Chapter 2: Numerical methods for the solution of linear inhomogeneous systems.
- **7** Chapter 3: Interpolation of point sets.
- Chapter 4: Least-Squares Approximation.
- **7** Chapter 5: Numerical solution of transcendental equations.
- 7 Chapter 6: Numerical Integration.
- Chapter 7: Eigenvalues and Eigenvectors of real matrices.
- Chapter 8: Numerical Methods for the solution of ordinary differential equations: initial value problems.
- Chapter 9: Numerical Methods for the solution of ordinary differential equations: marginal value problems.

Last week(10/12/2013)

Ordinary Differential Equations: Initial Value problems (part II)

- Practical use of Runge-Kutta methods.
- Why do we need an adaptive stepsize?
- Methods for error estimate.
- Implementing a simple Runge-Kutta method with adaptive stepsize.

Runge-Kutta Methods:

Runge-Kutta *ansatz* for arbitrary *p* order:

$$\hat{y}_i(x_0 + h) = y_i(x_0) + h \sum_{j=1}^p c_j g_j$$

Using Runge-Kutta Methods in Practice:

Calculating a single Runge-Kutta step is of not much help. In practice, if we want to integrate a differential system, we want to perform *several steps one* after the other:

$$\hat{y}_i(x_0 + h) \equiv \hat{y}_{i,1} = y_i(x_0) + h \cdot \sum_{j=1}^p c_j g_{i,j}(x_0; y_{1,0}, ..., y_{n,0})$$

$$\hat{y}_i(x_0 + 2h) \equiv \hat{y}_{2,1} = \hat{y}_{i,1} + h \cdot \sum_{j=1}^p c_j g_{i,j}(x_0 + h; \hat{y}_{1,1}, ..., \hat{y}_{n,1})$$

In the first step, the initial values are known exactly, and given by the boundary conditions. For all other steps, the initial values are given by previous R-K moves, and thus known only approximately.

In Runge-Kutta methods, the choice of the stepsize is a crucial ingredient to ensure stability of the algorithm (example, satellite problem).

Figure 5.5: Stability test for RUNGETEST. The constant stepsizes have been chosen as follows: (a) h = 1/50, (b) h = 1/60, (c) h = 1/70, (d) h = 1/80 of the revolution period. The star indicates the centre of the earth, and the dotted line the exact analytical trajectory of the satellite.

How to estimate the error of a Runge-Kutta step

(and choose the optimal step size):

$$E_V(h) = y_i(x_0 + h) - \hat{y}_i(x_0 + h)$$

A good estimate of $E_V(h)$ is given in practice between the value of y obtained with a single R-K step of size h, and two steps of size h/2:

$$E_V(h) \approx \hat{y}(x_0 + h) - \hat{y}(x_0 + 2\frac{h}{2})$$

This can be used in practice to implement a simple algorithm for **stepsize adaptation** in Runge-Kutta methods. To implement this method in practice, one chooses h and calculates $E_V(h)$ with a standard R-K routine and:

- If $E_{V}(h)$ is $\leq \varepsilon$, the R-K move **is accepted** with h.
- If $E_{\nu}(h) > \varepsilon$, the R-K move **is refused**, h is reduced, and EV(h) is evaluated again.

Effect of the stepsize adaptation:

Figure 5.6: Efficiency of the stepsize adaptation in the 'satellite problem'. Comparison of the exact elliptical trajectory (full line) with the numerical values (stars). Above: Runge-Kutta without stepsize adaptation; Below: Runge-Kutta with stepsize adaptation.

This week (17/12/2013)

Eigenvalues and Eigenvectors of Real Matrices

- Generalized and regular eigenvalue problem: definition.
- Matrices with special forms: symmetric, hermitian, orthogonal, normal.
- Diagonalization of a matrix.
- Von-Mises Method: largest and smallest eigenvalue.
- Von-Mises Method: a simple example (analytical)

Eigenvalues and Eigenvectors of Real Matrices:

We will consider *homogeneous linear problems* for which:

$$A \cdot \mathbf{x} = \mathbf{0}$$

There are two possible sub-cases:

- 1) $det(A) \neq 0$ -> the system admits only the *trivial* solution x=0!
- 2) $det(A) \neq 0$ -> the system admits also non-trivial solutions **x**!

An important case which is often encountered in practice is that of linear systems which depend on a set of external parameters λ_i ; in that case the homogeneous system reads:

$$A(\lambda_i) \cdot \mathbf{x} = \mathbf{0}, \quad A(\lambda_i) = [a_{ij}(\lambda)]$$

Depending on the values of the $\lambda_{i'}$ s both situations 1) and 2) can be realized.

We are interested in non-trivial solutions, which occur for those values of the λ_i 's for which A is singular.

$$\det(A(\lambda_i)) = 0$$

The λ_i 's and the corresponding \mathbf{X}_i (solutions) are called the **eigenvalues** and **eigenvectors** of A – and the problem of finding them is called a **generalized eigenvalue problem**.

Regular eigenvalue problems are a sub-class of generalized eigenvalue problems, in which the dependence of the matrix A on λ has a simple form:

$$A(\lambda) = A_0 - \lambda I$$
, I is the identity matrix

This means that:

$$(A_0 - \lambda I)\mathbf{x} = \mathbf{0}$$
, i.e. $A_0 \mathbf{x} = \lambda \mathbf{x}$

The problem has non-trivial solutions if:

$$\det(A_0 - \lambda I) = 0$$

The **characteristic polynomial** of a matrix A is obtained solving the equation:

$$\det(A_0 - \lambda I) = 0 \equiv P_n(\lambda) = \lambda^n + \sum_{i=1}^n p_i \lambda^{n-i}$$

The order *n* of the polynomial is the same as the order *n* of the matrix. The *n* roots are either real, or form complex-conjugate pairs. Some of these roots can be *degenerate*.

$$\det(A_0 - \lambda I) = 0 \equiv P_n(\lambda) = \lambda^n + \sum_{i=1}^n p_i \lambda^{n-i}$$

$$P_n(\lambda) = 0$$
 for $\lambda : \lambda_1, \lambda_2, ..., \lambda_k = \lambda_{k+1} = ... = \lambda_{k+q} = ... = \lambda_n$

The λ_i 's are the eigenvalues of the matrix A. The vectors \mathbf{x}_i associated to them are the eigenvectors. Solving the eigenvalue problem means determining the λ_i 's and \mathbf{x}_i .

Special forms of matrices:

A real matrix is called symmetric if:

$$A = A^T$$

A complex matrix is called Hermitian if:

$$A = A^{+}$$

The eigenvalues of symmetric and Hermitian matrices are all real.

A real matrix is called orthogonal if:

$$AA^T = I$$

A complex matrix is called unitary if:

$$AA^+ = I$$

A real or complex matrix is called **normal**, if it **commutes** with its transpose or Hermitian conjugate.

$$AA^T = A^T A$$
 or $AA^+ = A^+ A$

Diagonalization:

A matrix A is diagonalizable if one can find a matrix U such that:

$$U^{-1}AU = D$$

Where D is a diagonal matrix, i.e. a matrix which has non-zero elements only along its diagonal. A and D are related by a similarity operation, i.e. an operation which does not change the spectrum (eigenvalues) of the matrix.

The eigenvalues of A are the non-zero elements of D:

$$\lambda_i = d_{ii}$$

The columns of U are the eigenvectors of the matrix A.

$$u_{ij} = x_j^i$$

A matrix is diagonalizable if its eigenvectors form a linearly independent system.

Proof:

Properties of normal matrices:

Normal matrices are diagonalizable. Their eigenvectors are *orthonormal*:

$$\mathbf{x}_i \cdot \mathbf{x}_j^* = \delta_{ij}$$

And therefore the transformation matrices **U** are *orthogonal* and *unitary*:

$$UU^T = I$$
 and $UU^+ = I$

Von Mises's method

The method of von Mises is a very robust iterative method for the calculation of the eigenvalue of a matrix which has the largest absolute value, and the corresponding eigenvector. With a simple modification, it can also return the eigenvalue with the smallest absolute value (and the corresponding eigenvector).

Hypotheses: A is diagonalizable and one of its eigenvalues is dominant.

$$\left|\lambda_{1}\right| \geq \left|\lambda_{2}\right| \geq ... \geq \left|\lambda_{n}\right|$$

Von-Mises Iteration: Starting from an arbitrary vector $\mathbf{v}^{(0)}$ and applying t-times the matrix \mathbf{A} one obtains a sequence of vectors:

$$\mathbf{v}^{(t)} = (A)^t \mathbf{v}^{(0)}$$

For large t's the ratio between the components of two subsequent vectors converge to the largest eigenvalue, and $\mathbf{v}^{(t)}$ converges to the corresponding eigenvector:

$$\frac{\mathbf{V}_l^{(t+1)}}{\mathbf{V}_l^{(t)}} = \lambda_1 \qquad \text{and} \qquad \lim_{t \to \infty} \mathbf{V}^{(t)} = \mathbf{X}$$

Pure

largest eigenalue and the corresponding eigenector:

$$A \cdot y^{(0)} = y^{(1)} = \sum_{i=1}^{m} a_i \lambda_i x_i$$

$$\frac{\sigma}{1+ \left|\lambda_{i}^{*}\right|} \Rightarrow \lambda_{i} \qquad , \qquad \left(\lambda_{i}^{t}\right)^{-1} \left(\lambda_{i}\right)^{\dagger} \rightarrow \emptyset$$

In practice, it is not convenient to use the von-Mises iteration for a single component, which might become equal to zero, but it is convenient to average over all components which are non-zero, *i.e.*:

$$\frac{1}{n'} \sum_{\mu} \frac{\mathbf{v}_{\mu}^{(t+1)}}{\mathbf{v}_{\mu}^{(t)}} = \lambda_1 \qquad \text{with} \qquad \left| \mathbf{v}_{\mu}^{(t)} \right| \ge \varepsilon$$

Smallest Eigenvalue:

The inverse matrix of A, A^{-1} , has the same eigenvectors. The eigenvalues are:

$$A^{-1} \cdot \mathbf{X}_i = \frac{1}{\lambda_i} \cdot \mathbf{X}_i$$

Therefore the smallest eigenvalue and eigenvector of \boldsymbol{A} can be found applying the von Mises method to the inverse of \boldsymbol{A} .

$$\mathbf{v}^{(t)} = (A^{-1})^t \mathbf{v}^{(0)} \qquad \text{and} \qquad \lim_{t \to \infty} \frac{v_l^{(t)}}{v_l^{(t+1)}} = \lambda_{\min}$$

A simple example:

$$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right)$$

Useful formulas:

For a 2x2 matrix:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \qquad A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$
$$\det(A) = a_{11}a_{22} - a_{12}a_{21}$$

Von-Mises iteration:

$$\mathbf{v}^{(t)} = (A)^t \mathbf{v}^{(0)} \qquad \frac{\mathbf{v}_l^{(t+1)}}{\mathbf{v}_l^{(t)}} = \lambda_1 \qquad \text{and} \qquad \lim_{t \to \infty} \mathbf{v}^{(t)} = \mathbf{x}_1$$

A simple example:

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \qquad \mathbf{x}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \text{and} \quad \mathbf{x}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
$$\lambda_1 = 3, \quad \lambda_2 = -1$$

Useful formulas:

For a 2x2 matrix:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \qquad A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$
$$\det(A) = a_{11}a_{22} - a_{12}a_{21}$$

Von-Mises iteration:

$$\mathbf{v}^{(t)} = (A)^t \mathbf{v}^{(0)} \qquad \frac{\mathbf{v}_l^{(t+1)}}{\mathbf{v}_l^{(t)}} = \lambda_1 \qquad \text{and} \qquad \lim_{t \to \infty} \mathbf{v}^{(t)} = \mathbf{x}_1$$

Von-Mises iteration: Eigenvalue

Von-Mises iteration: Error on the eigenvector

det A = 1-4 = -3

Eigenalues:

$$\frac{2^{2}-2\lambda^{2}-4}{(1-\lambda)^{2}-4}=\frac{\lambda^{2}-2\lambda^{2}-3}{(1-\lambda)^{2}-4}=\frac{\lambda^{2}-2\lambda^{2}-3}{(1-\lambda)^{2}-4}=\frac{\lambda^{2}-2\lambda^{2}-3}{(1-\lambda)^{2}-4}=\frac{\lambda^{2}-2\lambda^{2}-3}{(1-\lambda)^{2}-4}=\frac{\lambda^{2}-2\lambda^{2}-3}{(1-\lambda)^{2}-4}=\frac{\lambda^{2}-2\lambda^{2}-3}{(1-\lambda)^{2}-4}=\frac{\lambda^{2}-2\lambda^{2}-3}{(1-\lambda)^{2}-4}=\frac{\lambda^{2}-2\lambda^{2}-3}{(1-\lambda)^{2}-4}=\frac{\lambda^{2}-2\lambda^{2}-3}{(1-\lambda)^{2}-4}=\frac{\lambda^{2}-2\lambda^{2}-3}{(1-\lambda)^{2}-4}=\frac{\lambda^{2}-2\lambda^{2}-3}{(1-\lambda)^{2}-4}=\frac{\lambda^{2}-3\lambda^{2}-3}{(1-\lambda)^{2}-4}=\frac{\lambda^{2}-3\lambda^{2}-3}{(1-\lambda)^{2}-4}=\frac{\lambda^{2}-3\lambda^{2}-3}{(1-\lambda)^{2}-4}=\frac{\lambda^{2}-3\lambda^{2}-3}{(1-\lambda)^{2}-4}=\frac{\lambda^{2}-3\lambda^{2}-3}{(1-\lambda)^{2}-3}=\frac{\lambda^{2}-3\lambda^{2}-3\lambda^{2}-3}=\frac{\lambda^{2}-3\lambda^{2}-3\lambda^{2}-3}=\frac{\lambda^{2}-3\lambda^{2$$

$$\lambda_{\frac{1}{2}}, \quad 1 \stackrel{!}{=} \quad 1 \stackrel{!}{=} \quad 2$$

Ergen ectors:

Ergenectors:
$$\begin{bmatrix} \lambda_1 \\ 2 \\ -2 \end{bmatrix} \times = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \times = \frac{1}{f_2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \times \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

$$\boxed{\frac{\lambda_{2}}{\lambda_{2}}} \left(\begin{array}{cc} 2 & 2 \\ 2 & 2 \end{array}\right) \times = \left(\begin{array}{c} 0 \\ 0 \end{array}\right) \qquad \overset{\times}{=} \frac{1}{\lceil 2 \rceil} \left(\begin{array}{c} 1 \\ -1 \end{array}\right) = \times \left(-1\right)$$

Von this iteration should return
$$\lambda_1 = 3$$
 and $\underline{x}_1 = \underline{x}(3)$

$$\underline{y}^{(0)} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \underline{y}^{(1)}$$

$$\underline{y}^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \underline{y}^{(2)} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} \qquad \underline{y}^{(2)} = \begin{pmatrix} 13 \\ 14 \end{pmatrix} \qquad \underline{y}^{(4)} = \begin{pmatrix} 41 \\ 40 \end{pmatrix}$$

$$\underline{y}^{(5)} = \begin{pmatrix} 121 \\ 122 \end{pmatrix} \qquad \cdots \qquad \rightarrow \qquad \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\Delta = \frac{|\Delta \underline{y}^{(4)}|}{|\underline{y}^{(4)}|} = \text{Approxima Re enhance of the order of the ord$$

$$\frac{1}{de+A} \cdot \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix} = -\frac{1}{3} \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$$

3) m

Eigenalues:

$$\left(-\frac{1}{3}-A\right)^{2}-\frac{4}{9}=\frac{1}{9}+\frac{2}{3}\lambda+\lambda^{2}-\frac{4}{9}=\emptyset$$

$$\lambda^2 + \frac{2}{3}\lambda - \frac{1}{3} = \emptyset$$

1 1

$$\lambda = -\frac{1}{3} \pm \frac{1}{3} \sqrt{1+3} = -\frac{1}{3} \pm \frac{2}{3}$$

Eigene chows:

$$\underline{\times} (-1) = \frac{1}{\overline{12}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\times \left(\frac{1}{3}\right) = \frac{1}{12} \left(\frac{1}{1}\right)$$

<u>U</u>-(+) → (1)

$$\left(-\frac{1}{3}\right)^{\frac{1}{2}} \cdot \left(\begin{array}{ccc} 1 & -2 \\ -2 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 \\ 0 \end{array}\right)$$

$$\underline{U}^{(1)} = -\frac{1}{3} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$y^{(2)} = \frac{1}{9} \begin{pmatrix} 5 \\ -4 \end{pmatrix}$$

$$\underline{C}^{(3)} = -\frac{1}{27} \begin{pmatrix} 13 \\ -14 \end{pmatrix}$$

$$\underline{U}^{(4)} = \frac{1}{81} \begin{pmatrix} 41 \\ -40 \end{pmatrix}$$

$$\underline{U}^{(5)} = -\frac{1}{243} \begin{pmatrix} 121 \\ -122 \end{pmatrix} \dots$$

$$\lambda^{(i)} = -\frac{1}{3}$$

$$\lambda^{(z)} = -\frac{1}{3} \cdot \sum_{z=-\frac{2}{3}}$$

$$\lambda^{(3)} = -\frac{49}{2+} \cdot \frac{13}{5} = -\frac{13}{5} \cdot \frac{1}{3}$$

$$\lambda^{(4)} = -\frac{1}{3} \frac{41}{13} \cdots$$

$$\lambda^{(5)} = -\frac{1}{3} \frac{121}{41} \dots$$

This week (17/12/2013)

Eigenvalues and Eigenvectors of Real Matrices

- Generalized and regular eigenvalue problem: definition.
- Matrices with special forms: symmetric, hermitian, orthogonal, normal.
- Diagonalization of a matrix.
- Von-Mises Method: largest and smallest eigenvalue.
- Von-Mises Method: a simple example (analytical)