Numerical Methods in Physics

Numerische Methoden in der Physik, 515.421.

Instructor: Ass. Prof. Dr. Lilia Boeri
Room: PH 03 090
Tel: +43-316-873 8191
Email Address: |.boeri@tugraz.at

Room: TDK Seminarraum Time: 8:30-10 a.m.
Exercises: Computer Room, PH EG 004 F

http://itp.tugraz.at/LV/boeri/NUM_METH/index.html
(Lecture slides, Script, Exercises, etc).



Important notice (exam):

Exams for the lecture in numerical methods in Physics will take place in my
office PH3.108, starting 20t of January 2013.

For the winter semester, | will offer dates in the weeks:
20th-26t of January
27t — 315t of January

3rd-9th of February.

A list with available dates and slots is available today at the end of the lecture
and during the exercises, and then | will paste it outside my office. You can
register writing your name on the list, up to 14t" of January.

There will be additional dates in May-June and October 2014.



TOPICS (this year):

Chapter 1: Introduction.

Chapter 2: Numerical methods for the solution of linear inhomogeneous systems.

Chapter 4: Least-Squares Approximation.

Chapter 5: Numerical solution of transcendental equations.

Chapter 7: Eigenvalues and Eigenvectors of real matrices.

Chapter 8: Numerical Methods for the solution of ordinary differential equations: initial
value problems.



Last week(10/12/2013)

Ordinary Differential Equations: Initial Value problems (part Il)

Practical use of Runge-Kutta methods.
Why do we need an adaptive stepsize?
Methods for error estimate.

Implementing a simple Runge-Kutta method with adaptive stepsize.



Runge-Kutta Methods:

Runge-Kutta ansatz for arbitrary p order:

p
(% +h) =y, (x)+h Y g,

Jj=1

Using Runge-Kutta Methods in Practice:

Calculating a single Runge-Kutta step is of not much help. In practice, if we want to integrate a
differential system, we want to perform several steps one after the other:

P
yi(xy +h)= 5\71',1 =y, (x,)+h- Ecjgi,j(XO;yl,O"“’yn,O)

j=1

p
f’i(xo +2h) = 5}2,1 = 5};',1 +h- Ecjgi,j(xo +h;)’>l,17'"95}n,1)

j=1

In the first step, the initial values are known exactly, and given by the boundary conditions. For all
other steps, the initial values are given by previous R-K moves, and thus known only approximately.



In Runge-Kutta methods, the choice of the stepsize is a crucial ingredient to ensure stability of the
algorithm (example, satellite problem).
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Figure 5.5: Stability test for RUNGETEST. The constant stepsizes have been
chosen as follows: (a) h = 1/50, (b) h = 1/60, (c) h = 1/70, (d) h = 1/80
of the revolution period. The star indicates the centre of the earth, and the
dotted line the exact analytical trajectory of the satellite.



How to estimate the error of a Runge-Kutta step

(and choose the optimal step size):
EV (h) = yi(xo + h) - f’i(xo + h)

A good estimate of E(h) is given in practice between the value of y obtained with a single R-K step
of size h, and two steps of size h/2:

~ ~ h
Ev(h) = y(x, +h)_)’(xo +25)

This can be used in practice to implement a simple algorithm for stepsize adaptation in Runge-Kutta
methods. To implement this method in practice, one chooses h and calculates E, (h) with a standard
R-K routine and:

If E(h) is < g, the R-K move is accepted with h.

If E(h) > €, the R-K move is refused, h is reduced, and EV(h) is evaluated again.



Effect of the stepsize adaptation:
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Figure 5.6: Efficiency of the stepsize adaptation in the ‘satellite problem’.
Comparison of the exact elliptical trajectory (full line) with the mumerical
values (stars). Above: Runge-Kutta without stepsize adaptation; Below:
Runge-Kutta with stepsize adaptation.



This week (17/12/2013)

Eigenvalues and Eigenvectors of Real Matrices

Generalized and regular eigenvalue problem: definition.

Matrices with special forms: symmetric, hermitian, orthogonal, normal.
Diagonalization of a matrix.

Von-Mises Method: largest and smallest eigenvalue.

Von-Mises Method: a simple example (analytical)



I
Eigenvalues and Eigenvectors of Real Matrices:

We will consider homogeneous linear problems for which:

A-x=0

There are two possible sub-cases:
1) det(A)#0 -> the system admits only the trivial solution X=0!

2) det(A)#0 -> the system admits also non-trivial solutions X!

An important case which is often encountered in practice is that of linear systems which depend on
a set of external parameters A;; in that case the homogeneous system reads:

A(A) x=0, A(A)=|a;(A)]

Depending on the values of the A,s both situations 1) and 2) can be realized.



We are interested in non-trivial solutions, which occur for those values of the As for which A is

singular.

det(A(A,))=0

The )\i's and the corresponding X; (solutions) are called the eigenvalues and eigenvectors of A —and
the problem of finding them is called a generalized eigenvalue problem.

Regular eigenvalue problems are a sub-class of generalized eigenvalue problems, in which

the dependence of the matrix A on A has a simple form:

AA)=A, - Al I is the identity matrix

This means that:

(A, —ADx=0, 1ie. Ax=Ax

The problem has non-trivial solutions if:

det(A, - AI)=0



The characteristic polynomial of a matrix A is obtained solving the equation:

det(A, = AD)=0=P,(A)=A"+ > p A"

The order n of the polynomial is the same as the order n of the matrix. The n roots are either real,
or form complex-conjugate pairs. Some of these roots can be degenerate.

det(A, ~AD)=0=P,(1)= A"+ > p A"

PA)=0for A:A A, . A=A =..=A__=.=A

k+1

The ?\i's are the eigenvalues of the matrix A. The vectors X, associated to them are the

eigenvectors. Solving the eigenvalue problem means determining the )\i's and X;.



IS
Special forms of matrices:

A real matrix is called symmetric if:
A=A"
A complex matrix is called Hermitian if:
A=A"
The eigenvalues of symmetric and Hermitian matrices are all real.
A real matrix is called orthogonal if:
AA" =1
A complex matrix is called unitary if:
AAT =1

A real or complex matrix is called normal, if it commutes with its transpose or Hermitian conjugate.

AA"T =A"A or AAT=ATA



Diagonalization:
A matrix A is diagonalizable if one can find a matrix U such that:

U'AU =D

Where D is a diagonal matrix, i.e. a matrix which has non-zero elements only along its diagonal. A

and D are related by a similarity operation, i.e. an operation which does not change the spectrum

(eigenvalues) of the matrix.

The eigenvalues of A are the non-zero elements of D:
)\'i = dii

The columns of U are the eigenvectors of the matrix A.

i

A matrix is diagonalizable if its eigenvectors form a linearly independent system.
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I
Properties of normal matrices:

Normal matrices are diagonalizable. Their eigenvectors are orthonormal.

And therefore the transformation matrices U are orthogonal and unitary:

Uu' =1 and UU" =1



Von Mises’s method

The method of von Mises is a very robust iterative method for the calculation of the eigenvalue of a
matrix which has the largest absolute value, and the corresponding eigenvector. With a simple

modification, it can also return the eigenvalue with the smallest absolute value (and the
corresponding eigenvector).

Hypotheses: A is diagonalizable and one of its eigenvalues is dominant.
A=A =24,

Von-Mises Iteration: Starting from an arbitrary vector v(® and applying t-times the matrix A one
obtains a sequence of vectors:

V(t) — (A)IV(O)

For large t’s the ratio between the components of two subsequent vectors converge to the largest
eigenvalue, and vt converges to the corresponding eigenvector:

V(t+1)
L_ = A, and limv" =x,

t—>00

v,
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In practice, it is not convenient to use the von-Mises iteration for a single component, which might
become equal to zero, but it is convenient to average over all components which are non-zero, i.e.:

(t+1)

1 A :

— E L= A with |v(’)

n' V(f) u
u  vu

=&

Smallest Eigenvalue:

The inverse matrix of A, A1, has the same eigenvectors. The eigenvalues are:

1

AT X, =— X,
)\'i

Therefore the smallest eigenvalue and eigenvector of A can be found applying the von Mises

method to the inverse of A.

v =A™ v? and lim—t—-=24



.
A simple example:

o1t

Useful formulas:
For a 2x2 matrix:

A a, 4, Al 1 ay —d
ay dyp det(A)| -a, q

det(A) = a,a, —a;pa,
Von-Mises iteration:

v =A)v? =A and limv" =x,

V(t) t—>00




I
A simple example:

1 ) X=L(1) and X=L( _1)
2 b2 * 201

A 2
1
A =3, A=-1

Useful formulas:
For a 2x2 matrix:

A a, 4a, Al 1 ay —d
ay dyp det(A)| -a, q

det(A) = a,a, —a;pa,

Von-Mises iteration:

e
v =A)v? l(t) =A and limv" =x,
V [—>00

l




.
Von-Mises iteration: Eigenvalue
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Von-Mises iteration: Error on the eigenvector
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This week (17/12/2013)

Eigenvalues and Eigenvectors of Real Matrices

Generalized and regular eigenvalue problem: definition.

Matrices with special forms: symmetric, hermitian, orthogonal, normal.
Diagonalization of a matrix.

Von-Mises Method: largest and smallest eigenvalue.

Von-Mises Method: a simple example (analytical)



