Numerical Methods in Physics

Numerische Methoden in der Physik, 515.421.

Instructor: Ass. Prof. Dr. Lilia Boeri
Room: PH 03 090
Tel: +43-316-873 8191
Email Address: |.boeri@tugraz.at

Room: TDK Seminarraum Time: 8:30-10 a.m.
Exercises: Computer Room, PH EG 004 F

http://itp.tugraz.at/LV/boeri/NUM_METH/index.html
(Lecture slides, Script, Exercises, etc).



Important notice (exam):

Exams for the lecture in numerical methods in Physics will take place in my
office PH3.108, starting 20t of January 2013.

For the winter semester, | will offer dates in the weeks:
20th-26t of January
27t — 315t of January

3rd-9th of February.

| will post a list with available dates and slots outside my office door next week.
You can register writing your name on the list, up to 14" of January.

There will be additional dates in May-June and October 2014.



TOPICS (this year):

Chapter 1: Introduction.

Chapter 2: Numerical methods for the solution of linear inhomogeneous systems.

Chapter 4: Least-Squares Approximation.

Chapter 5: Numerical solution of transcendental equations.

Chapter 7: Eigenvalues and Eigenvectors of real matrices.

Chapter 8: Numerical Methods for the solution of ordinary differential equations: initial
value problems.



Last week (3/12/2013)

Ordinary Differential Equations: Initial Value problems

Initial Value problems: Definitions.

Reduction of an nt"-order differential equation to a system of N first-order
equations.

Solution of a first-order differential system of equations: Runge-Kutta
methods.

Simple, modified and improved Euler’s methods.

Fourth-order Runge-Kutta formulas: classical Runge Kutta formula,
meaning and examples.



Numerical Methods for the solution of ordinary differential
equations: initial value problems.

Definition: A differential equation is a mathematical equation for an unknown function of one or
several variables that relates the values of the function itself and its derivatives of various orders.
We consider here only the case of explicit differential equations, i.e. those which can be solved for

the highest possible derivative n:

y =F(xy,y,..,y" ")

An n-th order differential can always be recast into a first-order differential system of the form:

y'=/f(xy)
Setting:
yi=y, =)

yia=y=fXx)
v, =F(Xxy,Y,..Y,) = f,(x)



[ —
Runge-Kutta Methods:

Runge-Kutta methods are among the most popular methods for initial value problems. They are used
alone, or as “pre-condition” methods for more refined algorithms (predictor-corrector methods). The

biggest disadvantage is that it is difficult to obtain a reliable error estimate.

Properties:

Runge-Kutta methods derive from a Taylor series expansion of the solution, truncated at p
order. P is the order of the R-K method.

Runge-Kutta methods are one-step methods: in order to determine the value of the solution in

X,th, it is enough to know its value in the previous point x,,.

In order to calculate the approximate value of y(x), it’s enough to know f(x,,y,), but not its

derivatives!



Runge-Kutta Methods of Arbitrary Order:
Runge-Kutta ansatz for arbitrary p order:
P
$.(x, +h) = yi(x0)+hzcjgj
=1
gl = f(x09y0)
j-1
8; = S (x, +ajh§)’o +hEbj,lg1)
I=1
The first g’s are for example:
g = J(x,¥)

g, = f(x, +a,h,y, +hb, g )
gs = f('xO + a3h’y0 + hb3,2g2 + hbS,lgl)

The p-th Runge-Kutta formulas contain 3 types of coefficients (c;,a;b; ), which are mutually related
by recursion formulas. The total number of coefficients is (p?+3p-2)/2.



I
Popular Runge-Kutta formulas:

Euler’s Method (15t order):

5\7()60 +h)= y(x0)+h°f(x0,y0) ‘

Modified Euler’s Method (2" order):

- h h
Y(xo+h)=y,+h- f(x, "'E’yo +§f(xo’yo))

Improved Euler’s Method (3" order):

Y(xy +h) =y, +h'{%f(xo’yo)+%f[x0 +h,y, +hf(xo’)’0)]}

“Classical” Runge-Kutta Method (4t order):

. 1 1 1 1
y(x, +h)= y(xo)+h[gg1 +§g2 +§g3 +gg4]




This week(10/12/2013)

Ordinary Differential Equations: Initial Value problems (part Il)

Practical use of Runge-Kutta methods.
Why do we need an adaptive stepsize?
Methods for error estimate.

Implementing a simple Runge-Kutta method with adaptive stepsize.



Using Runge-Kutta Methods in Practice:

Calculating a single Runge-Kutta step is of not much help. In practice, if we want to integrate a
differential system, we want to perform several steps one after the other:

P
yi(xy +h)= j}i,l =y, (x,)+h- Ecjgi,j(xo;yl,O""’yn,O)

j=1

P
Y, (xg+2h)=9,, =9, +h- Ecjgi,j(xO + P e V1)

j=1

In the first step, the initial values are known exactly, and given by the boundary conditions. For all
other steps, the initial values are given by previous R-K moves, and thus known only approximately.



A practical Example: trajectory of a satellite

Hypotheses:
Starting velocity of the satellite: v, ..
The earth is an homogeneous sphere of radius r_ ..
No influence of the atmosphere.

Influence of other celestial body is negligible.




Table 1: Comparison of relative acceleration (in g's) for a satellite orbiting the Earth at

an altitude of 500 km.

Acceleration in

Mean distance Mass Mass g's on 500 km
(x107 m) (x10%* kg) (Earth = 1) satellite

Sun 1989100.0 332948.0 6.1x107¢
Mercury 57.9 0.3302 0.055 2.7x107%°
Venus 108.2 4.8690 0.815 1.9x107°
Earth 149.¢ 5.9742 1.000 0.86
Mars 227.9 0.64191 0.107 7.1x107%°
Jupiter 778.3 1898.8 317.833 3.3x10°¢
Saturn 1429.4 568.5 95.159 2.4x107°
Uranus 2875.0 86.625 14.500 7.9x107
Neptune 4504.4 102.78 17.204 3.7x107%
Moon 0.3844 0.073483 0.012 3.5x107¢

(Earth-Moon)
Earth Oblateness 1.0x1073

Notes: 1. Table 1 follows Table 1.2-1 in Fundamentals of Astrodynamics by Bate,
Mueller and White, 1971. The values in columns 2 and 3 (mean distances and
macses) are taken from the Eazplanatory Supplement to the Astronomical
Almanac, edited by P. K. Seidelmann, U.S. Naval Obgervatory, Washington,
D.C., 1992.

2. The Earth is not a spherical body with homogeneous mass density; it is
actually slightly pear shaped with an equatorial bulge and variable mass
density. Treating the Earth as an homogeneous spherical body will induce
small errors in calculated accelerations due to gravitational attraction and this

error ic modelled by the Earth Oblateness value shown in column 5 of Table 1.



Polar coordinates:

r=(z, y) =r(cosp, sinp)=rr,
r = (&, y) = r(cosyp, sinp) + rp(—sinp, cosp) =71+ rpe ,

r= (:E, y) - ’F(COS(I‘Q: sin ‘1‘9)+2T(10(_Sm ¥, COS (p)+rgo(—sm(p, COs (,9)—7‘9'92(00899, sin 99) -
. 1d

(F =) F+ (¢ + 279) @ = (F —r9”)E + ~ — (P9) @



i=—

yM

3
r

earth r

Equations of motion:

_M

3
r

F =

r

y=6.67-10"m’/ kgs®

M _ =5977-10%kg

Expressing r in polar coordinates we get:

r ra 2 earth
M
=127
3
T = 2.71:\/ a4
yM

Centrifugal acceleration.

Coriolis acceleration

apogee

satellite



We now want to reduce a 2x2 2" order system into a 4x4 1%t order system, using the substitutions:

Fr—=y @—=Yy f=y3 ¢=Y4

We obtain:
. T
yl = y3 . satellite
. b k|
y2 = y4 8
M apogee a e periges
. 2 V artw’ ,
) y3 = Y1Y4 - 2 f;
Y »
2y,y
X 3.4
Yo =———
L Y

With the initial conditions (velocity and distance from the earth at the perigee):

yl(0)=r_, =6.37-10°m
y2(0)=0
y3(0)=0

y4(0) = 2= = 58.29527rads ™

min

v =104-10"ms™'



Numerical Solution (Runge-Kutta): effect of the stepsize
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Figure 5.5: Stability test for RUNGETEST. The constant stepsizes have been
chosen as follows: (a) h = 1/50, (b) h = 1/60, (c) h = 1/70, (d) h = 1/80
of the revolution period. The star indicates the centre of the earth, and the
dotted line the exact analytical trajectory of the satellite.



I
How to estimate the error of a Runge-Kutta step
(and choose the optimal step size):

Using the Runge-Kutta method with arbitrary step size can lead to severe divergences (and
repeating the whole calculation of the trajectory with different stepsizes is not an economical
solution). To estimate the error connected with a single Runge-Kutta step, we can use the formula
for the Lagrange remainder of a fourth-order Taylor series:

hS
E, (h)= §[yi(5)(x)]x=g , Xo=&E=x,+h
ie. E,(h)=C(h)-h’

E(h) is by definition the error between the exact value of the solution and the corresponding

approximate solution in x,+h:

Ev(h) = yi(xo + h) - j}i('xo +h)

A good estimate of E (h) is given in practice between the value of y obtained with a single R-K step
of size h, and two steps of size h/2:

~ ~ h
Ev(h) = y(xo +h)_y(xo +2§)
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This also gives a practical strategy to estimate the ideal Runge-Kutta stepsize, given a required
accuracy threshold «€:

A A -1/5
hideaz=h-(y(h/22‘y(h)) L Sy =y(x,+h) and  $(h/2)= y(x,+h12)

To implement this method in practice, one chooses h and calculates E (h) with a standard R-K
routine:

E, (h) ~ $(h) - 9(%)

If E,(h) is smaller than g, the R-K move is accepted with h.

If E,(h) is larger than g, the R-K move is refused, h is reduced, and EV(h) is evaluated again.



A suite for integrating differential equations using the R-K method:

Main driver (ODEINT):
Given an interval X1,X2 and a maximum number of R-K

steps, integrates a given differential equation and

generates a trajectory y(xy)...y(X,gep)=Y(X1)...y(X2).

—=b § =N,

Quality control (RKQC):
Finds the optimal amplitude of the ith R-K step (h,,.,)-

no

§

FINISH!



Basic Building Block RK4: single Runge-Kutta move

RK(h)

Structure chart 28 — RK4(Y,G1 N X HYOUT)

1=1{1)N

YOG FCx, 1) = Y0+ h| g+ g 18 g
XTEMP:~X 4 H/20
DERIVS(XTEMP,YT,C2)
1=1(1)N 8 = f(x5,¥)
YT()=Y (1} H/2.0°G2(1) g, = f(x, + ﬁ; y, + h g)
DERIVS(XTEMP,YT,C3) 2 2
1=1(1)N g, = f(x, +gayo+gg2)

YT(1)==Y ([} H'C3(1)

84=J(xy+h,y, +hg,)

XTEMP:~X +H

DERIVS(XTEMP,YT,C4)

1=1{1)N

YOUT(1):=¥(1)+ H/8.0%(C (I} + 2%(C2(I) + C3(1)) + G4(1))




5.5.2 The program RKQC.

RKQC (Runge-Kutta Quality Control): This program performs the quality
control of a single Runge-Kutta move and the corresponding stepsize adap-
tation.

INPUT parameters:

Y( ): i’s of the last Runge-Kutta move =
initial values for the next step.

F( ): Array of the corresponding f;-values.

N: Number of the equations of the system.

X: Abscissas of the current initial value.

HTRY: Amplitude of the interval for the next step.

EPS: Required relative precision.

YSCAL( ): Scaling factors for the next precision evaluation.

OUTPUT parameters:

Y( ): New g;'s.

F( ): Array of the corresponding f;-values.

X: New abscissas.

HNEXT: Proposed stepsize for the next iteration.



Quality control of Runge-Kutta step: RKQC

Structure chart 27 — RKQC(Y,F, N, X, HTRY EPSYSCAL HNEXT)

i Quality control (RKQC):
,_1(.,}« Finds the optimal amplitude of the ith R-K step

YSAV(I)==¥(1)
FEAV(1):=F(1)

RK(h) RK,(h/2)

H:~HTRY
STEPOK:~FALSE

HH:~H /20

RKA(YSAV,FSAV N XSAV HH YTEMP)

X:=XEAV $ HH

DERIVS(X,YTEMPF) R R h
:4::::::;,\',1(."".v) E v ( h ) = y ( h) _ y( 5)

N A

print: 'RKQC: stepwize tcowmall” |7
(puuse)

RKA(YSAV,FSAV,N XSAV,YTEMP)

ERRMAX:~0.0

1=1(1)N

ERRY (1)~ Y(I)- YTEMP(T)
TEMP:~| RRRV(T)/YSCA L{1)|

ERRMAX < TEMP

ERRMAX :~TEMP

ERRMAX > EPS

H:~SAFETY*H* STEPOK:~TRUE
EX P{-0.25"LOG(ERRMA X /EPS))
ERRMAX /EPS < ERRCON /ﬁ

HNEXT:~4"H HNEXT-~SAFETY*H*
EXP(-0.2°LOG(RRRMAX /EPS))

1=1(1)N

¥(I)=Y(1) + ERRY (1)/15.0 (wee comment P. 247)

STEPOK

(return)




5.5.3 The programs RK4 and DERIVS.

RK4 (Runge-Kutta 4) performs the evaluation of a single Runge-Kutta move
according to equations (5.18) and (5.19):

INPUT parameters:

Y( ): Inmitial value for the current Runge-Kutta move.

G1( ): Array of the f; values at the current initial point.

N: Number n of equations in the differential system of equations.
X: Abscissa of the initial point.

H: Stepsize for the current Runge-Kutta move.

OUTPUT parameters:

YOUT( ): Runge-Kutta approximate value g; in the point X+H.

DERIVS:

This program, which is called from all three programs in the system, is
provided by the user and contains the definition of the functions f;. In C it
would read for example:

void derivs(double x, double y[], double f[])

{
fli1l= ..... ; // entspricht f_{1}(x,yi,y2,...)
f[2l1= ..... ; // entspricht f_{2}(x,yi,y2,...)
flnl= ..... ; // entspricht f_{n}(x,yi,y2,...)



ODEINT (Ordinary Differential Equations INTegrator) is the 'driver pro-
gram’ of the set of programs:

INPUT parameters:

YSTART( ): Vector y, with the initial values of the system of differential
equations.

N: Number n of equations in the system.

X1, X2: Start and end point of the integration interval.

EPS: Required relative precision (see the following remarks).
HSTART: Guessed value for the stepsize of the Runge-Kutta process.
HMIN: Minimum value for the stepsize.

NPTMAX: Maximum number of points that can be saved in the arrays
XX and YY.

OUTPUT parameters:

NWERTE: Number of stored points.
XX( ): Abscissas of the points.

YY(, ): Ordinates of the solution:
first index = index of the function,
second index = label of the abscissas.



Main driver: integrate the differential equation over the X1,X2 interval

Structure chart 26 — ODEINT(YSTART N X1,X2 EPS HANF HMIN,NSTMAX,

NWERTE XX, YY)

g‘g;;"“ Main driver (ODEINT):

o Given an interval X1,X2 and a maximum number of R-K steps,

. integrates a given differential equation and generates a trajectory
WO Y0,y Xpep) =Y (XD). y(X2).

NSTP~1(1)NSTMAX-1

DERIVS(X,Y,F)

1=1(1)N

YSCAL{I)==|¥(1)| + [F(1)*H| + TINY

X4H > X2

H:=X2-X I

RKQC(Y,F,N,X,H,EPS YSCA L HNEXT)

XX(NSTP4 1):=X

1=1(1)N

| YY(INSTP41):=Y(1)

X > X2

1=1{1)N

|vmm'(r)= ~Y(1)

NWERTI'R:~NSTP+1
(return)

>\ |HNEXT] < HMIN /ﬁ

print: ‘wiopeize smaller than HMIN® H:~HNEXT
(P-'—)

primt:"\ODEINT: more than NSTMAX points’
NWERTE:~NSTMAX
(return)




Effect of the stepsize adaptation:
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Figure 5.6: Efficiency of the stepsize adaptation in the ‘satellite problem’.
Comparison of the exact elliptical trajectory (full line) with the mumerical
values (stars). Above: Runge-Kutta without stepsize adaptation; Below:
Runge-Kutta with stepsize adaptation.



This week(10/12/2013)

Ordinary Differential Equations: Initial Value problems (part Il)

Practical use of Runge-Kutta methods.
Why do we need an adaptive stepsize?
Methods for error estimate.

Implementing a simple Runge-Kutta method with adaptive stepsize.



