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Last week(26/11/2013)

Numerical Solution of Transcendental Equations:

Gross search for the zeroes of a function.
The Newton-Raphson method: a program.
Other methods for finding zeroes of a function: False position (regula falsi).

Bisection method (nested intervals).



Zeroes of a Trascendental Equation: Summary

F( ) 0 The values of x which satisfy this equation are called zeroes, solutions
X)= :

or roots of the function.
F(x)=x We have considered the special case in which the transcendental

equation can be solved for x.

We considered two classes of methods:
Iterative methods: Newton-Raphson (tangent) and Regula Falsi - false position (secant).
Method of the nested intervals (bisection).

Both classes of methods permit to find the zeroes of a function in a given interval. To use
them in practice, they have to be combined with a preliminary gross search for zeroes on the
large interval, in which the solution are sought.
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Gross Search:

The Newton-Raphson (and the bisection) method permit to find a zero in a given interval, once

we know there is a zero.

Fx) ﬂ*

In practice, before using any methods to find zeroes, one always performs first a gross search.
1) Choose a large interval [a,b].
2) Divide it into n intervals of width h (stepsize).

3) Compute s=f(x,,;,)xf(x,,) for every interval.

4) If s<0, the interval contains a zero, which can be located with a N-R or bissection method.



Newton-Raphson (tangent) method: F(x)
X — 1
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False position (regula falsi).

It is used to find the zero of a function in an interval [g,b], in which the function changes sign.
The real curve - F(x) - is replaced by the straight line through the two extrema of the interval.

f(x)

P

X2

S(b)-f(a)
b-a

(x—a)+ f(a)

The line between a and b is given by: y(x) =

(b-a) _ af(b)-bf (@)
f®)~f@)  fb)-f(@

And the zerois: X =a- f(a)

N €D
T ()= f(x)

(x,—x_)

Disadvantages: the zero is approached by one side -> The method may be very slow-> modified r.f!
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The bissection method (nested intervals):

Given an interval x,, x, in which the function F(x) changes sign — f(x,)f(x,)<0:

The interval is divided in half, picking the midpoint x,

Evaluate the product f(x,)f(x;)

<0 the zero 1s in XX,

f(x)f(x,)] >0 the zero is in X,, X,

= 0 the zero is X,

Iterate the method using the new interval, until the
zero is found.

E h limits the resolution of the bisection method! Two zeroes can be discriminated only if their
distance is larger than h,_!



TOPICS (this year):

Chapter 1: Introduction. 23

Chapter 2: Numerical methods for the solution of linear inhomogeneous systems. 8
Chapter 3: Interpolation of point sets.

Chapter 4: Least-Squares Approximation. 8

Chapter 5: Numerical solution of transcendental equations. 22

Chapter 6: Numerical Integration.

Chapter 7: Eigenvalues and Eigenvectors of real matrices.

Chapter 8: Numerical Methods for the solution of ordinary differential equations: initial
value problems.

Chapter 9: Numerical Methods for the solution of ordinary differential equations: marginal
value problems.
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This week(3/12/2013)

Ordinary Differential Equations: Initial Value problems

Initial Value problems: Definitions.

Reduction of an nt"-order differential equation to a system of N first-order equations.
Solution of a first-order differential system of equations: Runge-Kutta methods.
Simple, modified and improved Euler’s methods.

Fourth-order Runge-Kutta formulas: classical Runge Kutta formula, meaning and examples.



Numerical Methods for the solution of ordinary differential
equations: initial value problems.

Definition: A differential equation is a mathematical equation for an unknown function of one or
several variables that relates the values of the function itself and its derivatives of various orders.

F(x;y,y'..,y")=0

Explicit differential equations are those which can be solved for the highest possible derivative n:

y(”) — F(x;y,y',..,y(”"l))

n (i.e. the order of the highest possible derivative) is called the order of a differential equation (or
system of equations, if x, y, F are vectors). y(x) is the solution of the differential equation.



Differential equations of nt" order can be recast into a set of 1%t order differential equations,
through the following substitution:

y(”) — F(x;y,y',..,y(”"l))

yi=y,=fi(x)
y'2 =y3 Eﬁ(x)

y'n—l = yn = f;’l—l(x)
v, =F(Xy,.Y-Y,)=f,(x)

In compact (vector) notation:

y'=f(x,y)




Numerical Methods for differential equations do not return the most general solution (function +

integration constants), but only permit to calculate the solution on a specific set of points.

However, they permit to calculate the solution also in many cases in which the analytical solution

is not known (or not possible).

In order for a differential problem to be solved numerically, we have to

specify the analytical relation between the function and its derivative, as well as the conditions

that the solution has to obey in particular points of space.

Initial value problems: In this case, we know the values that solution and its derivatives in a given

point x,. In compact form, the differential system is given by:

y'=f(xy)

with y(x,) =y,



Taylor expansion of the solution:

We assume that we can expand the solution in Taylor series (p-th order) around the point (X;,Y):

yy ) = P X o) ld yl<x>] + R, (x)

v dx”

X0-Y0

If the solution is “well behaved” there is an upper value to the error (Lagrange residual):

(x xo)p+1 dp+1
R. = <=E=<
0 (p+1)! !dxp“y’( )Lg’ fo=s=s

We can then use the Taylor formula to estimate the value of the solution in the point x0+h:

,(x, +h) = 2 ld yi(x >]

X0-¥Yo



Euler’s method:The most ancient method to approximate the solution is the first-order

Euler’s method; the value of the function is approximated by its tangent times the length of the
interval.

yi(xo +h)= yi(xo)'l'h'y'(x)L:xO =y, (X)) +h- f,(X,,¥,)

'3
Ui /s
N
7;
Xo Xoth . -X

Leonhard Euler (1707-1783)
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Runge-Kutta Methods:

Runge-Kutta methods are among the most popular methods for initial value problems. They are used
alone, or as “pre-condition” methods for more refined algorithms (predictor-corrector methods). The

biggest disadvantage is that it is difficult to obtain a reliable error estimate.

Properties:

Runge-Kutta methods derive from a Taylor series expansion of the solution, truncated at p
order. P is the order of the R-K method.

Runge-Kutta methods are one-step methods: in order to determine the value of the solution in

X,th, it is enough to know its value in the previous point x,,.

In order to calculate the approximate value of y(x), it’s enough to know f(x,,y,), but not its

derivatives!



I
Runge-Kutta Ansatz (2" order):

5\’(x0 +h)=y,+h-(cg +c,8,)
with

gl =f(-x07y0)

g = f(xy +a,h,y, +b2,1hg1)

The Runge-Kutta coefficients satisfy the following conditions:

c,+c, =1
1

¢, d, =5
1

¢, b, =5

There are three equations for four coefficients: the system is underdetermined, i.e. there is an
infinite set of solutions for this system of equations.



The proof begins with a Taylor expansion of the solution:
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= l y(x0+h)=yo+h'(clg1+czg2)
2 S 2 with

gl = f(x07y0)

g = f(x,+ah,y, + b2,1hg1)

~ h h
y(xo +h)= Yo +h'f(x0 +5’y0 +§f(xoayo))

¢ N | / Modified Euler’s method: The solution is approximated
900 by a straight line through (x,,y,) with the slope of y(x) in
g the middle point of the interval [x,,x,+h].

.
P e m e e wen e Gmm — - — e e
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1 _ b 1 Y(xo +h) =y, +h-(c,g +c,8,)
2.1 .
2 with
gl = f(xoayo)
& = f(x,+ah,y, + b2,1hg1)

V(x,+h)=1y, +h-{%f(xo,yo)+%f[xo +h,y, +hf(x0,y0)]}

A( Improved Euler’s method: The solution is approximated by a
straight line through (x,,y,), whose slope is the arithmetic

average between y’(x,) and y’(x,+h).
Ve #(x)
5

Xo Xtly %
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Example:

y'x)=f(x)=e", y(0)=0
Exact solution: y(x)=e¢" -1

What is the approximate value given by the three Runge-Kutta formulas seen so far for x=17?

Euler’s Method:

f’(-xo +h) = y(xo)'l'h'f(xo’yo) ‘

Modified Euler’s Method:

~ h h
Y(xo+h)=y,+h- f(x, +59y0 +5f(x0vyo))

Improved Euler’s Method:

Y(xo+h) =y, "'h'{%f(xo’yo)"'%f[xo +h,y, +hf(xo’yo)]}|




Solution:
Q.,_,f- )hvr‘, 1-”' oad 2““‘ o-ulu, roliete tﬁc.) ‘(p\ 22l za,(ac ) E):?
[Eut's fomte: | gl e
| Ca9.) = (o)
(5()(0"’\); ‘6(&)4‘7'4(X¢,‘90):¢?;\'1 e o AL
hea
ﬁl':;;lt.ca Ehn’s H!Eodt\
&5(10*143 : ‘3{’(0) + L“( (“4%'?"%1{("0,%}0)): g o C%‘ . 64332

ﬁ'—;?‘"d Cudn's Melled :\

Ao @ v 2';{(«,%)*&4[&*'«; % +H(“n9°)]g

4

r ._. ‘g ) = |
& 4 ' - (\) - ‘85)[&0
¢ ¢ z )

E * Seh Q|’ (= (.4|818|8...
o L oln dn =



Error (graphical representation):

//improved Euler
(+8.1%)

modified Euler

Euler
(~42%)




Higher order Runge-Kutta Methods:

Runge-Kutta formulas can be derived for arbitrary p order. The corresponding ansatz is:

P
3% +h) = y,(x)+h Y cg;
=1
g = Jf(xy,¥)
j-1
g, =Jf(x,+ahy, +h2bj’1gl)
I=1
The first g’s are for example:

8 = f(xoa)’o)
g, = f(x, +a,h,y, +hb,,g)
g3 = f(xo +a3h’y0 +hb3,2g2 +hb3,1g1)



The p-th Runge-Kutta formulas contain 3 types of coefficients (c;a;b; ), which are mutually
related by recursion formulas. The total number of coefficients is (p?+3p-2)/2:

CisesC) p coefficients
Ayseens @, (p —1) coefficients
b,,...b, ., p(p-1)/2 coefficients

These coefficients are often tabulated in this form:




The most used Runge-Kutta methods are fourth-order methods.

Classical Runge-Kutta formula:

e | Y2

72 0 72

7 o 0 1
/. B4

3/8 Runge-Kutta formula:

I

Y3 =73 A

1 1 -1 1
e Yo Yo

a, bz, 1
”J b3,4 bs' 2
O’P bl’" b Pz bﬁ, P-1
Ci Cl Cp - CP
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Classical Runge-Kutta formula:

~ 1 1 1 1
Y(xg+h)=y(x,)+h PRI LY Syt
& = Jf(x5,¥) !
h h
8> =f(-x() +5;yo +5g1) ) .”|7(2_>
h h o - ok
g3=f(xo+§9y0+5g2) \

h
g4=f(x0+§a)’0+hg3) | | | | i

i+1/2

Meaning: We start from point Py=x,Y,. we use (g,) the slope of the solution, to make a step forward
of size h/2 -> P,=(x,y,)=(x,#h/2,y,+h/2). We use the slope evaluated in P,=g,to make another step
forward (h/2) starting from (x,,y,) -> P,. The new slope is f(x,+h/2, y,+h/2 g,)=g5;. We start again
from (x,Yy,) and make one final full (=h) step forward -> P,. The “real” slope of the solution is

approximated by a weighted average of the slopes in P,,P,,P,,P.



For our “old” example:

y'(x)=f(x)=e", y(0)=0

We have:

g =J (x5, ¥)

h h
8> =f(-x0 +—3Y +_g1)

2 2 e=2.7182818...
g, =f(xo+g,y0+§g2) e’ =1.64872

h
g, =J(x, "'59)’0 +hg;)

R 1 2 1
Ve (D) = gf(0)+§f(l/2)+gf(1) =1.7188...

[¥(1) = $ i (1] = 0.0005..

Fourth order methods are much more accurate than first and second order methods!
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