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® DFT1+2: Hohenberg-Kohn Theorem and Kohn and Sham equations.

® DFT3+4: Solving K-S in practice; basis functions, augmented methods and psp theory.
® DFT5: Practical problems in DFT (k space integration, convergence etc)

® P1: EOS and band structure of silicon.

® ADV1+2: Linear Response theory (mostly for phonons).

® P2: Phonons of silicon

® ADV3: Wannier Functions and TB approximation.

® P3: Wannier Functions and BOM for silicon.



Important Dates:

Easter Break:
First lecture after the break is 7/5 (theory).

Exercises:

First appointment:

* Thursday 15/5 16-18 (the room is free 16-19);

* Friday 6/6 and 26/6 14-16

(but again, the room is free 13-19, so we might find another time).



Solving Kohn-Sham Equations in Practice (DFT 3-4):

® Charge self-consistency (mixing).

® Atoms: solution of the radial equations.

® Solids: Bloch Theorem.

® Basis functions and secular equations: Kohn-Sham equations for plane waves.
® Pseudopotential Theory.

® PSP theory: Basic Concepts; Empirical Pseudopotentials; Ab-initio
pseudopotential, construction (Chiang, Hamann, Schlueter method).

For these topics I will follow “A primer in Density Functional Theory” (Springer), chapters 6;

Pseudopotential Method, G.B. Bachelet and A. Filippetti (notes).



Kohn-Sham equations in plane-wave basis:
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If the total scf potential is periodic, the K-S equations couple only Fourier components G which differ by
a lattice vector (new proof). If the number of G is infinite, PWs form a complete basis set (* is exact.)

If we use only a finite number of plane waves (N,,,), the computational time scales like (N;,,)3.

Typically, the cutoff on the maximum number of plane waves is introduced requiring that:

| k+G | 2<E_;.



Meaning of the cut-off energy:

A cut-off energy (or wave-vector) determines what is the smallest length scale that can be represented

by our plane-wave basis:

|k + G| <G,
A 2T
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In a true (full) atom, the minimum length scale is set by the 1s orbital; pseudopotentials represent an
efficient (physically meaningful) way to derive an effective atomic potential, which requires less plane-

wave components to be represented.

Empirical pseudopotentials use only a few Fourier components of Eq. (*) as adjustable parameters to
reproduce the electronic structures of given compounds. These are ad-hoc fit of the electronic
structure, and we will not treat them here. “Modern” pseudopotentials derive suitable expressions for

the vP5(G) starting from the atomic problem (full->pseudo construction).



Key Concepts in pseudopotential Theory:

Core-Valence Separation.

Orthogonalization and nodes of the atomic wave-functions.
Pseudopotential Transferability.

Norm conservation.

Unscreening.



Core-Valence Separation:

Experimental ionization potentials
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Figure 1 Atomic shell structure: the example of silicon
(£ = 14). Top: the 14 ionization potentials of silicon, in electron
volts (note the logarithmic scale). Bottom: radial electronic
density as a function of the distance from the nucleus; both in
energy (top) and in space (bottom), the core shells (15, n =1,
and 2s, 2p, n = 2) are well-separated from each other and from
the valence 3s, 3p shell (n = 3).

Many of the important properties of solids
(chemical bonds, electric and thermal properties)
are due to valence electrons (core electrons play
a minor role).

Valence electrons (i.e. electrons belonging to the
outermost shell of the atom) are well separated
in energy and space from core electrons.

Pseudopotentials replace the true atom with a
pseudoatom which contains only valence
electrons.
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Schroedinger Equation for Atoms:

If the “effective potential” felt by the electrons in an atom has spherical symmetry, the wave-functions
factorize into an angular and a radial part:

@,(r)=Y,, (@R, ()

Y,, are the spherical harmonics; the radial part obeys the one-dimensional Schroedinger equation:

1d*> 1d I(I+1)
= 2 +v,.(r)|R (r)=¢ R (r
2dr* rdr 242 eﬁ( )|R,(r)=¢€,R, (1)

The effective potential is =Z/r + some effective screening; for example, in DFT, V 4=-Z/r+ v, [n]+v, [n];
the largest contribution to the screening is the Hartree term.

Even when screening is included, the solutions of the atomic problem still have a hydrogen-like shell
(n,l) structure; the shells are occupied in order of increasing n,l.



Atoms: spherical harmonics

Y, (3,¢)=cae™ P"(cos)




Atoms: hydrogenoid wavefunctions

First terms (explicit form):
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Orthogonality Condition and “wiggles”:

The “total” wave-function (radial x angular part) has to be orthogonal, i.e.:
3 S
[ d’rg;(r)g,(x) =4, 0.()=Y, (@R (1)

Spherical Harmonics are orthogonal, i.e.:

ffsmﬁdﬁd(p (3,@)Y, (O,@)=0,0

So eigenfunctions corresponding to different | shells (s and p, p and d, s and d, a.s.o0. ) are orthogonal to
each other because their angular part are orthogonal. On the other hand, two wavefunctions
corresponding to states with the same I and different n must have orthogonal radial wavefunctions, i.e.

f r’drR (r)R,.,(r)=6

This introduces orthogonality “wiggles”, i.e. small amplitude oscillations on radial wfs with large n.
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Full-pseudo problem:
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Model Pseudopotentials:

The solid can be approximated as isolated (rigid) pseudo-atoms + valence electrons which re-arrange

self-consistently due to different environment (chemical bonds). The tail of the potential of the pseudo-

atoms must behave as —Zv/r.
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Figure 3 Model bare pseudopotentials. Lower panel: two-
parameter pseudopotential. Upper and middle panels: one-
parameter pseudopotentials, where the only parameter is the
core radius r;, roughly corresponding to the spatial extent of the
outermost core orbitals, or to the outermost radial node of the true
valence orbitals (see Figure 2 and text).

A model pseudopotential has two important physical

parameters:
ZV Valence charge
I, Core radius
——

Good agreeement for charge density distributions
(defects, impurities), bad results for total energy.



Valence charge
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Non-local Pseudopotentials:
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To reproduce the correct shape of the valence
electron wave-function, the pseudo-potential should
be /-dependent.



Ab-initio Pseudopotentials:

: A fully ab-initio pseudopotential can be constructed, requiring
that the solution of the radial Schroedinger equation for the full and the pseudo atoms are the same,
above a cut-off radius r :
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The pseudo wave function is a smooth function without nodes.






Transferability:

A pseudopotential is transferable, when it can be used to describe accurately the properties of a
system, where the chemical and physical environment is different than the one it was derived for. In

1979 (Hamann, Schlueter, Chiang) it was realized that matching exactly the tails of the wavefunctions
ensured optimal transferability. This was guaranteed by the condition of

j"xlps (r)‘2 dr = }|an (r)|2 dr
0 0

Which guarantees that the pseudoatom has the correct electrostatic properties (Gauss Theorem) and
the right scattering conditions (bonding properties).



Unscreening:

In the HSC procedure, the pseudopotential is obtained by inverting the Schroedinger equations for
the wave functions; however, the potential which is found by the inversion of the Sch’s equations is
“bare”, but screened by its valence electrons. Since the behaviour of the valence electrons depends
strongly on the local environment of the (pseudo) atom, the pseudopotential found with this

procedure has to be “unscreened”, i.e.:

vlps,bare (}") _ les,screened (7") _ VH [nps,v] _ ch[nps,v]

This “bare” pseudopotential can now be used to solve the K-S equations for the given atom in any

chemical environment.



In summary:

Solve the Schroedinger’s equations for a given atom
and find the full atomic wavefunctions

Match the valence wavefunctions of the true atom
with nodeless, smooth functions above r_.

Invert the Schroedinger equations for the
pseudoatom to find vPs.

Unscreen the pseudopotential from its
valence electrons.



Pseudo-atom

Ab-initio pseudopotentials:

sstates, £=0 p states, ¢ = 1 Figure 2 True vs. pseudo-atom, the example of boron (£ = 5).
, ; , , i ; In the true neutral atom (top panels) there are five electrons. Two

i 7 B 12 occupy the tightly bound 1s core orbital y,,q = Ao Yoo, another
T two the shallow 2s valence orbital .5, = e Yoo (top left), and

R [ S B )] the last one the 2p valence orbital (e.g., pz, OF Y215 = Rz Yio: top
right). Here the radial orbitals y, = r Ay are dashed lines and

l their zero is vertically shifted and lined up to the corresponding
energy eigenvalue (gray line). The screened nuclear potential
(top panels, black solid line) retains much of its original
. - - =4 Coulombic shape, and a hydrogen-like shell structure results:
the 1s orbital corresponds to a deep eigenvalue (gcqre, gray thick
| L 16 line} and is localized near the nucleus, while the 2s and 2p
valence orbital are “fatter” and correspond to a shallower energy
(£va1, Qray thick line). In a pseudo-atom (bottom panels) the core
electrons and the nucleus are simultaneously eliminated and
replaced by a pseudopotential (bottom, black solid line); in boron
we are thus left with just three electrons, two in the s (left}) and
one in the p (right) pseudo-valence-orbital. These orbitals should

True, full-core atom

Ecore
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Eval ideally have the same energy eigenvalue and wave function
amplitude as the true valence orbitals (top, dashes). The
L . = 4 -2 amplitude, though, can be the same only outside the core: inside

it, the true valence 2s orbital (top left) is radially orthogonal to the
core 1s orbital and changes sign (has one radial node), while, by
definition, the pseudo-valence-orbital (bottom left) has no under-
lying core, and is thus nodeless. Similar considerations apply to
- e - 4 =6 energy: the pseudopotential (black solid, right) may effectively
replace the true potential {left) only within some energy window
| i | 1_8 around the valence eigenvalue &.. But this may be sufficient for
. : : L ! ! an excellent approximation of the atom's behavior in a molecule
0 1 2 3 4 0 1 z 3 4 or a solid, since bands and bonds spread the valence energies
Radius (a.u.) only a few atomic units away from the eigenvalue of isolated atom

(see text).
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