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INTRODUCTION

• Optimizations of stellarators are planned.

• Optimization tool is developed in real space coordinates
(e.g., TJ-II, U-2M).

• Quantity of interest - total stored energy.

– effective ripple εeff
∗ B-field (Biot-Savart)
· coil currents
· coil positions
· coil angles
· coil geometry



TOTAL STORED ENERGY

Normalized stored energy in plasma:

Ŵ =
∫ a

0

dr r n̂(r)

(∫ a

r

dr′

r′ ε
3/2
eff (r′)

)2/9

(1)

a . . . plasma radius (↑)
r . . . effective radius
n̂ . . . normalized plasma density (↑; two profiles)
εeff . . . effective ripple (↓; computed by NEO)



EFFECTIVE RADIUS

• Definition in differential form: Sdr = dV (S area of the magnetic sur-
face, V volume limited by the magnetic surface) see V. V. Nemov et al.,
Phys. Plasmas 6, 4622 (1999).

• Desirable: computation of reff during field line integration.



Introducing new definition of an effective radius: r = 2V/S (V volume lim-
ited by the magnetic surface area S)

r =
2
3

∫
dSr · ∇ψ|∇ψ|∫

dS
=

2
3
< r · ∇ψ >
< |∇ψ| >

=
2
3

lim
LS→∞

∫ LS
0

dl
Br · ∇ψ∫ LS

0
dl
B |∇ψ|

(2)

∇ψ. . . vector normal to the flux surface
r . . . radius vector
B . . . module of the magnetic field
dl . . . distance measured along the magnetic fieldline



Effective Radius
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MAGNETIC ISLANDS - DETECTION

Principle of island detection
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MA . . . magnetic axis, S . . . magnetic surface



Normal vector ∇Ψ is sensitive to close islands
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OPTIMIZATION PROCEDURE

Four key “ingredients” for the implementation of simulated annealing:

1. Choice of a starting configuration Ca and computation of the energy
E(Ca).

2. Creating a configuration C ′ out of C using a proper rule and computa-
tion of the energy E(C ′); let η = (E(C ′) − E(C))/T , with the artificial
temperature T .

3. If η ≤ 0 accept C ′ as new configuration: C ′ → C and go on at step 2 or
stop if the path is long enough for the temperature T .

4. If η > 0 choose a random number r, distributed equally in 0 ≤ r < 1.
If r < exp(−η), accept C ′, C ′ → C, otherwise reject C ′ and go on with
step 2.



THERMODYNAMICAL EQUILIBRIUM

Number of accessible neighbors is used.



STARTING TEMPERATURE

< E >=
1
L

∑
k

E(k), < E2 >=
1
L

∑
k

E2(k)

Heat capacity:

C(T ) :=
d < E >

dT
=
< (δE)2 >

T 2
(3)

Integration of the heat capacity (Eq. 3) leads to:

< E > (T )− < E > (∞) ≈ −< (δE)2 > (∞)
T

Estimation for the starting temperature:

Ta =
√
< (δE)2 > (∞) (4)



COOLING STRATEGY

Empirical rule: Tk = Taq
k, with 0 < q < 1 e.g. q = 0.95

Disadvantage: Phase transitions

Automatic adaption desired:
Occupation probabilities w(C, T ) for two temperatures Tk and Tk+1 should
be close to each other.



Formulated as:
1

1 + δ
<

w(C, Tk)
w(C, Tk+1)

< 1 + δ

For w(C, T ) the Boltzmann distribution for equilibrium is used:

w(C, T ) ∼ exp
(
−E(C)− E(0)

T

)

Scheme for cooling:

Tk+1 =
Tk

1 + Tk

3
√
<(δE)2>

ln (1 + δ)
(5)



STOPPING CRITERION

Requested, that < E > (Te)− E0 is small.
Formulated as

< E > (Te)− E(0)
< E > (Ta)− < E > (Te)

< ε

Leads to the criterion

< (δE)2 > (Te)
Te (< E > (Ta)− < E > (Te))

< ε (6)



SPEEDING UP . . .

• Computing on a grid

• Storing computed configurations

• Parallelization



ALGORITHM

MPI INIT()
MPI COMM RANK(myid)
IF (myid .EQ. 0) THEN ! M A S T E R
C1 := SetInitialSolution()
T := WarmingUp()
do

do
C2 := Neighbor(C1)
(E1 = Energy(C1))
MPI Bcast()
MPI Send()
MPI Irecv()
E2 = Energy(C2)
∆ Energy := E2 - E1
if ∆ Energy < 0 or
Accept(∆ Energy, T)

C1 := C2
until Equilibrium()
T := DecrementT()

until Frozen()

ELSE ! S L A V E
MPI Bcast()
MPI Irecv()
Field Line Integration()
MPI Send()

END IF

Message Passing Interface MPI
algorithm structure (solver)
problem specific functionality (user
implemented)
temperature scheduling (scheduler)



APPLICATION TO TJ-II

• Variation of four currents:

Itor toroidal coil current
Ihel helical coil current
Ihor horizontal coil current corresponding to the central coil
Ivert horizontal coil current corresponding to the vertical field coils

• Two models for the particle density have been applied

n = constant (red)
n = 1− α ∗ (r/a)2 with α = 0.8 (green)



Normalized stored energy Ŵ - ”standard” configuration
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Normalized stored energy Ŵ - ”best” configuration
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Cross-sections
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Effective Ripple εeff vs. Effective Radius reff .
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SUMMARY

• A new tool for optimizing existing stellarators, based on the technique
for evaluating the effective ripple is presented and has been applied to
TJ-II.

• The magnetic field computed directly from the coil currents is used for
the computation of the effective ripple.

• Configurations with enhanced total stored energy in plasma have been
found. Comparing the best configuration with the ”standard” configura-
tion it can be seen that neoclassical transport across the flux surfaces
is diminished.



• Experiments?

• Stability analysis?

• Interesting region - operation point?
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