Hybrid Fokker-Planck Monte Carlo Techniques

Martin Schmidt, Henning Maaßberg, Nikolai B. Marushchenko

Kinetic Theory Workshop, Graz, 13-15. September 2004

- Introduction
- Hybrid Fokker-Planck Monte Carlo techniques
- Application of hybrid techniques on:
 - NBI slowing down
 - NBCD, v_{tor}
 - ECRH, ECCD
- Discussion

Why combining Fokker-Planck and Monte Carlo?

 $f = f_{\rm M} + \delta f_{\rm FP} + \delta f_{\rm MC}$

Advantages:

Fokker-Planck ($\delta f_{\rm FP}$)

Monte Carlo ($\delta f_{\rm MC}$)

- Highly localized in small phase space volumes (ECRH)
- Nonlinear treatment of colli- Switching of co-ordinates sion operator
- Global and complex processes, high-dimensional problems

Disadvantages:

- High-dimensional problems (neoclassical diffusion)
- Only asymptotic solutions (collisionless and collisional approach)
- Conservation of momentum and energy in collisions

Hybrid Fokker-Planck Monte Carlo techniques I

$$\underbrace{V(f)}_{\text{first order}} = \underbrace{C(f) + Q(f)}_{\text{diffusive}} + \underbrace{S(f)}_{\text{sources}} + \underbrace{L(f)}_{\text{sinks}}$$

• Ansatz: $f = \overline{f} + \delta f_{MC}, \ \overline{f} = f_M + \delta f_{FP}$

$$V(\delta f_{\rm MC}) - C(\delta f_{\rm MC}) - Q(\delta f_{\rm MC}) - S(\delta f_{\rm MC}) - L(\delta f_{\rm MC}) =$$
$$-V(\bar{f}) + C(\bar{f}) + Q(\bar{f}) + S(\bar{f}) + L(\bar{f})$$

• Trying to find a Fokker-Planck model equation with $\|\bar{f}\| \gg \|\delta f_{MC}\|$:

$$\langle C(\bar{f}) \rangle_b + \langle Q(\bar{f}) \rangle_b + \langle S(\bar{f}) \rangle_b = L_{\rm FP} \cdot \bar{f}$$

- $\langle \dots \rangle_b$ bounce or flux-surface averaging
- $L_{\rm FP}$ used for particle and power balance (e.g. by \dot{n} and \dot{T} modelling)

Hybrid Fokker-Planck Monte Carlo techniques II

• Introduce *small* quantities

$$\delta C(\bar{f}) = C(\bar{f}) - \langle C(\bar{f}) \rangle_b; \quad \delta Q(\bar{f}) = Q(\bar{f}) - \langle Q(\bar{f}) \rangle_b$$
$$\delta S(\bar{f}) = S(\bar{f}) - \langle S(\bar{f}) \rangle_b$$

• Setting up a δf Monte Carlo technique

$$V(\delta f_{\rm MC}) - C(\delta f_{\rm MC}) - Q(\delta f_{\rm MC}) - S(\delta f_{\rm MC}) - L(\delta f_{\rm MC}) = -V(\bar{f}) + L_{\rm FP}\bar{f} + L(\bar{f}) + \delta C(\bar{f}) + \delta Q(\bar{f}) + \delta S(\bar{f})$$

typically neglected

• Marker equation (inhomogeneity \rightarrow characteristic equations)

$$w = \int \left(-V(\bar{f}) + \mathbf{L}_{\mathrm{FP}}\bar{f} \right) dt = \int F(r, p, v) dt$$

Hybrid NBI slowing down I

- Simulation of slowing-down behavior of suprathermal particles
- W7-X: particle remain near their "birth" flux surface (quasi-isodynamical concept)
- Slowing-down on flux surfaces (Fokker-Planck) delivers a good estimate (most of the physics included)
- Monte Carlo corrects the Fokker-Planck solution regarding to phase space diffusion

Hybrid NBI slowing down II

• Linearized collision term

C(f, f) = C(integral part, differential part)= C(field particles, test particles)

• Fokker-Planck:

 $\langle C(\delta f_{\rm FP}, f_{\rm M}) \rangle + \langle C(f_{\rm M}, \delta f_{\rm FP}) \rangle + \langle S_{\rm NBI} \rangle = L_{\rm FP} \cdot \bar{f}$

- S_{NBI} NBI source (e.g. birth profile), L_{FP} loss term (\dot{n}, \dot{T} model)
- Monte-Carlo:

$$V(\delta f_{\rm MC}) - C(\bar{f}, \delta f_{\rm MC}) - C(\delta f_{\rm MC}, \bar{f}) = -V(\bar{f}) + L_{\rm FP}\bar{f}$$

$$\downarrow$$
Simulation time $t_{\rm e} \ll$ Slowing down time $t_{\rm ed}$

W7-X Example

Discharge Parameters

- $H^0 \rightarrow H^+$ injection with 4 beams of 1.8 MW,
- mean pitch angle of ± 65 ,
- injection energy of 55 KeV,
- average magnetic field stength B= 2.5 T,
- $Z_{\rm eff} \approx 2$

W7-X Example

W7-X Example - Simulation Results

obtained with the Predictive Transport Code of Yuriy A. Turkin

Hybrid for NBCD, v_{tor} I

• Strong toroidal velocity v_{tor} (NCSX)

• Fokker-Planck:

$$\bar{f} = f_{pp}^+ + f_{pp}^- + f_{tp}^{\nu}$$

 $\langle C(f_{pp}^{\pm}, f_{pp}^{\pm}) \rangle_b + \langle C(f_{pp}^{\pm}, f_{tp}^{\nu}) \rangle_b + \langle C(f_{tp}^{\nu}, f_{pp}^{\pm},) \rangle_b + \langle S_{\text{NBI}} \rangle_b = L_{\text{FP}} \cdot \bar{f}$

• S_{NBI} NBI source (e.g. birth profile), L_{FP} loss term (\dot{n}, \dot{T} model)

Hybrid for NBCD, v_{tor} II

- Legendre expansion of $C(f, f) \approx C(\sum_n P_n f_n, f)$:
 - Oth order: particle balance, power balance
 - 1st order: momentum balance,
 - n-th order: if strong v_{tor} ...
- Monte-Carlo:

$$V(\delta f_{\rm MC}) - C(\bar{f}, \delta f_{\rm MC}) - \underbrace{C(\delta f_{\rm MC}, \bar{f})}_? = -V(\bar{f}) + L_{\rm FP}\bar{f}$$

• if $\delta f_{\rm FP}$ is assymptric then $C(\delta f_{\rm MC}, \delta f_{\rm FP})$ is a source respectively a sink of momentum

Hybrid for ECRH

• Heating is highly localized in phase space

 $\langle C(\delta f_{\rm FP}, f_{\rm M}) \rangle + \langle C(f_{\rm M}, \delta f_{\rm FP}) \rangle + \langle Q^{\rm ql}(\bar{f}) \rangle_b = L_{\rm FP} \cdot \bar{f}$

- ECRH source, e.g. $Q^{ql} = \frac{1}{v_{\perp}} \frac{\partial}{\partial v_{\perp}} v_{\perp} Q_{\perp \perp} \frac{\partial}{\partial v_{\perp}}$, L_{FP} loss term (\dot{T} model)
- Monte-Carlo:

$$V(\delta f_{\rm MC}) - C(\bar{f}, \delta f_{\rm MC}) - \underbrace{C(\delta f_{\rm MC}, \bar{f})}_? = -V(\bar{f}) + L_{\rm FP}\bar{f}$$

Discussion

- Fokker-Plank:
 - Delivers good estimates of f in velocity space
 - Nonlinear treatment of collision term possible
- Monte Carlo:
 - Corrects the neglected Vlasow part of the Fokker-Planck approach

Why not using the advantages of both methods???