DKE Solver NEO-2: Field Line Tracing Revisited*

Winfried Kernbichler¹, Sergei V. Kasilov², Georg Leitold¹

itp

¹Institut für Theoretische Physik Technische Universität Graz Petersgasse 16, A–8010 Graz, Austria

²Institute of Plasma Physics National Science Center "Kharkov Institute of Physics and Technology" UI. Akademicheskaya 1, 61108 Kharkov, Ukraine

*Association EURATOM-ÖAW

Problems with Existing Solvers

• DKES and conventional MC

best suited for collisional regimes all regions of phase space treated in the same manner slow convergence, long run-times in low collisional regime no integral part of the linearized collision operator

• **GSRAKE**

limited to multiple-helicity model

• NEO

low collisionality, no E_r , only pitch angle scattering

• **SMT** (high dimensional problems, convection, ECRH) assumption of low collisionality violated in the region around trapped-passing boundary

Open Physics (and not Physics) Problems

- Bootstrap current in low collisionality regimes
 effect mainly determined by region around trapped-passing boundary
 proper treatment of collisions for these particles is crucial
- Calculation of current drive efficiencies generalized Spitzer functions are the main tool for ECRH, NBI and other methods 2D in tokamaks - 4D in stellarators simplification of collision integrals leads to problems
- Fast solver for balance problems or for filling the database
- Degradation of the performance of most DKE solvers in LMFP regime steep behaviour of *f* across t-p boundary and boundaries between t-classes how to create an adaptive grid in phase space
- Solver for general equilibria PIES, HINT (or just from coil currents) how to avoid magnetic coordinates in a general solver
- SMT needs propagators for the phase space regions where collisions cannot be considered by a perturbation theory in the LMFP regime (near t-p boundary)

Questions - And a Vision

• Can one build on the strength of field line tracing

- good convergence in the low collisionality regime
- no immediate need for magnetic coordinates
- relatively easy (e.g., compared to SMT)
- fast

• and construct a general solver?

- which works in all collisionality regimes
- which includes drive from inductive parallel electric fields
- which effectively resolves steep behaviour of \boldsymbol{f}
- which uses the full linearized collision operator
- which allows for radial electric fields
- Let's start with all collisionality regimes (and parallel electric fields)
- and look ahead to the full collision operator and to $E_r \neq 0$

Drift Kinetic Equation

$$\sigma \frac{\partial \tilde{f}^{\sigma}}{\partial s} - \frac{\partial}{\partial J_{\perp}} \left(4\nu \frac{|v_{\parallel}| J_{\perp}}{B} \frac{\partial \tilde{f}^{\sigma}}{\partial J_{\perp}} \right) = \frac{\partial}{\partial J_{\perp}} \left(\frac{|v_{\parallel}|}{B} V_G \frac{\partial f_M}{\partial \psi} \right)$$

with normalization and

$$\begin{split} \hat{V}_G &= \frac{1}{3} \left(\frac{4}{\hat{B}} - \eta \right) |\nabla \psi| k_G & \text{radial drift velocity} \\ & |\nabla \psi| k_G & \text{geodesic curvature} \\ & \sigma & \text{sign of } v_{\parallel} \\ \eta &= (1 - \lambda^2) / \hat{B} & \text{dimensionless perpendicular action} \\ & \tilde{f}^{\sigma} &= \frac{v}{\omega_{c0}} \frac{\partial f_M}{\partial \psi} \hat{f}^{\sigma} & \text{distribution function} \end{split}$$

turns into

$$\sigma \frac{\partial \hat{f}^{\sigma}}{\partial s} - \kappa \frac{\partial}{\partial \eta} \left(\frac{|\lambda|\eta}{\hat{B}} \frac{\partial \hat{f}^{\sigma}}{\partial \eta} \right) = \frac{\partial}{\partial \eta} \left(\frac{|\lambda|}{\hat{B}} \hat{V}_G \right)$$

Particle Flux Density

Averages over flux surfaces expressed through field line integrals

$$F_{n} = -\pi \lim_{L \to \infty} \left(\int_{0}^{L} \frac{\mathrm{d}s}{B} |\nabla \psi| \right)^{-1} \sum_{\sigma = \pm 1} \int_{0}^{L} \mathrm{d}s \int_{0}^{\infty} \mathrm{d}v \, v \int_{0}^{v^{2}/B} \mathrm{d}J_{\perp} \tilde{f}^{\sigma} \frac{\partial}{\partial J_{\perp}} \frac{|v_{\parallel}|}{B} V_{G}$$

$$= \pi \int_{0}^{\infty} \mathrm{d}v \frac{v^{5}}{\omega_{c0}^{2}} \frac{\partial f_{M}}{\partial \psi} \lim_{L \to \infty} \left(\int_{0}^{L} \frac{\mathrm{d}s}{B} |\nabla \psi| \right)^{-1} \sum_{\sigma = \pm 1} S^{\sigma}(L)$$

$$\frac{\mathrm{d}S^{\sigma}(s)}{\mathrm{d}s} = -\int_{0}^{1/\hat{B}} \mathrm{d}\eta \hat{f}^{\sigma} \frac{\partial}{\partial \eta} \frac{|\lambda|}{\hat{B}} \hat{V}_{G} = \int_{0}^{1} \mathrm{d}|\lambda| \hat{f}^{\sigma} \frac{\partial}{\partial|\lambda|} \frac{|\lambda|}{\hat{B}} \hat{V}_{G}$$

$$S^{\sigma}(0) = 0$$

Parallel Current Density

Discretization over η - **Scheme**

 $\begin{aligned} f_n^\sigma &= \int_{\eta_{n-1}}^{\eta_n} d\eta \hat{f}^\sigma & \text{ integrated flux densities for a band} \\ \eta_{n-1}, \, \eta_n & \text{ boundaries of band number } n \end{aligned}$

Discretization over η

$$\sigma \frac{\partial f_n^{\sigma}}{\partial s} = -\frac{\kappa}{2} \left(\eta_n \left(\frac{\partial \hat{f}^{\sigma}}{\partial |\lambda|} \right)_n - \eta_{n-1} \left(\frac{\partial \hat{f}^{\sigma}}{\partial |\lambda|} \right)_{n-1} \right) + \left(\frac{|\lambda| \hat{V}_G}{\hat{B}} \right)_n - \left(\frac{|\lambda| \hat{V}_G}{\hat{B}} \right)_{n-1}$$

Taylor expansion over pitch λ around $\lambda_n = \lambda(s, \eta_n)$

$$\hat{f}^{\sigma} = f_0 + f'_0(|\lambda| - |\lambda_n|) + \frac{1}{2}f''_0(|\lambda| - |\lambda_n|)^2 + \frac{1}{6}f'''_0(|\lambda| - |\lambda_n|)^3$$

formal solution for third order finite difference approximation

$$\left(\frac{\mathrm{d}\hat{f}^{\sigma}}{\mathrm{d}|\lambda|}\right)_{n} \equiv \left.\frac{\mathrm{d}\hat{f}^{\sigma}}{\mathrm{d}|\lambda|}\right|_{\eta=\eta_{n}} = f_{0}' = \sum_{k=n-1}^{n+2} \mathcal{D}_{n,k}f_{k}^{\sigma}$$

third order conservative finite difference representation of the Lorentz collision operator

Discretized DKE

$$\frac{\partial f_n^{\sigma}}{\partial s} = \sum_{k=n-2}^{n+2} a_{n,k} f_k^{\sigma} + q_n$$

$$a_{n,k} = \frac{\sigma\kappa}{2} \begin{pmatrix} \eta_{n-1} \mathcal{D}_{n-1,n-2}, & k=n-2, \\ \eta_{n-1} \mathcal{D}_{n-1,k} - \eta_n \mathcal{D}_{n,k}, & n-1 \le k \le n+1, \\ -\eta_n \mathcal{D}_{n,n+2}, & k=n+2 \end{pmatrix},$$

$$q_n = \left(\frac{|\lambda| \hat{V}_G}{\hat{B}}\right)_n - \left(\frac{|\lambda| \hat{V}_G}{\hat{B}}\right)_{n-1}.$$

coupled set of linear ordinary differential equations for band-integrated flux densities

Boundary Problem

Flux density integrated over boundary layer

Placing of Levels - Introduction of Ripples

Propagator

$$\begin{array}{c} {}^{l}_{o}\mathbf{f}^{+}, {}^{l}_{o}\mathbf{f}^{-}, {}^{r}_{o}\mathbf{f}^{+}, {}^{r}_{o}\mathbf{f}^{-} \\ {}^{g}_{o}\mathbf{q}^{-}, {}^{g}_{o}\mathbf{q}^{+}, {}^{e}_{o}\mathbf{q}^{-}, {}^{e}_{o}\mathbf{q}^{+} \\ {}^{g,p}_{o}\alpha_{int}, {}^{e,p}_{o}\alpha_{int}, {}^{g,c}_{o}\alpha_{int}, {}^{e,c}_{o}\alpha_{int} \\ {}^{p}_{o}\mathbf{a}^{+}, {}^{p}_{o}\mathbf{a}^{-}, {}^{c}_{o}\mathbf{a}^{+}, {}^{c}_{o}\mathbf{a}^{-} \\ {}^{o}_{o}\mathbf{A}^{++}, {}^{o}_{o}\mathbf{A}^{--}, {}^{o}_{o}\mathbf{A}^{+-}, {}^{o}_{o}\mathbf{A}^{-+} \end{array}$$

level integrated phase space flux density
sources from inside
mfl integrals of particle flux and current
distribution of flux (current) production (ext)
convolution matrices

Propagator - Additional Formulas

Convolution plus sources

$${}^{r}_{o}\mathbf{f}^{+} = {}_{o}\mathbf{A}^{++} \cdot {}^{l}_{o}\mathbf{f}^{+} + {}_{o}\mathbf{A}^{-+} \cdot {}^{r}_{o}\mathbf{f}^{-} + {}^{g}_{o}\mathbf{q}^{+} + {}^{e}_{o}\mathbf{q}^{+}$$
$${}^{l}_{o}\mathbf{f}^{-} = {}_{o}\mathbf{A}^{--} \cdot {}^{r}_{o}\mathbf{f}^{-} + {}_{o}\mathbf{A}^{+-} \cdot {}^{l}_{o}\mathbf{f}^{+} + {}^{g}_{o}\mathbf{q}^{-} + {}^{e}_{o}\mathbf{q}^{-}$$

Field line integrals of flux and current are expressed through efficiencies (external, total)

Joining of Propagators

Propagators have group properties

$$_{1}P * _{2}P = _{1,2}P$$
 , $_{1}P * (_{2}P * _{3}P) = (_{1}P * _{2}P) * _{3}P$

Numerics solving systems of linear equations convolution of matrices band structure

Propagator Visualization - 1

Propagator Visualization - 2

Back to Solution within the Ripple - Renormalization

General solution in + ($\lambda > 0$) and - ($\lambda < 0$) half-spaces

$$\mathbf{f}(s) = \begin{pmatrix} \mathbf{f}^+(s) \\ \mathbf{f}^-(s) \end{pmatrix} = \begin{pmatrix} f_i^+(s) \\ f_i^-(s) \end{pmatrix}$$

- Boundary layer included on negative half-space (free choice)
- Integration of DKE in positive direction one does not want to go forward and backward in RK
 - half-space with $\lambda > 0$: Diffusion dispersing solution
 - half-space with $\lambda < 0$: Anti-Diffusion peaking solution \Rightarrow numerically unstable
- Solution Renormalization

Renormalization - Start

DKE Solver (\Longrightarrow)	Backward		Bound	Boundary condition at first step	
	${}_{(1)}g^+_{ik}(s_0) = 0$	\implies	${}_{(1)}g^+_{ik}(s_1)$		
	$_{(1)}g_{ik}^{-}(s_0) = \delta_{ik}$	\implies	${}_{(1)}g_{ik}^-(s_1)$		
	${}_{(1)}f_i^+(s_0) = {}^l f_i^+$	\implies	$_{(1)}f_i^+(s_1)$		
	$_{(1)}f_i^-(s_0) = 0$	\implies	$_{(1)}f_i^-(s_1)$		
	$f_i^+(s_0) = {}^l f_i^+$				
	$f_i^-(s_0) = {}_{(1)}\beta_i$	\Leftarrow			

Green's function ${}_{(n)}g^{\pm}_{ik}$ and shifted solution ${}_{(n)}f^{\pm}_{i}$ in renormalization interval n

Renormalization - Intermediate

Forward		Backward	Boundary condition at	intermediate boundary	y s_n
$_{(n)}g^+_{ij}(s_n)$			$_{(n)}g^{+}_{ij}(s_{n})_{(n)}C_{jk}$	$= {}_{(n+1)}g^+_{ij}(s_n)$	\implies
$_{(n)}g_{ij}^{-}(s_{n})$			$_{(n)}g_{ij}^{-}(s_{n})_{(n)}C_{jk}$ =	$=\delta_{ik}={}_{(n+1)}g_{ij}^{-}(s_n)$	\implies
$_{(n)}f_i^+(s_n)$		$_{(n)}f_i^+$	$(s_n) - {}_{(n)}g^+_{ik}(s_n){}_{(n)}\alpha_k$	$= {}_{(n+1)}f_i^+(s_n)$	\rightarrow
$_{(n)}f_i^-(s_n)$		$_{(n)}f_i^-$	$(s_n) - {}_{(n)}g_{ik}(s_n){}_{(n)}\alpha_k =$	$= 0 = {}_{(n+1)}f_i^-(s_n)$	\Longrightarrow
		(n	$_{n}\alpha_{k} = {}_{(n)}C_{ki(n)}f_{i}^{-}(s_{n})$		\implies
		$_{(n)}\beta_k =$	${}_{(n)}C_{kj(n+1)}\beta_j - {}_{(n)}\alpha_k$		-
	J	$f_i^+(s_n) = {}_{(n)}f_i^+$	$^{+}(s_{n}) + {}_{(n)}g_{ik}^{+}(s_{n}){}_{(n)}\beta_{k}$		⇐━=
			$f_i^-(s_n) = {}_{(n+1)}\beta_i$		\Leftarrow

Renormalization - Final

Constructing the Solution

Solution within the Ripple - Low Collision

Solution within the Ripple - Medium Collision

Solution within the Ripple - High Collision

Solution for Joined Ripple - Low Collision

Solution for Joined Ripple - Medium Collision

Solution for Joined Ripple - High Collision

Binary Joining

1	\leftarrow	1	
2	~	1	
3	←	1	
4	~	1	
5	←	1	
6	~	1	
7	~	1	
8	~	1	
9	\leftarrow	1	
10	←	1	
11	~	1	
12	\leftarrow	1	
13	~	1	
14	\leftarrow	1	
15	~	1	
16			

$$n_h = \left[\sqrt{(\,_on_h)^2 + (\,_{o+1}n_h)^2}\right]$$

Solution of the drift kinetic equation

Drift kinetic equation:

$$\mathcal{L}_D(f_a) = \mathcal{L}_C(f_a, f_b) + Q$$

- f_a distribution function of particle species a
- \mathcal{L}_D describes particle motion in various electric and magnetic fields
- \mathcal{L}_C Coulomb collision operator
 - Q source term

Full linearized Coulomb collision operator:

 $\mathcal{L}_C(f_{a0} + f_{a1}, f_{b0} + f_{b1}) \cong \mathcal{L}_C(f_{a0}, f_{b0}) + \mathcal{L}_C(f_{a1}, f_{b0}) + \mathcal{L}_C(f_{a0}, f_{b1})$

f_{a0}, f_{b0}	Maxwellian distribution functions
f_{a1}, f_{b1}	correction terms $~(f_1/f_0 \ll 1)$
$\mathcal{L}_C(f_{a0}, f_{b0})$	is zero if both Maxwellians have the same temperature

 f_{a1} is expanded in terms of a complete set of orthogonal velocity-space functions:

$$f_{a1}(\mathbf{r}, \mathbf{v}, t) = \sum_{l=0}^{\infty} \sum_{n=0}^{\infty} c_{ln}^{(a)}(\mathbf{r}, t) B_{ln}(\mathbf{x}_{\mathbf{a}}) f_{a0}$$

$$c_{ln}^{(a)}$$
 expansion coefficients
 B_{ln} Burnett functions
 $\mathbf{x_a} = \mathbf{v}/v_{ta}$ normalized particle velocity

Burnett functions:

$$B_{ln}(\mathbf{x}_{\mathbf{a}}) = x_a^l L_n^{(l+1/2)}(x_a^2) P_l(\cos\theta)$$

 $\begin{array}{ll} L_n^{(l+1/2)} & \text{associated Laguerre polynomials} \\ P_l & \text{Legendre polynomials} \\ \theta & \text{polar angle of } \mathbf{v} \text{ in a spherical coordinate system} \end{array}$

Solution to the DKE:

- substitution of the expansion for f_{a1} into the DKE
- multiplication of the DKE on the left by the basis function $B_{l'n'}$
- \bullet integration over ${\bf v}$
- DKE is converted into an infinite set of linear equations for c_{ln}

$$\sum_{l=0}^{\infty}\sum_{n=0}^{\infty}c_{ln}^{(a)}\left(\mathcal{L}_{l'n',ln}^{D}-\mathcal{L}_{l'n',ln}^{C}\right)=Q_{l'n'}$$

 $\mathcal{L}_{i'j',ij}$ matrix elements

Matrix elements (ME) of the linearized Coulomb operator: (see, e. g. [1])

$$\begin{aligned} \mathcal{L}_{l'n',ln}^{C} &= M_{n',n}^{(l)} + N_{n',n}^{(l)} \\ \text{differential part:} \quad M_{n',n}^{(l)} &= \int \mathrm{d}\mathbf{v} B_{l'n'} \mathcal{L}_{C}(B_{ln}f_{a0}, f_{b0}) \\ \text{integral part:} \quad N_{n',n}^{(l)} &= \int \mathrm{d}\mathbf{v} B_{l'n'} \mathcal{L}_{C}(f_{a0}, B_{ln}f_{b0}) \end{aligned}$$

- ME can be computed by means of a generated function technique [2]
- generating functions for the ME are governed by recursion relations
- thus, fast numerical evaluation of the ME is possible

Radial Electric Field

- Approximate the cross field convection (rotation) term with the help of finite-difference scheme over θ_0
- Generalize renormalization procedure to allow for field maxima within the ripple
- Solve the coupled (cross field convection) system of ODEs for all field lines which start at $\phi=0$,
- Integrate them to the end of a field period
- Apply the periodicity condition
- Sparse matrices, band-block structure
- Standard way HARD PROBLEM: Adaptive grid in phase space
- Alternative 2-D Propagators wait for NEO-3

References

[1] S. K. Wong, *Phys. Fluids* 28, 1695 (1985).
[2] S. I. Braginskii, *Sov. Phys. JETP* 6, 358 (1958).