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using local Polyakov loops as the degrees of freedom. The sign problem is solved by exactly
mapping the partition function to a sum over flux and monomer variables with only real and
positive weights, making the two models accessible to Monte Carlo simulation techniques. We
use generalized worm algorithms and a local Metropolis update to perform the simulations and
determine the phase diagram as a function of the temperature and the chemical potential.
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1. Introductory remarks

Running and upcoming experiments, e.g., ALICE, RHIC, FAIR and NICA will give access to
different states of strongly interacting matter at various temperatures and densities. Mapping
these states in the QCD phase diagram is a challenging task that requires understanding of non-
perturbative QCD since non-perturbative processes dominate in the transition regions. In principle
lattice QCD is a powerful tool to address non-perturbative phenomena quantitatively, as has, e.g.,
been demonstrated in studies of the phase diagram at zero density [1]. At finite density, however,
the fermion determinant becomes complex making QCD inaccessible to Monte Carlo simulations
already at moderate densities. Only regions of small chemical potential can be studied on the lat-
tice using methods which extrapolate from zero density, such as reweighting techniques, Taylor
expansion, imaginary chemical potential, et cetera (see [2] for recent reviews), while the rest of the
phase diagram remains unexplored and requires new ideas.

In this work we explore effective theories which can be derived from full QCD using the strong
coupling approximation for the gluon action and a hopping expansion for the fermion determinant.
Concerning the gluon interaction the two models are based on the relation of center symmetry
and the deconfiment transition [3]. In addition they take into account the leading center symmetry
breaking terms which couple to the chemical potential µ . At µ 6= 0 these terms give rise to a
complex action and the models inherit the complex phase problem of QCD. We explore two variants
of the model: The “SU(3) effective theory” [4], where the remaining degrees of freedom are traced
SU(3) valued spins, and a second version where the spins are further reduced to the center group
Z3 = {1,ei2π/3,e−i2π/3}. The latter we refer to as the “Z3 effective theory” [5]. In both cases one
can solve the complex phase problem by an exact mapping onto a flux representation (see [6] for
the SU(3) case, and [5] for the Z3 model), where only real and non-negative terms appear in the
partition sum. In this form Monte Carlo simulations are possible for arbitrary chemical potential
and we use generalized Prokof’ev-Svistunov worm algorithms [7] and local Metropolis updates to
study the phase diagram. Our results shed light on the role of center symmetry in the QCD phase
diagram [8]. For the SU(3) case the model is accessible to complex Langevin techniques [4, 9] and
our results from the flux representation may also serve as reference data to study that approach.

2. Effective theories

In pure gauge theory the confinement-deconfinement transition is related to the spontaneous break-
ing of center symmetry [3] and the Polyakov loop, which represents a static quark source, can be
used as an order parameter. When matter fields are coupled, center symmetry is broken explicitly
by the fermion determinant. However, one may expect that the underlying symmetry still gov-
erns parts of the dynamics of the full theory. Thus we consider effective theories with both center
symmetric and center symmetry breaking terms. The action has the general form

S = −∑
x

(
τ

3

∑
ν=1

[
L(x)L(x+ ν̂)?+ c.c.

]
+κ

[
eµL(x)+ e−µL(x)?

])
. (2.1)

In the SU(3) effective theory the degrees of freedom L(x) are the traced SU(3) variables L(x) =
Tr P(x) with P(x) ∈ SU(3) attached to the sites x of a three-dimensional cubic lattice which we
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consider to be finite with periodic boundary conditions. By ν̂ we denote the unit vector in ν-
direction, with ν = 1,2,3. The first term of the action, i.e., the nearest neighbor term, can be
obtained as the leading contribution in the strong coupling expansion of the effective action for
the Polyakov loop. This term is invariant under center transformations L(x)→ zL(x) with z ∈ Z3.
The parameter τ depends on the temperature (it increases with T ) and is real and positive. The
second term, referred to as the magnetic term, is obtained as the leading µ-dependent contribution
in the hopping expansion (large mass expansion) of the fermion determinant. The real and positive
parameter κ is proportional to the number of flavors and depends on the fermion mass (it decreases
with mq). The magnetic term breaks center symmetry explicitly and is complex when the chemical
potential µ is non-zero, thus generating a complex phase problem.

The grand canonical partition function of the model described by (2.1) is obtained by integrating the
Boltzmann factor e−S[P] over all configurations of the Polyakov loop variables. The corresponding
measure is a product over the reduced Haar measures dP(x) at the sites x. Thus

Z = ∏
x

∫
SU(3)

dP(x)e−S[P] =
∫

D[P]e−S[P] . (2.2)

Equations (2.1) and (2.2) define the SU(3) effective theory. Exploring the Yaffe-Svetitsky conjec-
ture [3], it is possible to simplify the effective theory further by using spin variables px ∈ Z3. The
action of the resulting Z3 effective theory is given by

S[p] = −∑
x

(
τ

3

∑
ν=1

[
px p∗x+ν̂

+ c.c.
]
+κ

[
eµ px + e−µ p∗x

])
, (2.3)

and the partition function is a sum over all possible spin configurations

Z = ∏
x

∑
p(x)∈Z3

e−S[p] = ∑
{p}

e−S[p] . (2.4)

3. Solving the complex phase problem

Both effective theories have complex action when µ 6= 0 and thus are not directly suitable for a
Monte Carlo simulation. Applying high temperature expansion techniques, the partition function
can be rewritten in terms of new degrees of freedom, so called flux variables. In the flux represen-
tation the new Boltzmann factors are always real and non-negative and a Monte Carlo simulation
is possible. In this contribution we outline only the general strategy for the derivation of the flux
representation in the SU(3) case and for the details refer to [6] for the SU(3) model and to [5, 8]
for the Z3 case. The general steps to obtain the flux representation are:

• The first step is to write the Boltzmann weight in a factorized form and to expand the expo-
nentials for individual links (nearest neighbor terms) and sites (magnetic terms).

– For the nearest neighbor term this step constitutes an expansion in τ (which is equiv-
alent to high temperature expansion in statistical mechanics because there τ should be
identified with the inverse temperature β ).

eτL(x)L(x+ν̂)? → ∑
lx,ν

τ lx,ν

lx,ν !
[
L(x)L(x+ ν̂)?

]lx,ν ; eτL(x)?L(x+ν̂) → ∑
lx,ν

τ lx,ν

lx,ν !

[
L(x)?L(x+ ν̂)

]lx,ν
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– Magnetic term (we use η ≡ κeµ and η ≡ κe−µ ):

eηL(x) → ∑
sx

ηsx

sx!
L(x)sx ; eηL(x)? → ∑

sx

η
sx

sx!
L(x)? sx

• Reorganizing products and sums we rewrite the partition function as:

Z = ∑
{l,l}

∑
{s,s}

(
∏
x,ν

τ lx,ν+lx,ν

lx,ν !lx,ν !

)(
∏

x

ηsxη
sx

sx!sx!

)(
∏

x

∫
D[P]L(x) f (x)L(x)? f (x)

)
, (3.1)

where f (x) = ∑
3
ν=1[lx,ν + lx−ν̂ ,ν ] + sx and f (x) = ∑

3
ν=1[lx−ν̂ ,ν + lx,ν ] + sx denote the

summed fluxes at the sites x of the lattice.

• The last step is to integrate out the SU(3) variables P(x). The new form of the partition sum
depends only on the flux variables:

– Dimers lx,ν , lx,ν ∈ [0,+∞[ , living on the links (x,ν).
– Monomers sx,sx ∈ [0,+∞[ , living on the sites x.

• The flux variables lx,ν , lx,ν ,sx,sx are the new degrees of freedom and ∑{l,l}∑{s,s} denotes the
sum over all their configurations. The flux variables are subject to a constraint which forces
the total flux f (x)− f (x) to be a multiple of 3 at each site x. All admissible flux configurations
can be shown to have a positive weight and the complex phase problem is solved.

For the Z3 effective theory the flux representation [5] is simpler since there is only a single dimer
per link and a single monomer per site, both with values −1,0 and +1.

4. Numerical analysis

For the Monte Carlo simulation we use a generalized form of the Prokof’ev-Svistunov worm al-
gorithm [7] for the Z3 effective theory, while for the more involved SU(3) case so far only a local
Metropolis algorithm was developed. The generalization of the original Prokof’ev-Svistunov worm
algorithm [7] becomes necessary, since the constraint in theZ3-model enforces the conservation of
flux only modulo 3 and non-zero monomer terms sx may give rise to additional flux at a site. Our
generalization of the original algorithm allows the worm to insert monomer flux and then to ran-
domly hop to another site of the lattice where it continues with the insertion of another monomer.
It can be shown that this procedure is ergodic. The resulting algorithm consists of four different
moves which we illustrate in Fig. 1: The worm starts at a random position (1). It may decide to
insert dimer fluxes (positions 2) but also monomers (3). The insertion of a monomer is followed
by a random hop (4) to another position, where again a monomer is inserted (5). These steps are
continued until the worm closes (6). At each individual step the acceptance of the proposed change
is governed by a Metropolis decision. For alternative strategies in the Z3 model see [10].

5. Results for the Z3 effective theory

We performed several checks of the new worm algorithm: We reproduced the results for vanishing
κ , where the theory is reduced to the 3-state Potts model and has a first order transition at τ =

0.183522(3) [11]. For small τ we calculated the partition function perturbatively up to O(τ3)
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Figure 1: Schematic illustration of the worm algorithm on a 2d lattice.

(dashed curves at the bottom of Figs. 2(a) and 3(a)). Excellent agreement between the MC and the
power series was found. Finally, two independent programs were written for cross checks.

For the analysis we focus on bulk observables and their fluctuations: The internal energy U and the
magnetization 〈px〉, which is identified with the vacuum expectation value of the Polyakov loop of
QCD where a vanishing Polyakov loop indicates confinement while a non-zero value characterizes
the deconfined phase. The corresponding fluctuations are the heat capacity C and the Polyakov
loop susceptibility χP. All these observables can be mapped to the flux representation where they
correspond to expectation values and fluctuations of dimers and monomers. We performed simula-
tions on 363 and 723 lattices with 4 values of κ (0.1, 0.01, 0.005 and 0.001) and chemical potentials
up to 7.5. The phase boundaries are determined from the positions of the maxima of χP and C. In
Fig. 2(a) we show the boundaries in the τ−µ plane as found from χP for all values of κ we studied.
In Fig. 2(b) we compare the boundaries from χP to those from C for two values of κ . It is obvious
that the curves do not coincide indicating that the transitions into the deconfined phase are of a
crossover nature. This picture was confirmed by comparing the heights of the maxima of χP and C
for different volumes, and the absence of a volume dependence again indicates a crossover.
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Figure 2: Phase boundaries in the τ-µ plane for the Z3 model. (a) Left: Phase diagram obtained from the
maxima of χP for 4 values of κ . The horizontal line marks the critical τ for κ = 0. The dashed curves at the
bottom are the results from a τ expansion. (b) Right: Comparison of the phase boundaries obtained from the
maxima of the susceptibility χP and the heat capacity C for two values of κ .
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Figure 3: Phase boundaries of the SU(3) model in the τ-µ plane. (a) Left: Phase diagram obtained from
the maxima of χP for 4 values of κ . The horizontal line marks the critical τ for κ = 0, and the curves at
the bottom are the results from a τ expansion. The red point is the critical end point for κ = 0. (b) Right:
Comparison of the phase boundaries obtained from the maxima of χP and C for three values of κ .

6. Results for the SU(3) effective theory

The SU(3) effective theory has a considerably more complicated flux structure than the Z3 model:
The number of variables is doubled and each variable assumes values in [0,∞[. Currently we
simulate the system with a local Metropolis update where flux around plaquettes, three units of
flux on the same link, or one unit of flux on a link with monomers on the ends are offered to change
a configuration. Again we performed several checks of our program: We reproduced the results
for vanishing κ , where the theory can be updated in the spin representation (2.1). For small τ we
calculated the partition function perturbatively taking into account terms up to τ2 (dashed curves
in Fig. 3(a)). Finally, independent programs were written for cross checks.

We performed simulations on 103, 123, 163 and 203 lattices with periodic boundary conditions at
finite chemical potential and κ = 0.1, 0.04, 0.02 and 0.005. Again we identify the phase boundaries
from the maxima of χP and C. Fig. 3(a) shows the position of the maxima of χP in the τ−µ plane.
We find that there is a first order phase transition for small µ and κ < κc (circles), while the rest is a
crossover (triangles). Fig. 3(b) shows the positions of the maxima of χP and C, demonstrating that
the crossover region becomes wider with increasing µ . To determine the nature of the transitions
we use two methods: First we study the histograms of U and P to check if there is a double peak
behavior characteristic of a first order transition, and, secondly, we analyze the volume scaling of
the C and χP. We find that for κ ≥ 0.04 the transition is a smooth crossover at any value of µ . For
κ < 0.02 and vanishing µ the transition is of first order. The first order behavior persists until it
ends in a critical end point. To determine the exact position of the end point and its µ dependence,
we are currently evaluating Binder cumulants. So far we have a first estimate for the critical point
for µ = 0 at (τc,κc) = (0.130(2),0.0175(25)).

7. Conclusions and outlook

We have studied two effective theories of QCD with finite quark density at non zero temperature.
Mapping the models to a flux representation enables us not only to have a model free of the complex
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phase problem but also opens the possibility to use generalized worm algorithms for the update. For
small values of κ (physical case) the transition is of a smooth crossover type for both models and
we conclude that center symmetry alone does not provide a mechanism for first order behavior in
the QCD phase diagram. From a more technical point of view our results constitute a controllable
reference case that can be used to test other appproaches to finite density lattice QCD.
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