
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) 5469–5482 PII: S0953-8984(04)78907-9

Polaronic aspects of the two-dimensional
ferromagnetic Kondo model

M Daghofer1, W Koller2, H G Evertz1 and W von der Linden1

1 Institute for Theoretical and Computational Physics, Graz University of Technology,
Petersgasse 16, A-8010 Graz, Austria
2 Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2BZ, UK

E-mail: daghofer@itp.tu-graz.ac.at

Received 2 April 2004
Published 16 July 2004
Online at stacks.iop.org/JPhysCM/16/5469
doi:10.1088/0953-8984/16/30/010

Abstract
The two-dimensional ferromagnetic Kondo model with classical core spins
is studied via unbiased Monte Carlo simulations for a hole doping up to
x = 12.5%. A canonical algorithm for finite temperatures is developed. We
show that, with realistic parameters for the manganites and at low temperatures,
the double-exchange mechanism does not lead to phase separation on a two-
dimensional lattice but rather stabilizes individual ferromagnetic polarons
for this doping range. A detailed analysis of unbiased Monte Carlo results
reveals that the polarons can be treated as independent particles for these hole
concentrations. It is found that a simple polaron model describes the physics
of the ferromagnetic Kondo model amazingly well. The ferromagnetic polaron
picture provides an obvious explanation for the pseudogap in the one-particle
spectral function Ak(ω) observed in the ferromagnetic Kondo model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Manganese oxides such as La1−x Srx MnO3, La1−x Cax MnO3 and La2−2x Sr1+2x Mn2O7, which
have been thoroughly studied due to their colossal magnetoresistance (CMR), show a very
rich phase diagram depending on doping, temperature, pressure and other parameters, see
e.g. [1, 2]. The phase diagram includes ferromagnetic (FM), antiferromagnetic (AFM),
paramagnetic (PM), charge-ordered and metallic as well as insulating domains. The
manganites crystallize in the perovskite-like lattice structure, and quasi-two-dimensional
systems with well separated MnO2-(bi)layers also exist.

Crystal field splitting divides the five d orbitals of the Mn ions into three energetically
favoured t2g and two eg orbitals. All three t2g orbitals are singly occupied and rather localized.
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The filling of the eg orbitals is determined by doping and these electrons can hop from one Mn
ion to the next via the intermediate oxygen (double exchange, DE). Due to a strong Hund’s
rule coupling, the spins of the three t2g electrons are aligned in parallel and form a core spin
with length S = 3/2. Being localized, these electrons interact through superexchange, which
leads to a weak antiferromagnetic coupling between the core spins. Hund’s rule coupling also
leads to a ferromagnetic interaction between the itinerant eg electrons and the t2g core spin.

Apart from double and superexchange, a complete description would have to include
Coulomb repulsion between the eg electrons, lattice distortions and disorder. Full quantum
mechanical many-body calculations for a realistic model, including all degrees of freedom, are
not yet possible; see however [3] for a one-dimensional study. Several approximate studies of
simplified models have therefore been performed in order to unravel individual pieces of the
rich phase diagram of the manganites. The electronic degrees of freedom are generally treated
by a Kondo lattice model [4].

As full quantum mechanical results in more than one dimension are difficult to obtain for
the quantum mechanical Kondo lattice model, it has been proposed to treat the S = 3/2 core
spins classically; see de Gennes [5], Dagotto et al [6, 7] and Furukawa [8]. Unbiased Monte
Carlo (MC) techniques can then be applied. Coulomb repulsion [9], classical phonons [10]
and disorder [11] have also been treated within this classical approach. The validity of this
approximation has been tested in [6, 12–14] and it appears that quantum effects are important
for (S = 1/2) core spins or at T = 0. For finite temperature and S = 3/2, classical spins
present a reasonable approximation.

Further approximations can be made by taking into account that the Hund coupling JH

is much stronger than the kinetic energy. Consequently, configurations are very unlikely in
which the electronic spin is antiparallel to the local core spin. A customary approach is to take
JH → ∞. This approximation however breaks down for the almost completely filled lower
Kondo band. In the dilute hole regime, the full Kondo model is governed by an effective AFM
interaction between the core spins due to excitations into the upper Kondo band. This effect
is completely absent from the JH → ∞ model.

An effective spinless fermion (ESF) model [15] has been proposed to improve upon this
approximation. In this model, virtual excitations account for effects of configurations in which
the itinerant electron spin is antiparallel to the local core spin. It has been demonstrated that
the results of the ESF model are in excellent agreement with those of the original Kondo model
even for moderate values of JH.

For the FM Kondo with classical t2g core spins, elaborate Monte Carlo simulations
have been performed in various dimensions [6–8, 15–23] in order to determine the physical
properties of the DE model. For a review see for example [7] and references therein.
A two-dimensional Kondo lattice model for manganites in the JH → ∞ limit has been
thoroughly investigated [23] by means of MC calculations similar to ours and by analytical
comparison of the ground-state energy for several phases. Using a relatively high value for the
antiferromagnetic exchange coupling, Aliaga et al find phase separation (PS), stripes, island
phases (small ferromagnetic domains that are stacked antiferromagnetically) for commensurate
fillings, and a so-called ‘flux phase’. In a 2D Kondo model applied to cuprates, stripes and a
pseudogap are observed in MC simulations [24–26].

Many of these studies revealed features,e.g. an infinite compressibility near the filled lower
Kondo band, which have been interpreted as signatures of PS. PS has also been reported [27]
from computations based on a dynamical mean field treatment based on the DE model at
T = 0. In previous MC studies [15, 21] for the DE model with classical core spins for 1D
systems, we had obtained numerical data comparable to those reported in [6, 16, 17]. A detailed
analysis of the data [22] revealed, however, that the aforementioned model with the standard
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parameter set, relevant for the manganites, favours individual polarons over phase separation.
Other authors also found ferromagnetic polarons for the almost empty lower Kondo band
(i.e. very few electrons) for S = 1/2 core spins [28, 29], for the 1D AF Kondo model with few
electrons [30], and for the 1D paramagnet at higher temperatures [31]. Small ferromagnetic
droplets were predicted from energy considerations [32].

In this paper, we present a numerical study of the 2D ferromagnetic Kondo model with
classical core spins. As in 1D, we find that the correct physical interpretation of the features
which have been interpreted as PS is rather given by ferromagnetic polarons, i.e. small FM
regions with one single trapped charge carrier. The polaron picture allows also a straightforward
and obvious explanation of the pseudogap, which has been previously observed in the spectral
density in experiments [33–36] and MC simulations [7, 15]. Experimental evidence for small
FM droplets in low doped La1−x Cax MnO3 has been reported [37, 38].

This paper is organized as follows. In section 2 the model Hamiltonian is presented and
particularities of the MC simulation for the present model are outlined. A canonical algorithm is
introduced. In section 3, we introduce a simplified model of ferromagnetic polarons embedded
in an AFM background and present results for this model. In section 4, these results are
compared to unbiased Monte Carlo simulations of the 2D ferromagnetic Kondo model with
classical core spins at realistic parameter values. The key results of the paper are summarized
in section 5.

2. Model Hamiltonian and unbiased Monte Carlo simulation

In this paper, we will concentrate solely on properties of the itinerant eg electrons interacting
with the local t2g core spins. We also neglect the degeneracy of the eg orbitals. The degrees
of freedom of the eg electrons are then described by a single-orbital Kondo lattice model [21].
As the core spins are approximated by classical spins, they are replaced by unit vectors Si ,
parametrized by polar and azimuthal angles θi and φi , respectively. The magnitude of both
core spins and eg spins is absorbed into the exchange couplings.

2.1. Effective spinless fermions (ESFs)

By choosing the quantization of the eg spin parallel to the local t2g core spin, simplified low
energy models for fillings 0 � Nel � 1 (i.e. for the lower Kondo band) can be derived, namely
the JH → ∞ approximation and the effective spinless fermion model with finite JH (see [15]):

Ĥ = −
∑
〈i, j〉

t↑↑
i, j c†

i c j −
∑
i, j

t↑↓
i, j t↓↑

j,i

2JH
c†

i ci + J ′ ∑
〈i, j〉

Si · S j . (1)

The spinless fermion operators c j correspond to local spin-up electrons (i.e. parallel to the
core spin) only. The spin index has therefore been omitted. With respect to a global spin-
quantization axis the ESF model (1) still contains contributions from both spin-up and spin-
down electrons.

The first term in equation (1) corresponds to the kinetic energy in the tight binding
approximation. The modified hopping integrals tσ,σ

′
i, j depend upon the t2g core spin orientation

tσ,σ
′

i, j = t0 uσ,σ
′

i, j , (2)

where the relative orientation of the t2g core spins at site i and j , expressed by the angles
0 � ϑ � π and 0 � φ < 2π , enters via

uσ,σi, j (S) = ci c j + si s j e
i(φ j −φi ) = cos(ϑi j/2) eiψi j

uσ,−σi, j (S) = ci s j e
−iφ j + si c j e

−iφi = sin(ϑi j/2) eiχi j
(3)
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with the abbreviations ci = cos(ϑi/2) and si = sin(ϑi/2). These factors depend on the relative
angle ϑi j of core spins Si and S j and on some complex phases ψi j and χi j . Because hopping
is largest for parallel core spins, this term favours ferromagnetism. For certain spin structures,
an electron may obtain a different phase depending on the path taken from one lattice site to
another. An example of such structures is the so-called flux phase [23, 39, 40].

The second term in equation (1) accounts for virtual hopping processes to antiparallel spin–
core-spin configurations and vanishes in the limit JH → ∞. For finite JH, the ESF model takes
into account virtual hopping processes to antiparallel spin–core-spin configurations much in the
same way as the t J -model includes virtual hopping to doubly occupied sites for the Hubbard
model. Because this term is proportional to the density, it is most relevant near the completely
filled lower Kondo band, where the kinetic energy is moreover reduced. The last term is a
small antiferromagnetic exchange of the core spins.

The hopping strength t0 will serve as our unit of energy. JH is usually taken to be of the
order of magnitude of 4t0 to 8t0, and J ′ of the order of t0/100.

2.2. Grand canonical treatment

We define the grand canonical partition function as

Z(µ) =
∫

D[S] trc e−β(Ĥ (S)−µN̂)

∫
D[S] =

L∏
i=1

(∫ π

0
dθi sin θi

∫ 2π

0
dφi

)
,

(4)

where trc indicates the trace over fermionic degrees of freedom at inverse temperature β and
chemical potential µ, and N̂ is the operator for the total number of eg electrons. As Ĥ is a
one-particle Hamiltonian, the fermionic trace can easily be carried out using the free fermion
formula, yielding the statistical weight of a core-spin configuration S

w(S|µ) = trc e−β(Ĥ(S)−µN̂)

Z(µ) . (5)

Equation (4) is the starting point of grand canonical Monte Carlo simulations of the Kondo
model [6] where the sum over the classical spins is performed via Markov chain importance
sampling; the spin configurationsS are sampled with the probability determined by the weight
factor w(S|µ).

In order to avoid the CPU expensive full diagonalization of the one-particle Hamiltonian,
Motome and Furukawa [41] suggested replacing it with an expansion in Chebychev
polynomials. The CPU time then scales with the system size L as O(L2 log(L)) instead
of O(L3) as for the full diagonalization and the algorithm can be easily parallelized. We
found, however, that on single processors the full diagonalization can be accelerated to be
faster than this approach up to system sizes of 103 lattice sites, while both algorithms would be
too slow for the study of larger systems on present day’s processors. The key for a faster full
diagonalization is to exploit the structure of the Hamiltonian: the lattice sites are relabelled in
order to obtain a band matrix with as few diagonals as possible. This is only an alternative
assignment of the linear index to the two-dimensional lattice vector and therefore does not
introduce any approximation or error. Fast library routines for band matrices can then be used.
Since the purpose of our MC code was to perform parameter studies, we did not program a
parallel algorithm but instead ran the whole calculation on each CPU with a different parameter
set. Recently, an O(L) algorithm has been proposed by the same authors, which reduces the
numerical effort by approximating the matrix–vector multiplication [20].
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In the 2D case we have employed MC updates in which single spins were rotated. The
angle of rotation was optimized to keep the acceptance high enough. From time to time a
complete flip Si → −Si was proposed. The skip between subsequent measurements was
chosen to be 50 to a few hundred lattice sweeps, reducing autocorrelations to a negligible
level. We have performed MC runs with some hundreds to 2000 measurements on a 12 × 14
lattice. This geometry was chosen to reduce finite size (closed shell) effects observed on
a square lattice. The number of measurements was higher for calculations in the polaronic
regime, where the particle number fluctuates strongly, in order to have sufficient measurements
for each filling.

As previously shown [21], the spin-integrated one-particle Green function in global
quantization can be written as

∑
σ

〈〈aiσ ; a†
jσ 〉〉ω =

∫
D[S] w(S|µ)u↑↑

j i (S)〈〈ci ; c†
j〉〉Sω, (6)

where 〈〈ci ; c†
j〉〉Sω is the Green function in local spin quantization. It can be expressed in terms

of the one-particle eigenvalues ε(λ) and the corresponding eigenvectorsψ(λ) of the Hamiltonian
Ĥ (S):

〈〈ci ; c†
j〉〉Sω =

∑
λ

ψ(λ)(i) ψ∗(λ)( j)

ω − (ε(λ) − µ) + i0+
.

It should be pointed out that the one-particle density of states (DOS) is identical in global and
local quantization; for details see [21].

2.3. Canonical algorithm

Due to the jump in the electron density at the critical chemical potential (shown later in
figure 5), some electron fillings cannot be examined with the grand canonical algorithm. We
therefore developed a canonical scheme. Canonical calculations were done by computing
the eigenenergies for each core-spin configuration and then filling the available electrons into
the lowest levels [23]. This method does not, however, account for thermal particle–hole
excitations around the Fermi energy. When several one-particle states have similar energy,
these may become important. It was also proposed to adjust the chemical potential by solving
an implicit equation using the Newton–Raphson algorithm for every single spin configuration
to give the wanted particle number [42]. While this approach includes particle–hole excitations,
it is still not certain whether the calculation is correct and small differences possibly have a
considerable effect when phases with and without a pseudogap compete.

On the other hand, an exact approach would mean calculating the Boltzmann weight
for every possible distribution of Nel particles on L energy levels and summing over their
contributions. Even for small lattice sizes L, this clearly becomes too demanding for more
than a few electrons or holes. Instead, we took into account just the lowest excitations of
the Fermi sea by filling N0

el < Nel electrons into the N0
el lowest states and considering only

the distributions of the Nel − N0
el remaining electrons on the states around the Fermi energy.

Usually, it is sufficient to take Nel − N0
el ≈ 5. The weight for the core-spin configuration S

then depends on the particle number instead of the chemical potential:

w(S|Nel) =
∑

P̃ e−β Ĥ(S,P̃(Nel))

Z(Nel)
, (7)

where P̃ denotes these restricted permutations.
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Although this is more time-consuming than the grand canonical calculation of the
fermionic weight, the additional consumption of computer time is small compared to the time
needed for the diagonalization of the one-particle Hamiltonian. The particle–hole excitations,
which are thus included, can be crucial when examining competition between phases with and
without a pseudogap.

An MC update—especially a complete spin flip—may lead to a configuration which is
very unlikely to occur at the given particle number, although it may be a good configuration for
a different filling. A later MC move might then lead back to the original particle number, and
these moves should improve autocorrelation. We therefore allow density fluctuations within
a set of four to five particle numbers. In order to spend a comparable number of MC steps at
each filling, prior weight factors g(Nel) were introduced and adjusted in a prerun, giving

w(S) =
Nmax∑

Nel=Nmin

w(S|Nel) g(Nel). (8)

The sum is taken over the set of allowed particle numbers Nmin � Nel � Nmax and w(S|Nel)

is calculated according to equation (7).
When evaluating observables for fixed electron number, one has to calculate the

expectation value

〈O〉Nel =
∑

S O(S)Nel w(S|Nel)∑
S w(S|Nel)

, (9)

which can be rewritten as

〈O〉Nel =
∑

S O(S)Nel

w(S|Nel)

w(S) w(S)∑
S
w(S|Nel)

w(S) w(S)
, (10)

Configurations S occur in the Markov chain with probability proportional to w(S); when the
sum is taken over the configurations produced by the MC run, the expectation value therefore
becomes

〈O〉Nel ,MC =
∑

S,MC O(S)Nel

w(S|Nel)

w(S)∑
S,MC

w(S|Nel)

w(S)
. (11)

3. Ferromagnetic polaron model

Near half filling of a single eg band, a tendency toward phase separation has been reported in
various computational studies [6, 16, 17, 27].

In most cases, the existence of phase separation is inferred from a discontinuity of the
electron density as a function of the chemical potential. At the critical chemical potential
where this discontinuity is found, it is claimed that the system separates into FM domains of
high carrier concentration and AFM domains of low carrier concentration.

We have already shown that for a 1D system [22] this picture is in general incorrect. In
fact, what happens is that each single hole is dressed by a ferromagnetic cloud in which it
delocalizes. The system can be well described by free quasiparticles consisting of a single
hole plus a local (three to four sites for 1D, five sites for 2D) ferromagnetic well embedded
in an AF background. Each of these added quasiparticles gains the same energy, which is
exactly balanced by the energy to be paid for the critical chemical potential µ∗. Hence the
discontinuity of the particle number at low temperatures.

Here we show that ferromagnetic polarons, i.e. single charge carriers surrounded by small
ferromagnetic spin clouds, are indeed formed when holes are doped into a completely filled
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lower Kondo band in 2D. In this section we discuss the properties of idealized two-dimensional
model polarons, whereas in the next section we compare our polaron model to unbiased Monte
Carlo results.

3.1. One single polaron

As reference configuration we consider the completely filled lower Kondo band where super-
exchange and the contribution from the virtual hopping process (see equation (1)) give rise to an
antiferromagnetic core-spin pattern. The smallest defect in a completely antiferromagnetically
ordered 2D lattice is the flipping of one single spin. Then a five-site ferromagnetic region
forms. When we introduce a hole into the system, it can delocalize in this region because of
the double-exchange mechanism. As there is no double-exchange hopping between sites with
perfectly antiferromagnetic spins, the hole is trapped inside the ferromagnetic region. In this
simple model, the hole can hop from the central site of this region (site 1) where the spin has
been flipped, to all nearest neighbours (sites 2–5). The tight binding Hamiltonian describing
this situation reads

Hhole = −tf




0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0


 ,

with the hopping between ferromagnetic sites tf in this model. Since the Hamiltonian is
symmetric with respect to rotations by π/2, the ground state should also show this property
and can thus be found in the space spanned by (1, 0, 0, 0, 0), (0, 1/2, 1/2, 1/2, 1/2), where
the Hamiltonian reads

Hhole = −tf

(
0 2
2 0

)
.

The delocalization energy of the hole is thus given by εhole = −2 tf . This energy
can be gained as a hole delocalizes in the ferromagnetic domain. The ground state
1/

√
2 (1, 1/2, 1/2, 1/2, 1/2) has the hole density depicted in figure 1(a). Excited

states are found at ε = +2 tf and 0. The highest state at ε = +2 tf is given by
1/

√
2 (−1, 1/2, 1/2, 1/2, 1/2) and also has s symmetry, while the states at ε = 0 have p

and d symmetry. They appear in the one-particle spectral function of the configuration shown
in figure 1(b).

To create such a ferromagnetic domain, however, four antiferromagnetic bonds have to be
broken. This costs an energy of 2×4 Jeff . Near the completely filled lower Kondo band x = 0,
the total antiferromagnetic exchange coupling is approximately given by Jeff = 1/(2JH) + J ′;
see [22]. The energy gained by adding one hole to the system thus reads

εpol = −2 tf + 8Jeff . (12)

When the chemical potential approaches −εpol from above, holes start to enter the system
forming individual polarons. Therefore, the critical chemical potential is given byµ∗ = −εpol.

Up to a certain concentration, these holes can be treated as free fermions which all have
the same energy εpol. The energy may, however, depend on the temperature if tf or Jeff do. The
more obvious temperature effect is the smearing of the discontinuity in the electron filling at
higher temperatures, which results from the application of the Fermi–Dirac statistics to these
quasiparticles.

It is interesting to compare the energy of two such independent holes to a larger FM
formation containing two holes. The two possibilities with the fewest broken AFM bonds are
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Figure 1. Idealized FM polaron of L f = 5 lattice sites, embedded in an AFM background. (a) Spin
and hole-density configuration for the ground state. Empty (filled) squares represent spin down
(up). Height represents hole density. (b) Contribution of the polaron to the one-particle spectral
function. For visibility, the δ-peaks in the spectral density have been broadened to a width of 0.2.
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Figure 2. Idealized pictures of possible spin configuration containing two holes. Empty (filled)
squares represent spin down (up). Height represents hole density.

depicted in figure 2. For both configurations, eight AFM bonds have to be broken, the same as
for two polarons. For the formation in figure 2(a), the sum of the two lowest eigenenergies is
however ε1 + ε2 = −3.97 tf , i.e. the kinetic energy gained is smaller than for two independent
polarons, where it is 2εhole = −4 tf . For the second formation figure 2(b), the energy gain is
even lower (ε1 +ε2 = −3.86 tf). The larger FM structures with two holes therefore have higher
energy than two separate holes and are energetically disfavoured, although the difference is
not very large, especially for the structure depicted in figure 2(a).

3.2. Results for a small number of polarons

In this subsection we push our polaron ideas further to treat the case of a small number of holes
in an AFM background. To this end, we perform a simple simulation. We start with a perfect
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Figure 3. Representative hole-density configuration for 10 (left, x ≈ 0.06) and 20 (right,
x ≈ 0.12) holes in the simplified polaron model on a 12 × 14 lattice. The holes are located
where one spin is flipped from the AFM reference configuration. The results correspond to
β = 50, J ′ = 0.02, JH = 6. Grey shades are for better visibility.

AFM reference configuration. We then add Nholes holes by flipping Nholes randomly chosen
spins, excluding flipping a spin back. Finally, we add random deviations to each core spin in
order to account for thermodynamic fluctuations. These fluctuations lead to a finite DE hopping
amplitude in the AFM band and their size is therefore fitted to match the bandwidth observed in
the MC results; see section 4. We then diagonalize the resulting ESF Hamiltonian and compute
observables in the canonical ensemble with Nel = Nsites − Nholes = Nsites − Nflipped spins as
explained in section 2.3. The observables are averaged over many such configurations. Typical
hole-density configurations are depicted in figure 3 for 10 and 20 holes, i.e. 10 respectively
20 spins were flipped from the initial perfect AF configuration. In the formulae for the ESF
Hamiltonian and the observables, the parameters were set to β = 50, J ′ = 0.02 and JH = 6.
It should be emphasized that the probability distribution used in choosing the spins to be
flipped is completely flat. It is only ensured that exactly Nholes spins are flipped from the AFM
reference configuration. The chosen parameter values therefore do not influence the obtained
spin configurations.

As an example for observables calculated in this pure polaron model, we show the one-
particle spectral function for 20 holes in figure 4. The centre is occupied by the AFM
tight binding band with a mirror band due to the doubling of the unit cell in the AFM spin
configuration. At ω = ±2, the polaronic states can be clearly seen. In addition to them,
one sees a number of weaker signals in the vicinity of ω = ±2. These stem from larger
ferromagnetic regions, i.e. from contiguous polarons.

4. Unbiased MC results

In this section we present results of unbiased Monte Carlo simulations for J ′ = 0.02 and
JH = 6 and show that they correspond to independent ferromagnetic polarons.

Figure 5 shows the electron density as a function of the chemical potential at β = 50.
Depending on the value of the hopping parameter t0, this is in a range of 50–100 K, i.e. relevant
for experiments. There is a discontinuity in the density (infinite compressibility), but one
observes that the electron number does not drop at once from 1 (AFM) to 0.8 (FM). Instead,
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Figure 4. Spectral density of the polaron model for
20 holes on a 12 × 14 lattice (x ≈ 0.12), using the same
parameter values as figure 3.

Figure 5. Electron density y as a function of the chemical
potential µ of a 14 × 12 lattice for β = 50, J ′ = 0.02
and JH = 6. Circles indicate MC results; the solid
(dashed) curve shows the free fermion results for the fitted
(estimated) energy.

Figure 6. MC snapshot of the hole density for 10 (left) respectively 20 (right) holes in a 14 × 12
lattice at β = 50, J ′ = 0.02, JH = 6.

it first decreases only slowly from the completely filled band, the slope of the curve then
becomes gradually steeper until it is vertical. For a qualitative description of the MC results
by the polaron model, we use tf = t0 and Jeff = 1/(2JH) + J ′, which yields a polaron energy
of εpol � −1.17. Using this value for the critical chemical potential we obtain the dashed
curve. Although it is shifted by some constant energy, it already correctly reflects the trend in
the Monte Carlo data. Much better agreement can be found by fitting the polaron energy to
the Monte Carlo data. In our case we obtain εpol � −1.14. The corresponding Fermi function
is shown as the solid curve.

Figure 6 shows MC snapshots with 10 and 20 holes.The polarons can be clearly seen,
10 polarons for 10 holes and 19 polarons for 20 holes. Only the 20th hole at the larger doping
is delocalized. There is an obvious similarity to the idealized polaron model; see figure 3.

As in the one-dimensional case, the polarons induce separate states in the one-particle
density of states (DOS) depicted in figure 7, as described in section 3. Figure 7(a) shows the
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Figure 7. One-particle DOS for a few holes in a 14×12 lattice, J ′ = 0.02, JH = 6. (a) Temperature
dependence of the DOS in the case of one hole. The inset shows an enlargement of the polaronic
peak. (b) Doping dependence of the DOS for β = 50.

DOS in the case of one hole in a 14 × 12 lattice at various temperatures. One observes a broad
peak in the centre and two polaronic peaks at ±2 that are separated by a pseudogap. The
pseudogap observed in the Kondo model is thus a direct result of the FM polarons. The broad
central peak is due to holes moving in the not quite perfectly antiferromagnetic background.
As a result of the superexchange term in the Hamiltonian, it is centred around ε = −z/(2JH)

with z = 4 in the 2D square lattice. When no hole is in the system, this peak also shows up
and is then the only feature of the DOS. The width of the peak is mainly dominated by core-
spin fluctuations around the completely ordered state. Consequently, the width decreases with
decreasing temperature. This leads to a wider pseudogap at lower temperatures, as depicted
in figure 7(a).

The polaronic peak, on the other hand, remains largely unaffected by temperature. As can
be seen in the inset of figure 7(a), its shape is virtually constant. Upon introducing more holes
(see figure 7(b)), the weight of the polaronic peaks increases whereas their position and the
shape of the central band remain unaffected. The weight of the polaronic peaks corresponds
to the number of holes. The shape of both the antiferromagnetic band and the polaronic peaks
only begins to change when a large number of holes are added, so that the probability for
overlapping polarons becomes considerable. With five sites per polaron, 20 polarons would
take 100 sites, or 60% of a 14 × 12 lattice, therefore connected polarons and disturbances of
the AF background are to be expected. It is therefore remarkable that even with 20 holes the
polarons seem to remain largely independent.

Figure 8 shows the spectral density for the ESF model with JH = 6, J ′ = 0.02 and β = 50
for six and 20 holes. In addition to the central band, the polaronic states can be seen at energies
slightly below ±2, in perfect agreement with the simple polaron model; see figure 1(b). The
states at ω ≈ 0 are lost within the AFM band. The results for 20 holes (x ≈ 0.12, figure 8(b))
are slightly smeared compared to the results for the simple polaron model in figure 4, but the
similarities are striking.

In order to verify that the addition of holes leads primarily to more small polarons rather
than to a growth of the existing ones, we use a dressed core-spin correlation function

Sh(�r) = 1

L

∑
�i

nh
�i S�i · S�i+�r (13)
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(a) (b)

Figure 8. Spectral density for J ′ = 0.02, β = 50, JH = 6 on a 12 × 14 lattice. (a) Six holes
(x ≈ 0.035): polaronic states in addition to the AFM band. (b) 20 holes (x ≈ 12%).

where nh
�i is the hole density at site �i related to the electron density via nh

�i = 1−n�i ; the sum over
�i is taken over all lattice sites. This dressed correlation measures the ferromagnetic regions
around holes. Figure 9 shows the results for one, six and 20 holes on 12 × 14 sites, which
correspond to doping levels of x = 0.006, 0.036 and 0.12. The results are almost independent
of the doping level x and, above all, the ferromagnetic region does not grow with increasing
hole density. The data are compared to those obtained for the independent polaron model
introduced in section 3 and show very good agreement. The inset of figure 9 shows the usual
core-spin correlation which reveals the AFM background. The antiferromagnetism decreases
with increasing hole concentration, both for the MC simulations and the idealized polaron
model. However, it shrinks somewhat faster for the full ESF model.

The results begin to deviate from the independent polaron results only for doping levels x >
13%, with a more homogenous phase setting in at x ≈ 21%. In between, the polarons attract
each other with a tendency to form larger FM clusters in the antiferromagnetic background,
which eventually leads to phase separation (PS). The transition from polarons to PS is not
well defined. On increasing hole concentration the polarons first coexist with larger hole-rich
clusters which then grow and finally dominate. Details on this range of doping and on the
influence of the AFM superexchange parameter J ′ are the subject of a subsequent publication.

5. Conclusions

In this paper, the ferromagnetic Kondo (double-exchange) model in 2D has been analysed by
unbiased finite temperature Monte Carlo simulations. It has been found that upon hole doping
small ferromagnetic regions appear around each individual hole while the rest of the lattice
stays antiferromagnetically ordered. Each of the ferromagnetic regions contains one single
hole. Therefore, the physics close to half filling is not governed by phase separation into larger
FM and AF regions, as previously reported, but by single-hole ferromagnetic polarons moving
in an antiferromagnetic background.

The critical chemical potential µ∗ at which holes start to enter the lower Kondo band can
be found from simplified energy considerations (equation (12)). For µ significantly above
µ∗, the band is completely filled and the core spins are antiferromagnetic. Around µ∗, holes
enter the eg-band, forming isolated FM domains in the shape depicted in figure 1(a), each
containing one single hole. This is corroborated by MC snapshots, the functional dependence
of the electron density on the chemical potential, the spectral density and the dressed core-spin
correlation equation (13).
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Figure 9. Dressed core-spin correlation equation (13) for J ′ = 0.02 from unbiased MC data for
one (◦), six (×) and 20 (�) holes. Continuous lines are data for the simple polaron model (see
section 3): one polaron (dotted), six (solid) and 20 polarons (dashed). The inset shows the core-
spin correlation S(�r) = 1

L

∑
�i S�i · S�i+�r . The MC simulations were done for JH = 6, β = 50 on a

12 × 14 lattice.

The discontinuity in the electron density versus the chemical potential (i.e. infinite
compressibility) is usually taken as evidence for PS. In the case of the Kondo model, this
discontinuity is a consequence of a large (macroscopic) number of degenerate polaron states.
When the chemical potential is close to the energy of these states, the number of holes (polarons)
in the lattice strongly fluctuates. The weight of the polaron peak in the spectrum is directly
linked to the number of holes (figure 7(b)). In order to obtain numerical results at a fixed hole
number, it was necessary to develop a canonical algorithm for our Monte Carlo simulations.

Another consequence of the formation of single-hole FM polarons is the opening of a
pseudogap. The small FM regions of the polarons contain only a few electronic states that are
energetically well separated from each other. Moreover, the width of the antiferromagnetic
band is much smaller than the difference between the highest and the lowest polaron states.
Therefore, no states can be found for energies between the upper edge of the antiferromagnetic
band and the highest state within the polaron. This gives rise to a pseudogap in the one-particle
spectral function. The same arguments explain the appearance of a mirror gap well below the
chemical potential.

A pseudogap is indeed observed in experiments [33–35] and in MC simulations for the
Kondo model [7, 15]. Experiments in low doped La1−x Cax MnO3 showed evidence of small
FM droplets in an AFM background [37, 38].

Our analysis yields compelling evidence against the PS scenario and in favour of FM
polarons for small doping in 2D for realistic parameter values for manganites. A similar
behaviour has been previously found for 1D. Furthermore, the coupling to lattice degrees of
freedom will additionally localize holes and inhibit the formation of a ferromagnetic phase
(Jahn–Teller polarons) [3, 12, 43]. It should be noted that, depending on the value of the
hopping parameter t0, the temperature investigated in this paper (β = 50) is in a range of
50–100 K, which is in agreement with temperatures in experiments.
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