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We show that doping-induced charge fluctuations in strongly correlated Hubbard electron sys-
tems near the 1

2
-filled, insulating limit cause overscreening of the electron-electron Coulomb repul-

sion. The resulting attractive screened interaction potential supports dx2
−y2 -pairing with a strongly

peaked, doping dependent pairing strength at lower doping, followed by s-wave pairing at larger
doping levels.
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In the cuprate high-Tc superconductors, the strong,
on-site Hubbard-U Coulomb repulsion is believed to pre-
vent conventional on-site Cooper pair formation. This
long-standing theoretical dictum seems to be now sup-
ported by experimental evidence, obtained in several
cuprate materials, for a non-s-wave pairing state, appar-
ently of dx2−y2 -symmetry [1,2]. Yet, at least one ma-
terial, the (Nd, Ce)2CuO4-system, appears to exhibit a
fully gapped excitation spectrum, suggesting an s-wave
state within the framework of more conventional pair-
ing theories [3,4]. A d-wave pairing state implies a spa-
tially extended Cooper pair wavefunction involving elec-
trons paired at 1st neighbor or larger lattice distances.
While impervious to the on-site U repulsion, even non-
s-wave extended pairing states can be suppressed by the
extended (1st, 2nd, ... neighbor) part of the electron-
electron Coulomb repulsion. For any proposed micro-
scopic model of the cuprates, it is therefore of crucial im-
portance to demonstrate that, firstly, the model can sup-
port at least two qualitatively different pairing states of,
possibly, different symmetry [4] and, secondly, that such
pairing states are robust against on-site and extended
Coulomb repulsions.

In the present paper, we use a combination of dia-
grammatic and quantum Monte Carlo (QMC) techniques
to show that the charge fluctuations in a quasi two-
dimensional (2D) extended Hubbard model give rise to
a screening effect which not only reduces the magnitude,
but in fact reverses the sign of the extended part of the
three-dimensional (3D) screened Coulomb potential VS .
At larger doping, this overscreening becomes so strong
that even the on-site part of VS changes sign and turns
attractive. The overscreening is intrinsically a large-U
effect of the Hubbard system at finite doping near band-
filling 1

2
. Over a doping range of about 10− 20%, |VS | is

much weaker than the bare U and thus offers the prospect
of developing controlled perturbative expansions in terms
of VS , rather than U . Taken as an effective pairing poten-
tial, VS supports dx2−y2 pairing, with a pairing strength
maximum in the ∼ 10− 20% doping range, and, in close
proximity, s-wave pairing at larger doping.

We start from an extended Hubbard Hamiltonian

H =
∑

j,ℓ

(1

2
V (rjℓ)njnℓ −

∑

σ

tjℓc
†
jσcℓσ

)

≡ HV + Ht , (1)

with c†j,σ creating an electron of spin σ =↑, ↓ at Cu-site rj

in a 3D crystal of stacked CuO2 layers, nj =
∑

σ c†jσcjσ

and rjℓ = rj −rℓ. Ht includes only an in-plane 1st neigh-
bor hybridization t and the chemical potential µ. The
3D Coulomb potential

V (r) = Uδr,0 +
e2

ǫB|r|
(1 − δr,0) ≡ Uδr,0 + Ve(r) (2)

includes the on-site (r = 0) repulsion U and an extended
1/|r|-part, Ve, with a dielectric constant ǫB to account
for screening by the insulating background not explicitly
included in H , that is ”non-Hubbard” electrons in lower
filled bands and, possibly, phonon degrees of freedom.

The basic idea of our approach is to treat some short-
range portion of V (r), denoted by Vo(r), exactly by QMC
methods. The remaining weaker, but long-range part of
V , denoted by Vℓ(r), is then handled perturbatively. By
including only short-range in-plane terms in Vo, the QMC
simulation can be restricted to a single 2D layer for which
we obtain, by QMC, the density correlation function

χo(q, iω)=
1

N

∑

j,ℓ

∫ β

0

dτeiωτ−iq·rjℓ 〈∆nj(τ)o∆nℓ(0)o〉o

≡ −Po(q, iω)[1 − Vo(q)Po(q, iω)]−1 (3)

at wavevectors q, Matsubara frequencies iω and temper-
ature T ≡ 1/β for lattice size N with ∆nj ≡ nj − 〈nj〉o.
Here, 〈...〉o and ...(τ)o denote, respectively, thermal aver-
aging and imaginary-time evolution with respect to the
QMC Hamiltonian Ho ≡ HVo

+Ht. Po is the correspond-
ing irreducible polarization insertion [5].

The exact screened potential VS , irreducible polariza-
tion insertion P and density correlation function χ of the
full Hamiltonian (1) are related by [5]

1
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VS(q, iω)= [1 − V (q)P (q, iω)]−1V (q)

= V (q) − V (q)χ(q, iω)V (q) , (4)

where V (q) denotes the lattice Fourier sum over V (r).
Our essential approximation is to replace the exact P of
the full Hamiltonian H by Po, extracted from the QMC
results for χo via Eq.3. All renormalizations of P due to
Vo are thus included exactly, to all orders in Vo. Renor-
malizations due to the weaker long-range part Vℓ are ne-
glected in P , but approximately included in VS via Eq. 4.
Note here that Eqs. 3, 4 for VS , P and Po are based on
the diagrammatic expansion in the charge representation
where the U -term is written as U

2

∑

j n2

j , rather than the
more familiar spin representation U

∑

j nj↑nj↓. While
both are equivalent when summed exactly to all orders,
the former, as we will show, has some crucial advantages
for approximate diagram resummations.

As a simple cuprate, we consider La2−xSrxCuO4, with
a body-centered tetragonal (bct) model crystal structure,
in-plane lattice constant a = 3.80Å, inter-layer spacing
d = 6.62Å [6], t = 0.35eV and U = 8t [7]. Using standard
determinant QMC methods, χo is simulated with up to
2× 107 MC sweeps and typically <

∼ 0.5% statistical error
on 6 × 6, 8 × 8 and 10 × 10 2D lattices with periodic
boundary conditions, taking Vo(r) = Uδr,0, at β ≡ 1/T
up to βt = 10, with imaginary-time step ∆τ ≡ β/L ≤
0.0625t−1 where L is the Trotter number.

To estimate ǫB from the measured long-wavelength ex-
ternal field dielectric function ǫex(ω)|q→0 in the undoped,
insulating La2CuO4 [8,9] we calculate [10]

1

ǫex(q, iω)
=

1

ǫB

[

1 −
4πe2

ǫBVc|q|2
χ(q, iω)

]

, (5)

at the smallest q-vectors with non-zero in-plane compo-
nent available on our finite model lattices and iω = 0,
with Vc denoting the 3D unit cell volume, χ = −P [1 −
V (q)P ]−1 from (4) and P ∼= Po. In the undoped Hub-
bard system at temperatures T ≥ 0.1t, we find that ǫex

from (5) varies roughly linearly with ǫB. The excess
∆ǫ ≡ ǫex − ǫB

∼= 0.75 − 0.85, that is, the Hubbard elec-
trons’ contribution to the dielectric screening, is approxi-
mately independent of ǫB for ǫB ≥ 3. From the measured
dielectric function ǫex of undoped La2CuO4 in the static
limit ω → 0, ǫ0 ≡ ǫex(0) ∼= 30 [8], we thus estimate
ǫB = ǫex − ∆ǫ ∼= 29. However, this includes a large,
in fact, dominant phonon contribution [11]. The purely
electronic dielectric screening is observed at frequencies
ω∞ ∼ 0.5− 1eV, well above the phonon spectrum Ωph

<
∼

0.1eV, but still well below the electronic Mott-Hubbard
charge gap ∆MH ∼ 1.5 − 2eV, where ǫ∞ ≡ ǫex(ω∞) ∼= 5
[9]. Hence we get ǫB

∼= 4.2 for the purely electronic back-
ground screening. ¿From the estimated values ǫB

∼= 4.2
(without phonons) or even ǫB

∼= 29 (including phonons),
one obtains a quite substantial 1st neighbor repulsion
strength V1 = e2/(ǫBa) ∼= 0.90eV ∼= 2.6t in the former

and V1
∼= 0.13eV ∼= 0.37t in the latter case. Thus, Ve(r)

could severely suppress spatially extended pairing poten-
tials [12].

In Fig.1(a) and (b), we explore how screening affects
the 3D Coulomb potential VS , calculated from (4) at
iω = 0, Fourier transformed back to r-space and plot-
ted vs. doping concentration x ≡ 1− 〈nj〉 for the on-site
(r = 0) and in-plane 1st neighbor r-vector. The surpris-
ing result in Fig. 1(b) is that a small amount of dop-
ing, of order 5%, will not only suppress the extended
1/|r|-repulsion for r 6= 0, but will in fact cause a sign
change in the 1st neighbor and similarly (not shown)
in the 2nd and 3rd neighbor screened potential. Thus
VS(r) becomes attractive at short-range distances. The
attraction strength at r 6= 0 shows a pronounced doping
dependence, reaches a maximum at x ∼ 10 − 14% and
becomes repulsive again at x∼23−28%. Even more sur-
prising, as shown in Fig. 1(a), is the doping dependence
of the on-site (r=0) potential which is also rapidly sup-
pressed with increasing x and becomes strongly attrac-
tive at larger doping, near x∼=15%. Minus sign problems
at finite doping unfortunately limit our simulations to
T ≥0.33t. However, at least in that temperature regime,
we find |VS | to be increasing with decreasing T . This
suggests that the overscreening becomes stronger than
shown in Fig. 1 at lower T .

The presence of a strong Hubbard-U and finite doping
density x > 0 are crucial for the overscreening. If one
replaces the Vo-renormalized Po in (4) by, say, the non-
interacting (”RPA”) polarization bubble PRPA, one also
obtains a suppression of VS(r). However, both the on-site
(r =0) and the short-range extended part (r 6= 0) of VS

remain repulsive in RPA [13]. Likewise, in the undoped
large-U system, VS(r) is only reduced relative to V (r), by
a roughly r-independent factor, comparable to the ratio
ǫex/ǫB, for r 6= 0. Thus, VS retains a 1/|r|-dependence
and remains repulsive. This is expected for the screening
of a Coulomb potential in an insulator and confirms the
insulating character of the 1

2
-filled Hubbard system.

To understand the central role of U and finite doping x
in the overscreening effect, consider the pure 2D Hubbard
model where V (r) = Vo(r) = Uδr,0, our approximation
P ∼= Po becomes exact and, from Eq. 4,

VS(r, iω) = Uδr,0 − U2χo(r, iω) (6)

with χo(r, iω) denoting the Fourier transform of
χo(q, iω). Clearly, the on-site potential VS(r = 0, iω) at
finite doping must become attractive for U → ∞, since
χo(r = 0, iω) is always positive and approaches a non-
zero U -independent limit [of, at least, O(x/t), by a sim-
ple U = ∞ scaling argument] for U ≫ t. By contrast,
at 1

2
-filling, all charge fluctuations are suppressed, with

χo(r, iω = 0) ∼ O(t2/U3), and VS(r = 0, iω = 0) ∼= U is
repulsive for U ≫ t. For near (1st, 2nd, ...) neighbor r’s,
χo(r, iω = 0) is negative at small U and becomes posi-
tive only at finite doping and only when U exceeds some
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FIG. 1. Screened Coulomb potential VS(r)≡VS(r, iω = 0)
at (a) on site (r = 0) and (b) at in-plane 1st neighbor lat-
tice vectors r and (c) Eliashberg λ-parameters for in-plane
1st neighbor dx2

−y2 and on-site/1st neighbor s-wave pairing,
all plotted vs. hole doping concentration x = 1 − 〈nj〉 at
βt ≡ t/T = 3.0 and ∆τt = 0.0375 for ǫB = 4 and 30. In
(a) and (b), results are for La2CuO4 with bct lattice sizes
6× 6× 6, 8× 8× 8 and 10× 10× 10, with estimated statisti-
cal uncertainties in Vs of less than 0.01eV. In (c), results are
based on 8 × 8 × 8 data for VS . λd is scaled ×4 for display.

doping dependent threshold of order several t. The near
neighbor attraction in VS therefore also requires large U
and finite doping.

The results in Fig. 1 are almost independent of Ve for
ǫB ≥4. (The ǫB = 30 data are within 1− 2% of the pure
Hubbard (ǫB → ∞) results.) By using spatially trun-
cated versions of Ve, different layered geometries, and
more realistic dielectric background models [10], we have
also verified that neither 3D Coulomb interlayer terms,
nor the long-range 1/|r|-tail in Ve, nor our particular
choice of crystal structure, nor local field effects will sub-
stantially affect the overscreening. To test our approxi-
mation, P ∼= Po, we have also carried out QMC simula-
tions with both U - and a 1st neighbor Ve-term included
in Vo. Preliminary results suggest that setting P ∼= Po

in (4) reproduces the main Ve-effect on χ, but tends to
underestimate the attraction in VS . Thus, the essential
features of VS are very robust against extended Coulomb
terms. This result can be rationalized by expanding (4)
to leading order in Ve. The corrections are smaller than
the U2χo-term in (6) by a factor of order V1χo for U ≫t
and finite x>

∼ t/U . By simple U →∞ scaling arguments
this is of order V1x/t, i.e. small if V1 ≪ t/x. At suf-
ficiently large V1, i.e. low ǫB, our basic approach does

break down due to charge density wave instabilities, sig-
naled by 1/χ(q, iω = 0)→ 0. For the present parameter
set and doping range, this happens only for ǫB

<
∼ 1.8.

A crucial advantage of our diagrammatic expansion in
the charge representation is the large reduction of the
overall strength of VS in the 10−20% doping range. This
suggests the possibility of carrying out controlled, self-
consistent weak-coupling expansions in which the fully
screened VS , rather than the bare V or U , serves as the
small parameter. As a first step in that direction, we have
explored possible VS-induced or -enhanced superconduct-
ing pairing instabilities, using the standard Eliashberg-
McMillan (EM) approach [14]. A convenient measure of
the pairing strength of VS are the dimensionless EM λ-
parameters, defined in terms of the Fermi surface (FS)
”expectation values” of VS(k − k′, iω = 0) for relevant
Cooper pair trial wavefunctions η(k) in electron momen-
tum (k-) space, as described in detail in Refs. [14].

In Fig. 1(c), we show the EM parameters λs for on-
site s-wave (and, identically, for in-plane 1st neighbor
s-wave), and λd, for in-plane 1st neighbor dx2−y2 pair-
ing, with respective pair wavefunctions ηs(k) ≡ 1 and
ηd(k) = cos(akx) − cos(aky). For the required FS in-
tegrals, we have interpolated our 3D VS(q, iω) from the
finite-lattice 8×8×8 onto a 200×200×200 q-mesh. At
low doping, the dominant attractive (λ > 0) channel is
dx2−y2 with λd reaching a maximum of ∼0.15−0.17 near
x∼ 10−14%. λs is repulsive at low doping, but becomes
strongly attractive at larger doping x >

∼ 15%. Thus, as
expected on symmetry grounds, λs and λd reflect the
doping dependence of the on-site and 1st neighbor at-
traction VS shown in Fig. 1(a) and (b), respectively. The
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λ-values for near-neighbor pair wavefunctions of other
symmetries (p, dxy, g) are small compared to λs and λd.

The spectral weight of χ(q, iω) extends up to values
Ωχ ∼8 − 10t [15]. In the EM analysis [14], this ”boson”
energy scale, together with λ, determines the supercon-
ducting Tc, roughly as Tc ∼ Ωχ exp(−1/λ). Because of
the large Ωχ-scale, it may be possible to achieve high Tc’s
even at moderate coupling values λ<1.

It is quite possible that near-neighbor, d-wave-
attractive charge correlations χ(r 6= 0, iω) > 0 are very
closely related to short-range antiferromagnetic spin cor-
relations in Hubbard systems near 1

2
-filling. The charge

fluctuation picture developed here may thus provide a
description of the physics in near- 1

2
-filled Hubbard sys-

tems which is complementary to that of a spin fluctua-
tion based approach [2]. The overscreening of the on-site
potential, and hence the possibility of s-wave pairing in
the Hubbard model, is one aspect of this problem which
is obvious in the former, but difficult to capture in the
latter approach.

In summary, we have studied the effect of screening
on the electron-electron interaction potential in a quasi-
2D Hubbard model for CuO2-layers, coupled by an ex-
tended 1/|r| 3D Coulomb repulsion. While contribut-
ing only a minor portion of the total insulating dielectric
constant at 1

2
-filling, the Hubbard electron system, when

doped away from 1

2
-filling, exhibits a strong overscreen-

ing effect which causes the extended part of the screened
potential to change sign and become attractive, at 1st
and further neighbor distances. This screened potential
gives rise to a pairing attraction in the dx2−y2 channel
which, as a function of doping, exhibits a maximum near
∼10− 15%, reminiscent of the doping dependence of the
superconducting Tc in the cuprates. At larger doping,
even the on-site part of the screened potential becomes
attractive and gives rise to an s-wave pairing attraction
which increases strongly with doping, suggesting the pos-
sibility of a doping-induced transisition or cross-over from
d- to s-wave pairing. The overscreening effect is robust
against 3D extended Coulomb repulsions, independent
of the 3D crystal structure, and represents intrinsically a
charge fluctuation aspect of the Hubbard electron system
at large U and finite doping density near 1

2
-filling.
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