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We present the loop algorithm, a new type of cluster algorithm that we recently introduced for the F model. 
Using the framework of Kandel and Domany, we show how to generalize the algorithm to the arrow flip symmetric 
6 vertex model. We propose the principle of least possible freezing as the guide to choosing the values of free 
parameters in the algorithm. Finally, we briefly discuss the application of our algorithm to simulations of quantum 

1 Heisenberg and x x z  spin systems. In particular, all necessary information is provided for the simulation of spin ~- 
models. 

1. I N T R O D U C T I O N  

Cluster algorithms, originally introduced for 
the Ising model [1'] and then generalized to various 
other situations [2, 3], are one of the promising 
ways of overcoming critical slowing down. Re- 
cently [4, 5] we introduced algorithms for ver- 
tex models [6, 7], which are the first cluster al- 
gorithms for models with constraints. While [4] 
is an adaptat ion of an algorithm originally de- 
vised for solid-on-solid models, the loop algorithm 
introduced in [5] does not resemble any .existing 
scheme. 

In [5] we presented the loop algorithm for the 
F model. This enabled us to present our idea as 
clearly as possible. Here we shall show how to 
generalize it for the 6 vertex model, which has an 
additional coupling and a richer phase structure 
(see below). The framework of [3] proves to be 
an extremely useful tool here. 

Our scheme is devised such as to take into ac- 
count the constraints automatically, and to al- 
low a simple way to construct the clusters. After 
defining the relevant probabilities, we find that  we 
still have some free parameters.  In order to op- 
timize the algorithm, we introduce the principle 
of minimal freezing. As seen from the example 
of the F model, this choice of parameters  is of 
utmost  importance. 

The loop algorithm can be further generalized 
to more complicated vertex models. However, as 
it stands, there are already important  applica- 
tions: quantum spin systems can be simulated by 

mapping them to vertex models [8]. In particu- 
lar, the loop algorithm for the 6 vertex model pre- 

1 Heisen- sented here can be used to simulate spin 
berg ferromagnets and antiferromagnets,  and x x z  
models, even in more than one dimension. 

2. T H E  6 V E R T E X  M O D E L  

The six vertex model [6, 7] is defined on a 
square lattice. On the bonds there lives an Ising- 
like variable that  is usually represented as an ar- 
row. For example, arrow up or right means plus 
one, arrow down or left means minus one. At 
each vertex, there are two incoming and two out- 
going arrows. In fig. 1 we show the six possible 
configurations at a vertex, numbered as in [6, 7]. 

The statistical weight of a configuration is given 
by the product over all vertices of the vertex 
weights p(u) .  For each vertex there are 6 pos- 
sible weights p(u) ,  u = 1, ..., 6. We assume the 
vertex weights to be symmetr ic  under reversal of 
all arrows. So in standard notation [6, 7] we have: 

p(1) = p(2) = a,  
p(3) = p(4) = b, (1) 
p(5) = p(6) = c 

The six vertex model basically has two types 
of phase transitions: of Kosterlitz-Thouless type 
and of KDP type [6, 7]. A sub-model exhibiting 
the former is the F model, defined by c = 1, a = 
b = exp ( - K ) ,  ff  > 0. For the latter transition 
an example is the KDP model itself, defined by 
a =  1, b = c = e x p ( - K ) , K _ > O .  
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1 2 3 4 5 6 

Figure 1. The six vertex configurations, u = 1, ..., 6 (using the standard conventions of [6]). 

3. T H E  L O O P  A L G O R I T H M  

If we regard the arrows on bonds as a vec- 
tor field, the constraint at the vertices is a zero- 
divergence condition. Therefore every config- 
uration change can be obtained as a sequence 
of loop-flips. By "loop" we denote all ori- 
ented, closed, non-branching (but possibly self- 
intersecting) path of bonds, such that  all arrows 
along the path  point in the direction of the path. 
A loop-flip reverses the direction of all arrows 
along the loop. 

Our cluster algorithm performs precisely such 
operations, with appropriate probabilities. It 
constructs closed paths consisting of one or sev- 
eral loops without common bonds. All loops in 
this path are flipped together. 

We shall construct the path iteratively, follow- 
ing the direction of the arrows. Let the bond b 
be the latest addition to the path. The arrow on 
b points to a new vertex v. There are two out- 
going arrows at v, and what we need is a unique 
prescription for continuing the path through v. 
This is provided by a break-up of the vertex v. 
In addition to the break-up, we have to allow for 
freezing of v. By choosing suitable probabilities 
for break-up and freezing we shall satisfy detailed 
balance. 

The break-up operation is defined by splitting v 
into two pieces, as shown in fig. 2. The two pieces 
are either two corners or two straight lines. On 
each piece, one of the arrows points towards v, 
while the other one points away from v. Thus 
we will not allow e.g. the ul lr break-up for a 
vertex in the configuration 3. If we break up v, 
the possible new configurations are obtained by 
flipping (i.e. reversing both arrows of) the two 

I I 
I I 

11 ur ul-lr straight 

Figure 2. The three break-ups of a vertex: l l-ur 
(lower-left-upper-right), ul-lr  (upper-left-lower- 
right), and straight. 

pieces independently. On the other hand, if we 
freeze v, the only possible configuration change is 
to flip all four arrows. 

The break-up and freeze probabilities are con- 
veniently described within the general framework 
for cluster algorithms proposed by Kandel and 
Domany [3]. It is sufficient to give them for one 
vertex, which is in the current configuration u. 
We define 6 new interactions (weight flmctions) 
Pi, { = 1, ..., 6, corresponding to specific break-up 
and freeze operations. (The labelling of the new 
interactions is completely arbitrary, and the fact 
that  we have six of them is just a coincidence). 
For each vertex in configuration u, we replace 
with probability pi(u) the original interaction p 
by the new interaction pi. Detailed balance and 
the proper normalization of probabilities require 
that  for every u 

pi(u) 
= 1 ,  p i ( u )  = q i - p ( u )  , 

where qi >_ 0 are parameters.  
As discussed in [3] (see also table 1), freezing 

is described by introducing one new interaction 
for each different value of p(u). For example, to 
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action 
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Table  1. 

1 2 3 4 5 6 
freeze 1,2 freeze 3,4 freeze 5,6 11 ur ul - l r  s t ra ight  

1, p(/i) = a  1, p ( 5 ) = b  1, p(gt)=e O, p('gt)=a 0, p ( f i ) = b  0, p ( f i ) = c  
0, else 0, else 0, else 1, else 1, else 1, else 

ql/a, p (u )=a  q2/b, p(u)=b q3/c, p (u )=c  O, p (u )=a  O, p(u)=b O, p (u )=c  
0, else 0, else 0, else q4/p(u), else qs/p(u), else q¢/p(u), else 

New interact ions pi({~) and the probabil i t ies  pi(u) to choose them at a ver tex m current con- 
figuration u. See eq. (2). 

freeze the value a, we choose the interact ion pa 
to be p l (u )  = 1 if p(u) = a, and pl(u) = 0 other-  
wise. In other  words, if u is 1 or 2, the Bo l t zmann  
weight  pl(~t) is one, so t ransi t ions between 1 and 
2 cost nothing;  the ver tex configurations 3, 4, 5, 
and 6 are however not allowed with Pl. 

Each break-up is also described by one new in- 
teraction.  As an example  take the ul - l r  break-up.  
It is given by the new interact ion number  five, 
with ps(u)  = 1 if p(u) = a or c, and ps(u)  = 0 
if p(u) = b. In other  words, with the new inter- 
action ps, t ransi t ions  between 1, 2, 5 and 6 cost 
nothing,  while the vertex configurations 3 and 4 
are not allowed. This  corresponds precisely to al- 
lowing independent  corner flips in a u l - l r  break- 
up (see figs. 1,2). 

The  full list of  new weights pi(u) and proba-  
bilities pdu)  to choose t hem are given in table  1. 
From (2) we also obtain:  

ql + qs + q~ = a , 
q2 + q4 + q6 = b ,  (3) 
q3+q4+q5  = c .  

Assume now tha t  we have broken or frozen all 
vertices. S tar t ing  f rom a bond bo, we proceed 
to construct  a closed pa th  by moving  in the ar- 
row direction. As we move f rom vertex to ver- 
tex, we always have a unique way to continue the 
path .  At broken vertices the pa th  enters the ver- 
tex through one bond and leaves it th rough an- 
other. If the last bond b added to the cluster 
points  to a frozen vertex v, the pa th  bifurcates 
in the directions of  the two outgoing arrows of 
v. One of these directions can be considered as 
belonging to the loop we came from, the other  
one as belonging to a new loop. Since we also 
have to flip the second incoming arrow of v, we 

are assured tha t  this new loop also closes. The  
two loops have to be flipped together .  In general, 
tile zero-divergence condit ion guarantees  tha t  all 
loops will eventual ly  close. 

We have now finished describing the procedure 
for construct ing clusters. In order to specify the 
a lgor i thm completely,  we must  choose values for 
the constants  qi, and decide how the clusters are 
flipped. The  former  p rob lem is of u tmos t  impor-  
tance, and it is the object  of  the next  chapter .  For 
the cluster flips, we m a y  use both  the Swendsen- 
Wang procedure and the single cluster flip [2]. In 
[5] we used the latter,  and obta ined  a drast ic re- 
duct ion of critical slowing down. 

4. O P T I M I Z A T I O N  

We have seen tha t  freezing forces loops to be 
flipped together.  Previous  experience with clus- 
ter a lgor i thms [2] suggests tha t  it is advantageous  
to be able to flip t hem independently.  We there- 
fore introduce the principle of  minimal freezing 
as a guide for choosing the constants  qi: we shall 
minimize  the freezing probabil i t ies ,  given the con- 
s t raints  (3) and qi >_ O. In [5] we repor t  tha t  for 
the case of the F model ,  op t imiza t ion  by mini- 
mal  freezing does indeed minimize  critical slow- 
ing down. Here we discuss op t imiza t ion  for the 4 
phases of  the 6 ver tex model ,  usually denoted by 
capital  r oman  numera ls  [6, 7]. 

Let us first look at  phase IV, where c > a + b. 
To minimize  the freezing of weight c we have to 
minimize  qa. From (3), q3 -- c - a - b + q l  +q2+2q6.  
Wi th  qi > 0 this implies q3,min = e - a - b. 
The  min imal  value of q3 can only be chosen if 
at the same time we set ql = q2 = 0, i.e. mini- 
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mize (in this case do not allow for) the freezing 
of the smaller weights a and b. The optimized 
parameters for phase IV are then: 

q l = 0 ,  q 2 = 0 ,  q a = c - a - b ,  
q 4 = b ,  q s = a ,  q 6 = 0 .  (4) 

In phase I the situation is technically similar. 
Here a > b + c, and we minimize freezing with 
ql = a - b - c and q2 = q3 = 0. The same holds 
for phase II, b > a + c, where we obtain minimal 
freezing for q2 = b - a - c and ql = q3 = 0. 

Phase III (the massless phase) is characterized 
l ( a +  b +  c). Here we can set all by a,b,c < 

freezing probabilities to zero. Thus, 

q l = 0 ,  2 q 4 = b + c - a ,  
q2 = 0 ,  2 q s = c + a - b ,  (5) 
q3 = 0 ,  2q6 = a + b - c .  

The F model is obtained from (4) and (5) as 
the special case a = b < 1, c = 1. One can easily 
see that for this case we recover the discussion of 
[5]. (Notice that since a = b, in the F model the 
straight break-up will be called freezing). 

5. A P P L I C A T I O N S ,  C O N C L U S I O N S  

We have presented a new type of cluster algo- 
rithm, the loop algorithm, for the case of the six 
vertex model. For the F model, the algorithm has 
been shown in [5] to beat critical slowing down. 

Particularly promising is the possibility of ac- 
celerating Quantum Monte Carlo simulations [8, 
9]. Quantum spin systems in one and two di- 
mensions can be mapped into vertex models in 
1 + 1 and 2 + 1 dimensions via the Trotter for- 
mula and suitable splittings of the Hamiltonian 

1 [8]. The simplest example is the spin y xxz  quan- 
tum chain, which is mapped directly into the 6- 
vertex model. For higher spins, more complicated 
vertex models result (e.g. 19-vertex model for spin 
one). 

For (2 + 1) dimensions, different splittings of 
the Hamiltonian can lead to geometrically quite 
different situations /8, 9]. We can e.g. choose be- 
tween 6-vertex models on a complicated 2 + 1 
dimensional lattice, and models on a bcc lattice 
with 8 bonds (and a large number of configura- 
tions) per vertex. Notice that for the simulation 

of the 2-dimensional Heisenberg antiferromagnet 
using the former splitting, all relevant formulas 
have been worked out in the present paper. 
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