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We present new Monte Carlo cluster algorithms which eliminate critical slowing down in surface models 
of the solid-on-solid type. The algorithms are based on reflecting parts of  the surface with respect to 
appropriately chosen planes. The proper choice of  the reflection plane turns out to be crucial. 

In the last few years, the development and study of 
new algorithms that strongly reduce critical slowing 
down (CSD) has become a major research topic in 
the field of  computer simulations. Our group is pre- 
senting within 5 talks at this conference the results 
we obtained in this area during the last year: 

m Development and study of  stochastic cluster 
or multi-grid algorithms without CSD or with 
strongly reduced CSD for a variety of  statistical 
models and for lattice gauge theories (this talk 
and 1); 

• Development of  a multigrid method for the 
computation of  the fermionic determinant in 
realistic lattice gauge ~heories 2. 

Development of  stochastic cluster or multigrid 
methods that eliminate CSD in the simu!ation 
of quantum gravity on the lattice (dynamical 
triangulation algorithms) 3 

In the present contribution, we concentrate on 
the application of  new cluster algorithms for inter- 
face models, which have wide applications in crys- 
tal growth, telescope mirror alignement, roughening 
transitions, etc. (note that a different approach to 
~imulating interface models was recently developed 
in 4). 

Our choice for modeling these physical systems 
is to consider them as two-dimensional spin systems 
where the spin m= at the site x is an integer (Z- 
spin). The action is a general function of the abso- 
lute value of the difference of two spins, Im= - mvl. 

• Speaker at the conference 

The connection to a surface model comes from the 
interpretation of  mz as the height of  a surface above 
the two-dimensional point x. The prototype of  such 
a model is the discrete Gaussian model, but all SOS 
(solid-on-solid) models and variants thereof are in 
this class o f  models 5. 

An SOS configuration is a two-dimensional sur- 
face without overhangs, embedded in three dimen- 
sions. The idea underlying our new algorithms is to  
take a horizontal plane and reflect "hills" and "val- 
leys" of  the surface through that plane. One crucial 
aspect is the procedure for choosing the reflection 
plane. 

Let us for definiteness discuss the algorithm in 
terms of the discrete Gaussian model, defined by 
the partit ion function 

z = ~2exp -V  ~ (m.  - - , ~ ) '  . (1) 

We take a square lattice, periodic boundary condi- 
tions, and nearest neighbour interaction. 

Let us denote the height of  the horizontal re- 
flection plane by M .  A reflection of rn= with re- 
spect to M means 

m= --* 2 M  - m = .  (2) 

Obviously, M has to be either an integer or a half- 
integer. One way of explaining how the clusters are 
built is in terms of the embedded Ising variables 6 
a= = ±1,  defined by the decomposition 

m= = ~= Im~ - M I + M .  (3) 
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a .  : 1 means that nz. is above the reflection plane 
M ,  c~. : - 1  that it is below M .  Note that c~. is 
not well defined if  ~ = ~r;  this is not going to 
cause difficulties, as can be seen from equation (4) 
below. 

in order to  define the cluster algorithm we in- 
troduce the deletin 9 and freezing probabilities 7 for 
a link < z , ~ >  (in the language of 6 the term "ac- 
tivating" is used instead of "freezing '~): 

P ~ ( * , v )  = (4) 

q exp { - - ~  , n ' ~ -  Mj ! r % -  ?../[ (o'~o', ÷ 1)} 

where q < i can explicitly depend on irn~- M i and 
!~r~ - -  MI. and 

P1.o...(z,g) : 1 - Pa.J(*,9). (5) 

In contrast to other duster algorithms investigated 
in the literature, the possibility of choosing q ~ 1 
will prove to be useful in our case. Let us how- 
ever assume for the moment that  q = 1 (unti l  we 
explicitly remove this restriction). 

After freezing or deleting all the links of the 
lattice with the above probabilities, two sites are 
defined to be connected if they are at the endpoints 
of a frozen link. The dusters are then defined to be 
the connected components o f  the lattice. 

Notice that Pad(z,y) = I if either a .  ¢- try. i.e. 
m-~ and ~rgj are on different sides o f  the reflection 
plane, or i f  I , ~ - M I  l~,,z~-Mi = o, i.e. at least one 
o f  the points lies on the reflection plane itself. Thus, 
similarly to  the Ising model, the dusters will contain 
only spins for which the embedded Ising variables 
have the same value. On the other hand, the spins 
with m .  -- M are always monomers. The most 
important difference to the Ising model is however 
the strong dependence o f  the clusters on the choice 
o f  M .  Consider for example a situation where M 
lies above most o f  the m. .  Since P~, (z ,g )  becomes 
exponentially small with increasing distance from 
M ,  there will be with high probability one very large 
cluster, containing almost all spins. 

Flipping a cluster means flipping the embed- 
ded Ising variables. In terms o f  the original integer 
variables m=, this is equivalent to performing the 
reflection (2) for all spins in the cluster. Notice 
that the cluster boundaries are not in general ex- 
actly at the intersection of  the relief landscape with 
the reflection plane, since Pa**(z,Y) is nonzero also 
if  both m .  and m~ are away from and on the same 

side of _?v/. Nevertheless, the intuitive picture of 
clusters as hills or valleys which are flipped through 
the reflection plane is approximately realized. 

In our simulations we used the single cluster 
algorithm 8, i.e. a cluster is built starting from a 
randomly chosen site (the ~ecd), and it is flipped 
with probability one. 

In order to establish a valid algorithm one has 
to ensure detailed balance. Once M is given, de- 
tailed balance follows from standard arguments 7,8 
for the restricted set of  configurations re|ated by re- 
f lectir~ the dusters with respect to M.  A sufScient 
condition for detailed balance to hold for the entire 
procedure is to choose ~ f  with an a priori proba- 
bil ity p rob(~  r) that  is a function of M itself and 
of  the objects that  are unchanged by the re f l ec t s .  
i.e. o f  the values of  !m~ -- M I for  all latt/ce shes: 

p~ob(M) = f ( ~  - M I ; M ) .  (6) 

This condition still leaves a lot o f  freedom in, the 
choice o f  ~r .  The proper way to  chome tbe cdlec- 
don plane st rong/depends ou some o f  t l ~  # ~ . ~  
properties o f  the morlel, and it will tram oot to be 
the cmdal  i ~  in ~ , m ~  CSD. 

The model (1) is ~ e  dual o f  the 
~m~s~nal XY mo~  ~ ~rmam (heat kom~) 
action. F o r ~  < B~ tbeg loba l  Z-~jmmetry is 
spontaueonsly bn~len. As a c , ~ q u e n < ~  there 
is a nonzero mass gap, and tee surface t ikkinem, 
which we define as the square mot  o f  i i m ~ _ , ~  < 
( ~ _ . . ) 2  >,  is f i . i te. Accord/ng to  the Kosterl l~- 

T h o u ~  (KT)  sc~marioVo the coneC~iou l ~ t h  d~ 
ve~es e~x .~mtb l l y  as # a p l ~ o a d ~  #~. h t h e  SOS 
terminology this is due to the fact teat the smfa~  
fl,_~-tuates more a,~l ~ Atthe crit/cai poim tbe 
surface becomes rough; for  all ~ > 8¢ the  surface 
thickness diverges iogaridmdcalE] with tim volume 
o f  the system. The large-~ phase ~ to  
the spin r ~ e  (mass~) phase of ~ XY model. 

The first i ~  nm~rk aboot ~ ~rop- 
ertles of  the model that s t r o n ~  in f l , en~  oar algo- 
rithm is that, for all prad/cal purposes, the s a d a ~  
is ~in~ We cons/tiered systems on a lattice o f  size 
L ~. For L = 256, the surface thickness was still less 
than I at ~ : .68, which is in the smooth (broken) 
phase very dose to tie, and ~ 1.4 at/~ = 1, which 
is deep in the massless phase. Both these situations 
are well within the region where the critical proper- 
ties are dearly exhibited (KT bebaviour for/3 < B~ 
and massless free field theory for/3 = 1). 

For thin surfaces, it is not trivial to choose the 
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reflection plane M such that it lie~ within the ver- 
tical bounds  of  the surface.  We tried t e  ensure this 
by taking M close to  the value ~,~:,, of the spin 
at the seed Zo of the cluster. The simplest possi- 
bility that leads to an ergodic algorithm ~s to take 
M = rn~o ± {, each of t he  two possibilities with 
probability ½, and <2 = 1 (see eq. (4)). Taking 
M = Trio is not helpful for q = I since all the links 
starting from zo would be deleted with probatrAtity 
one. Let us denote ~he procedure just described as 
the  ] R - a l g o r i t h m  (H for half- integer) .  

We tested the H-algorithm extensively, in or- 
der to make sure that we do obsePve the s~owest 
modes of  the Markov matrix 10, we measured a 
whole range of  quantities: mean energy and speci~c 
heat, surface thickness, ~arious block spin correla- 
tion functions, and the order parameters J ~  = <  
L-~]~=exp(2~r£crr~=)i > for ~ = 0.1,  0 .2  . . . . .  
0.5 (J~= is an approximation for the square root of  
lim~_~]_® < exp{2=~{~= -- % ) }  > which b~- 
comes exact in the thermodynamic limit). 

For all these quantities we s tud~ l  the autocor- 
relation function and tried to  determine the ezp0- 
ne'r~[~e] atd, ocor~,~,~on ~ m ~  ~-. Note t h a t  r si'u:mld 
in principle be the same for all our q u a Y ,  ¢~nce 
it  only depends on the second largest ~ m v a l u e  
of  the Markov matrix 10. In practice, there always 
were quantities that did not couple well to the 
modes and exhibited a misleadingly r o l l  r .  Some-  
times some quantities showed a clear crossover from 
one dean expouen ~t~al regime to a slower second 
one. In other ir~tances the~ were quantities that 
did not decay at all exponentially until the limits 
of  our p r e ~ n  were reached. These dif~ult ies 
notw~Lhsta_.~ding, we were usually able to reach a 
dearcut condusinn with respect to the "true ~ value 
of r because there was a whole set o f  "sk~mst de- 
caying quantities ~ which exhibited this value. 

The autocorrelation time r is aheays quoted in 
"work units" (sweeps). A work unit is the work 
necessary to build a cluster of  the s~ze of  the en- 
tire lattice. Each of our runs consisted of between 
100000 and 500000 work -nits. 

Determining the errors on r is a very delicate 
business and we were very careful with this point. 
Details of the problems we encountered are dis- 
cussed elsewhere 11. 

The results for the autocorrelation times of the 
H-algorithm are shown in tables 1 and 2. The al- 
gorithm was not successful in eliminating CSD in 
either of the two situations. 

Table 1: Autocorre{ation time_~ for  3 = ~ {{ = ~c~_ 

7 H I t t  Q H  Q M  

Ze Z3.S(a.S) - - - 

32 oo(2o) 7 0 )  - - 

e~ s 2 ( z s )  e 0 )  x~.s~x.s)  : ~ . s ( 4 , s f ~  

1 2 8  16S(33) l t . S { I . S )  13{ t .S)  ~12) 

2sbi  - n ( 2 )  - - 

In the m ~  ( r o u ~ )  phase, ~ t ~  ~ -  
r e l a t ~  length /[ of the model is infmiteo the ~ -  
narracal cr~/cal ~ l ~ m t  : can ~ defined 6~8:1@ by 
r ,.- L : .  The results o f  tab le  ] m~ggest t h a t  : is 
arou~,'~l X a t  3 = ] .  T ~  is a n  i i l r ~ r W  On the  
= ~ & of  local algoritluT~0 but i t  is not what we 
expL'~e$. 

in the broken (smooth) phase, the two val- 
of  r dm~Jm in table 2 suggest that the al- 

gorithm peffnrms even less well than at 3 = i .  
We kad problems in de te rmin ing  : l~re. In 
ciple, i t  can be defined by the finite size scaling 
law ~ = ~=F{~ /L )  lg .  We tried to  estimate 
by a n a l ~  the exponential decay of  the t~m-point 
function < ( m ~ - r ~ )  2 > (approwiate mbtract iom. 
Fourier transfonm, etc_. were done in standard fash- 
ion)_ In this phase tim particles states a r e / = ~ 1 2  
which conespoud to oue~iimeminual (time-zero) 
cord~rat ions that have an integer value n at  mi- 
nus infinity and n -  1 at plus infinity. Wnh perinWm 
boundary conditions howev~r, there are only states 
containing kink-antikink pairs in the Hilhert space 
of  the problem. Thus we tried to determine the 
correlation length from properties of  two-partide 
~ates. not one-particle states, and we regard our 
values for ~ as potentially unreliable (therefore the 
symbol ~ in table 2). Nevertheless. we can only 
underestimate/~, so our conclusions regarding C_~D 
in the smooth phase are not spoiled_ 

The fact that we do not give reliable values for z 

should not disturb us in the case of  the h-algorithm. 
What we are after are algorithms that (almost) 
completely eliminate CSD. Instead of  wasting our 
time with an algorithni that clearly does not satisfy 
this criterion, we should go on to the ~script ion of 
the more successful algorithms. 

A careful analysis of  the cluster size distribution 
revealed that the H-algorithm produces both small 
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Table 2 :  Amoco.da t ion  6rues for 3 < 3o 

O.~S ~ 1 4  z2e - ~3) 

o.~ ~i 64 i - ~(2) ,, 

~ size ~ a n  c o m ~ r ~ i , ~  ,-ae. 
hadf of  the ~mrk is sp~.~ i~ rk.~,~s I~ l~r  than gO% 

~ ~ - w  o~ ~ d x . ~  m n a ~  teat  t i le sur~c~ d~idc- 

~ ca,  n ~ l ~  ~ ~ t  is b, w g  o,z tbe re- 
flectio, idme M ~ .  I m  a b o ~  or b e k ~  l~e b.lk 
o f the  ~ 

A r~a~t~ a~m~mlx ~ ~mlxe,~e fl~e ~ ~ 

pla.m M. I~ o. ler to I~t dme.ers oF ,~ ,~  l a q ~  

• ~-oz~tbam C~. M = m.~., Le. ~he d:e rdlec- 
~. pt~e equ~ the __-~__ sp~ but q = ~, ~r 

the ~ T~'~-- ~ i'~,-- ~I' =0. ,~h 
~ some cemtant s u i c ~  s m a ~  d~n  1, and 
q = 1 ot l~e ise.  

• ~dlgor~lLEma I :  M ~ m~., ~em.- 9o is a ran- 
domly chosen lathe site which is different 
from the seed Zo, and q = 1 alm~rs. 

Both these algorithms are n(mergo~lc, suice they 
only change the spins by even amon~ts. The~ore  
they have to  be combined with other p~ocedures. 
We studied the combinations ] H  and Q H  o f  the I 
and Q algorithms with the H-algorithm. 

Notice that  for the Q-algorithm, a duster grown 
from the seed x~ may contain spins that are above, 
below and equal to  J~. This is a quite unusual 
situation in the context o f  embedded Is;ng variables, 
but is perfectly allowed within the framework for 
cluster algorithms that  we used here 7. 

From the valu~ of ~ dis#ayed in table I ,  one 
can conclude that the value o f  z for the IH algo- 
rithm ~ very sinai!, po~ibly even zero, at ,3 = 1. 
The resuks for  ~ < ~ also suggest a very small 
value o f  : (but more ~ t a  are necessary to reach 
a de~r~e conclusion; see tame 2), TMss the IH 
a lgo~hm turned out to  be e.zt~m~t 9 e_~F~c~nt m 
e~mir, a~i~.g CSD. F ~ e ,  the r~sul~ in ta- 
Me I show that there is no signi~:.am ~ e r e n c e  
be~we~ the p~or--manc~ of  the IH atgo~hm and 

B~ va~S~ ehe ra~o o~ ti~e mm~be~ o~ ! a ~  H 

1 a ~  2 we onjy p ~  ~ n ~  o~ m ~  ~here 

b~---.,~m a q . a e ~  and a fl~d (~ tbe ~ ( ~  w s  
~oon~ 0.7) £~d ~ have a ~ ~ m 
• e ~ d t l ~  QH a i l p ~  

TI~ IH a ~  QH a ~ E m s  Ipmera~ omm~r- 
ah~ mm~e_ ~ elmee~ a~ i  Eros la~e ~ s -  
~e~ ~am the H~d~r~lm,  a l m ~  T I ~  oomSims ow 

v e ~ / h e ~ l  ~n eke c~e d a ~lm SOS ma~a~, b 

not a ~ o f  ehe dm~e~ s~e ~ a lm~ 
it is a ~  s e n ~  ~o o ~  d e t ~  ~ eke o ~ £ ~ - a -  

Let m al~Jnlpt a~ eq~mae im o f  ~IW flke IH 
and (Ht alm~e~ms ~ m , ~ l ~  

o f  a lalrk, e f lat m~race, ~l~k a J~el~ ~ 
r e l ~  d ~ t  are o ~  . ~  I ~ 1 ~  ~r l iner. We 

cam ~ ~ , ~ e k - ~ , a . - ~  (S.~]L b 

c m e ~ m ~  to dm smtFa~ ~ d,e wmkl [mmes 
of  a k i n k ~  l a~  ( .mm,ml~ d ~  1t1~ kinks 

are more o[tm on top of one a.odmr. TEeir e ~ -  
demation causes the SOS m r ~ e  r o - ~ l ~  at fl~ 

I f  we have an SSI on l~p e~ a flat b a c h p o ~  
o f  Eeight M ,  the~e is a large probabiTe~ flhalt the I 
or Q algodthn~ mllect i t  ~ h  respect to  that I ~ -  
ground. Since the ~ and the refl,.ded con- 
figuration have the same Boi tzma~ weight, the 
r ~ - ' c ~  ~ ~ S~! is a ~ o f  ml]c~rocanonica[ 
m o v e .  Such low-energy-cost large-scale changes ;n 
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the configurations are usually vet/ efficient in de- 
creasing the autocorre~ation time. We believe that 
this is the main reason why the clu.~er flips with 
respect to an integer valued reflectmn FJane ~ im- 
prove the situation so dramatically. 

The t and Q algorithms have to be combined 
with another algorithm in order to ensure ergodic- 
it),. We now ask the question whether, in or-Jet to 
overcome C~D, it is crucial to combine l or Q with 
the H-a!gorithm. or whether we may also use a local 
ergodic algorithm. If M is an integer, no large SS~'z 
can be created or destroyed by cluster reflections. 
The H-algorithm on the other hand can achieve this 
easily. Of course, a locai algorithm like Metropo- 
lis cannot create or destroy any targe sca~e objects. 
We may therefore expe~t that a combination ] ~ [  or 
QIM[ of I or Q with a Metropolis procedure ~£/t ex- 
hibit CSD. The study of the QM algorithm, whose 
results are also shown in tab~ 1, deady shows that 
this is indeed what happens. Note that for the QM 
a!gorithm we did one ~.~uopoiis ~ for, ro~gi~. 
one work unit of the duster part. The values of 
quoted in table I disregard the contribution of the 
Metropolis sweeps to the total amount of work. 

We conclude that our !~-"t ure of" the SSl's as 
re~ant objects for ~ OUr duster algo- 
rithms is correcl, and that it is a ~ e l y  crucial 
to use both the integer and l~aff~m~teger rml~lecfion 
planes. The situation is entirdy ~ 
have both de,~;ed ~ a l u m s  and under- 
stood the physical reason for this ~ficiency. 

Our algmithms can now be apptk~! to the study 
of the roughemng t ~  in a vanity of SOS 
modds. Wah modificatiom, they can also be used 
for SOS models with restrictions, and for scalar fiekl 
theories in two climenisons like e.g. the Sine-Gordon 
model. 
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