SURFACE SIMULATIONS WITHOUT CRITICAL SLOWING DOWN

Hans Gerd Evertz ${ }^{1,2}$, Martin Hasencusch ${ }^{3}$, Mihail Marcu ${ }^{2,4}$, Klaus Pinn ${ }^{2,5}$ and Sorin Solomon ${ }^{6, *}$
${ }^{1}$ SCRI, Florida State University, Tallahassee, FL 32306, USA
${ }^{2}$ II. Institut für Theoretische Physik, Luruper Chaussee 149, 2000 Hamburg 50. Germany
${ }^{3}$ Fachbereich Physik, Univ. Kaiserslautern, Postfach 3049, 6750 Kaiserslautern, Germany
${ }^{4}$ School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel
${ }^{5}$ Inst. für Theor. Physik, Univ. Münster, Wilhelm-Klemm-Str. 9, 4400 Münster, Germany
${ }^{6}$ Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel

We present new Monte Carlo cluster algorithms which eliminate critical slowing down in surface models of the solid-on-solid type. The algorithms are based on reflecting parts of the surface with respect to appropriately chosen planes. The proper choice of the reflection plane turns out to be crucial.

In the last few years, the development and study of new algorithms that strongly reduce critical slowing down (CSD) has become a major research topic in the field of computer simulations. Our group is presenting within 5 talks at this conference the results we obtained in this area during the last year:

- Development and study of stochastic cluster or multi-grid algorithms without CSD or with strongly reduced CSD for a variety of statistical models and for lattice gauge theories (this talk and ${ }^{\mathbf{1}}$);
- Development of a multigrid method for the computation of the fermionic determinant in realistic lattice gauge theories ${ }^{2}$;
c Development of stochastic cluster or multigrid methods that eliminate CSD in the simulation of quantum gravity on the lattice (dynamical triangulation algorithms) ${ }^{3}$.

In the present contribution, we concentrate on the application of new cluster algorithms for interface models, which have wide applications in crystal growth, telescope mirror alignement, roughening transitions, etc. (note that a different approach to simulating interface models was recently developed in ${ }^{4}$).

Our choice for modeling these physical systems is to consider them as two-dimensional spin systems where the spin m_{x} at the site x is an integer (Z spin). The action is a general function of the absolute value of the difference of two spins, $\left|m_{x}-m_{y}\right|$.

[^0]The connection to a surface model comes from the interpretation of m_{x} as the height of a surface above the two-dimensional point x. The prototype of such a model is the discrete Gaussian model, but all SOS (solid-on-solid) models and variants thereof are in this class of models ${ }^{5}$.

An SOS configuration is a two-dimensional surface without overhangs, embedded in three dimensions. The idea underlying our new algorithms is to take a horizontal plane and reflect "hills" and "valleys" of the surface through that plane. One crucial aspect is the procedure for choosing the reflection plane.

Let us for definiteness discuss the algorithm in terms of the discrete Gaussian model, defined by the partition function

$$
\begin{equation*}
\mathcal{Z}=\sum_{m} \exp \left\{-\frac{1}{2 \beta} \sum_{\langle x, y\rangle}\left(m_{x}-m_{y}\right)^{2}\right\} \tag{1}
\end{equation*}
$$

We take a square lattice, periodic boundary conditions, and nearest neighbour interaction.

Let us denote the height of the horizontal reflection plane by M. A reflection of m_{x} with respect to M means

$$
\begin{equation*}
m_{x}+2 M-m_{x} \tag{2}
\end{equation*}
$$

Obviously, M has to be either an integer or a halfinteger. One way of explaining how the clusters are built is in terms of the embedded Ising variables ${ }^{6}$ $\sigma_{x}= \pm 1$, defined by the decomposition

$$
\begin{equation*}
m_{x}=\sigma_{x}\left|m_{x}-M\right|+M \tag{3}
\end{equation*}
$$

$\sigma_{x}=1$ means that m_{x} is above the reflection plane $M, \sigma_{z}=-1$ that it is below M. Note that σ_{z} is not well defined if $m_{z}=M$; this is not going to cause difficulties, as can be seen from equation (4) below.

In order to define the cluster algorithm we introduce the deleting and freezing probabilities ${ }^{7}$ for a link $\langle x, y\rangle$ (in the language of ${ }^{6}$ the term "activating" is used instead of "freezing"):

$$
\begin{gather*}
P_{d e l}(x, y)= \tag{4}\\
q \exp \left\{-\frac{1}{\beta}\left|m_{x}-M\right| m_{y}-P f_{i}^{0}\left(\sigma_{z} \sigma_{y}+1\right)\right\}
\end{gather*}
$$

where $g \leq I$ can explicitly depend on $\left|m_{z}-M\right|$ and $\left|m_{y}-M\right|$, and

$$
\begin{equation*}
P_{\text {frceze }}(x, y)=1-P_{\text {del }}(x, y) \tag{5}
\end{equation*}
$$

In contrast to other cluster algorithms investigated in the literature, the possibility of choosing $q \neq 1$ will prove to be useful in our case. Let us however assume for the moment that $q=1$ (until we explicitly remove this restriction).

After freezing or deleting all the links of the lattice with the above probabilities, two sites are defined to be connected if they are at the endpoints of a frozen link. The clusters are then defined to be the connected components of the lattice.

Notice that $P_{\text {del }}(x, y)=1$ if either $\sigma_{x} \neq \sigma_{y}$, i.e. m_{x} and m_{y} are on different sides of the reflection plane, or if $\left|m_{x}-M\right|\left|m_{y}-M\right|=0$, i.e. at least one of the points lies on the reflection plane itself. Thus, similarly to the Ising model, the clusters will contain only spins for which the embedded Ising variables have the same value. On the other hand, the spins with $m_{x}=M$ are always monomers. The most important difference to the lsing model is however the strong dependence of the clusters on the choice of M. Consider for example a situation where M lies above most of the m_{x}. Since $P_{\text {del }}(x, y)$ becomes exponentially small with increasing distance from M, there will be with high probability one very large cluster, containing almost all spins.

Flipping a cluster means flipping the embedded Ising variables. In terms of the original integer variables m_{x}, this is equivalent to performing the reflection (2) for all spins in the cluster. Notice that the cluster boundaries are not in general exactly at the intersection of the relief landscape with the reflection plane, since $P_{d e l}(x, y)$ is nonzero also if both m_{x} and m_{y} are away from and on the same
side of M. Nevertheless, the intuitive picture of clusters as hills or valleys which are flipped through the reflection plane is approximately realized.

In our simulations we used the single cluster algorithm ${ }^{8}$, i.e. a cluster is built starting from a randomly chosen site (the seed), and it is flipped with probability one.

In order to establish a valid algorithm one has to ensure detailed balance. Once M is given, detailed balance follows from standard arguments 7,8 for the restricted set of configurations related by reffecting the clusters with respect to M. A sufficient condition for detailed balance to hold for the entire procedure is to choose M with an a priori probability prob(M) that is a function of M itself and of the objects that are unchanged by the reflection. i.e. of the values of $\left|m_{z}-M\right|$ for all lattice sites:

$$
\begin{equation*}
\operatorname{prob}(M)=f(m-M!M) \tag{6}
\end{equation*}
$$

This condition still leaves a lot of freedonn in the choice of M. The proper way to choose the reflection plane strongly depends on sonne of the plysical properties of the model, and it will turn out to be the crucial ingredient in eliminating CSD.

The model (1) is the dual of the twodimensional XY model with Villain (heat kemel) action. For $\beta<\beta_{c}$ the global Z-symmetry is spontaneousty broken. As a consequence, there is a nonzero mass gap, and the surface thickness, which we define as the square root of $\mathrm{fin}_{i x-3:-\infty}<$ $\left(m_{z}-m_{p}\right)^{2}>$, is finste. According to the KosterifizThouless (KT) scenario ${ }^{9}$, the correlation length diverges exporentially as β approaches β_{c}. In the SOS terminology this is due to the fact that the surface flecteates more and more. At the critical point the surface becomes rough; for all $\boldsymbol{\beta}>\boldsymbol{\beta}_{c}$ the surface thickness diverges logarithrnically with the volume of the system. The large- β phase corresponds to the spin wave (massless) phase of the $X Y$ model.

The first important remark about physical properties of the model that strongly imfuence our algorithm is that, for all practical pirposes, the surface is thin. We considered systems on a lattice of size L^{2}. For $L=256$, the surface thickness was still less than 1 at $\beta=.68$, which is in the smooth (broken) phase very close to β_{c}, and ≈ 1.4 at $\beta=1$, which is deep in the massless phase. Both these situations are well within the region where the critical properties are clearly exhibited (KT behaviour for $\beta<\beta_{c}$ and massless free field theory for $\beta=1$).

For thin surfaces, it is not trivial to choose the
reflection plane M such that it lies within the vertical bounds of the surface. We tried to ensure this by taking M close to the value $m_{F_{0}}$ of the spin at the seed x_{o} of the cluster. The simplest possibility that leads to an ergodic algorithm is to take $M=m_{x_{0}} \pm \frac{1}{2}$, each of the two possibilities with probability $\frac{1}{2}$, and $q=1$ (see eq. (4)). Taking $M=m_{x_{0}}$ is not helpful for $q=1$ since all the links starting from x_{o} would be deleted with probability one. Let us denote the procedure just described as the \mathbf{H}-algorithm (H for half-integer).

We tested the H -algorithm extensively. in order to make sure that we do observe the slowest modes of the Markov matrix ${ }^{10}$, we measured a whole range of quantities: mean energy and specific heat, surface thickness, various block spin correlation functions, and the order parameters $\mathcal{M}_{\alpha} \equiv<$ $L^{-2} \mid \sum_{I} \exp \left(2 \pi i \alpha m_{x}\right)>$ for $\alpha=0.1,0.2, \ldots$. $0.5\left(\mathcal{M}_{\alpha}\right.$ is an approximation for the square root of $\lim _{|x-y| \rightarrow \infty}<\exp \left\{2 \pi i \alpha\left(m_{x}-m_{y}\right)\right\}>$ which becomes exact in the thermodynamic himit).

For all these quantities we studied the autocorrelation function and tried to determine the exponential autocorrelation time 7 . Note that τ should in principle be the same for all our quantities, since it only depends on the second largest eigenvalue of the Markov matrix ${ }^{10}$. In practice, there ahways were quantities that did not couple well to the slow modes and exhibited a misleadingly small r . Sometimes some quantities showed a clear crossower from one clean exponential regime to a slower second one. In other instances there were quantities that did not decay at all exponentially until the limits of our precision were reached. These difficulties notwinhstanding, we were usually able to reach a clearcut conclusion with respect to the "true" value of τ because there was a whole set of "slowest decaying quantities" which exhibited this value.

The autocorrelation time τ is ahways quoted in "work units" (sweeps). A work unit is the work necessary to build a cluster of the size of the entire lattice. Each of our runs consisted of between 100000 and 500000 work units.

Determining the errors on τ is a very delicate business and we were very careful with this point. Details of the problems we encountered are discussed elsewhere ${ }^{11}$.

The results for the autocorrelation times of the H-algorithm are shown in tables 1 and 2. The algorithm was not successful in eliminating CSD in either of the two situations.

Table 1: Autocorrelation times for $\beta=1\{s=x)$.

L	\mathbf{H}	$\mathbf{I H}$	QH	QM
16	$13.5(3.5)$	-	-	-
32	$60(20)$	$7(1)$	-	-
64	$82(18)$	$8(1)$	$12.5(1.5)$	$26.5(4.5)$
128	$165(33)$	$11.5(1.5)$	$13(1.5)$	$58(12)$
256	-	$11(2)$	-	-

In the massless (rough) phase, where the correlation length $\&$ of the model is infinite, the dynamical critical exposent $=$ can be defined $\$ 8.10$ by $T \sim L^{*}$. The resuits of tabie 1 suggest that $=$ is around 1 at $\beta=1$. This is an improvernent on the $z \approx 2$ of local algonthnes, but it is not what we expectes.

In the broken (smooth) phase, the two values of 1 shown in table 2 suggest that the at gorithm performs even less well than at $\beta=1$. We had problerns in determining = here. In prisciple, it can be defined by the finite size scaling law $\tau=\xi \mathcal{F}(\xi / L){ }^{10}$. We tried to estimate ξ by analysing the exponential decay of the iwo-point function $<\left(m_{\mathrm{x}}-m_{3}\right)^{2}>$ (appropriate subtractions, Founier transforms, etc., were done in standard fashion). In this phase the particles states are kinks. 12. which correspond to one-dimensional (time-zero) configurations that have an integer value n at minus infinity and $n \div 1$ at plus infinity. With periodic boundary conditions however, there are only states containing kink-antikink pairs in the Hilbert space of the problem. Thus we tried to determine the correlation length from properties of two-particle states, not one-particle states, and we regard our values for ξ as potentially unreliable (therefore the symbol \approx in table 2). Nevertheless, we can only underestimate ξ, so our conclusions regarding CSD in the smooth phase are not spoiled.

The fact that we do not give reliable values for z should not disturb us in the case of the \mathbf{H}-algorithm. What we are after are algorithms that (aimost) completely eliminate CSD. Instead of wasting our time with an algorithni that clearly does not satisfy this criterion, we should go on to the description of the more successful algorithms.

A careful analysis of the cluster size distribution revealed that the H -algorithm produces both small

Table 2: Autocorvelation times for $\theta<\beta$.

7	ξ	L	H	$I H$
0.65	≈ 14	64	$123(1.5)$	$9(2)$
0.65	≈ 14	128	-	$9(3)$
0.68	≈ 44	64	-	$8(2)$
0.58	≈ 44	128	$415(70)$	$11(2)$
0.68	≈ 44	256	-	$13(2)$

and wery large dusters quite frequently, while intermediate size chusters are comparatively rare. Nearly half of the wrork is spelin in chusters lagger thon 90% of the lattice, which. similarly to the lsing model studies, do not considerably change a configuration. In wiew of the above remarit that the surface thickness is rather small for all situations we simulated. we can readly understand what is going on: the refiection plane M often bes above or below the bula of the surface.

A natural attempt to improve the situation is to include refiections with respect to integer valured plares M. In order to get clunters of sizes brger than one site (which cannot happen when M equals the seed spin $m_{m_{s}}$ and $q=1$), but still assare that the reflection plane bies frequently enough mithin the (rather narrow) wertical bounds of the surface. we devised the following two algorithms:

- algorithm $Q=M=m_{2,}$, ie. the the reflection plane equals the seed spin, bat $q=\boldsymbol{q}$, for the case that $T\left|m_{x}-M!m_{3}-M\right|=0$, with fo some constant strictly smalier than 1, and $q=1$ otherwise.
- algorithm I: $M=m_{30}$, where y_{0} is a zandomly chosen lattice site which is different from the seed x_{o}, and $q=1$ ahways.

Both these algorithms are nonergodic, since they only change the spins by even amounts. Therefore they have to be combined with other procedures. We studied the combinations IH and QH of the I and Q algorithms with the H -algorithm.

Notice that for the \mathbf{Q}-algorithm, a cluster grown from the seed x_{o} may contain spins that are above, below and equal to M. This is a quite umusual situation in the context of embedded lsing variables, but is perfectly allowed within the framework for cluster algorithms that we used here ${ }^{7}$.

From the values of τ displayed in table 1. one can conclude that the value of z for the IH algorithm is very small, possibly even zero. at $\beta=1$. The results for $B<\partial_{c}$ also suggest a very small value of = (but more data are necessary to reach a definite conclusion; see table 2). Thus the IH algorthm turned out to be extremely efficient in eliminating CSD. Furthermore, the results in tabe I show that there is no significamt difference between the performance of the IH algoritim and that of the QH algcrithen.

By varying the ratio of the number of I and H chissters (within reasonable hourris) the autcconrehation times did not change sigpoficantly. In tables 1 and 2 we only presented the results of nums where this ratio was one-to-one. Simmilary changing the value of 9 , such that the mean chuster sire ranged between a quarter and a third of the letrice (go was around 0.7) did not have a significant inupact on the performance of the $\mathbf{Q H}$ atgowithan:

The IH and QH algorithons generate comsiderably more mediumb-sice chasters and less lage chasters than the K -algorithm alone. This comfirmis oen expectation that choosing the reflection plave equal to one of the spins. not at a distance of $+\frac{1}{2}$ awny. is very helpfut in the case of a thin SOS surfice. However. the good performance of these algonitimes is not a fraction of the diuster sixee distrinitetion allowe. it is also sencitive to other detais of tive comingerstion changes that occiry vhen the various bypes of chasters are FTpped.

Let us atumapt ams explanation of winy the IH and QH adzorithuns mork so mell.

At smalif the inportant courfyrations consist of a large flat surface, with a fer two-dimensional regions that are one mint higher of lomer. We shan cal these regions sängle-step-islunds (SSI) in Hamitonian (tramsfer matix) baguage, the SST's correspond to the surface between the mord liess of a kink-antainin pair (remeniber that the kivs are the smanl β particie excitations ${ }^{12}$). As β_{c} is approached, SSI's become larger, more frequert, and are more often on top of one another. Their condensation causes the 505 surface roughening at β_{c} -

If we have an SSI on top of a flat background of height M, there is a large probatinity that the I or Q algorithms reflect it with respect to that bastground. Since the original and the reflected configuration have the same Boltzmann weight, the refleztion so the SSI is a kind of microcanonical move. Such low-energy-cost large-scale changes in
the configurations are usually ver; efficient in decreasing the autocorrelation time. We believe that this is the main reason why the duter flips with respect to an integer valued reflection plane $A \%$ improve the situation so dramatically.

The I and Q algorithms have to be combined with another algorithm in order to ensure ergodicity. We now ask the question whether, in or-jer to overcome CSD, it is crucial to combine 1 or Q with the H-algorithm, or whether we may also use a lozal ergodic algorithm. If M is an integer, no large $\mathrm{SSI}_{\bar{\prime}}$ can be created or destroyed by cluster reffections. The H-algorithm on the other hand can achieve this easily. Of course, a locai algorithm like Metropolis cannot create or destroy any large scale objects. We may therefore expect that a combination IM or QM of 1 or Q with a Metropolis procedure will exhibit CSD. The study of the QM algorithm, whose results are also shown in table 1 , clearly shows that this is indeed what happens. Note that for the QM algorithm we did one Metropolis sweep for, roughly. one work unit of the cluster part. The values of τ quoted in table 1 disregard the contribution of the Metropolis sweeps to the total amount of work.

We condude that our picture of the SSI's as the relevant objects for understanding our clester algorithms is correct, and that it is absolutely crucial to use both the integer and half-integer reflection planes. The situation is entirely satisfactory: wre have both devised efficient algorithms and understood the physical reason for this efficiency.

Our algorithms can now be applied to the study of the roughening transition in a variety of SOS models. With modifications, they can also be used for SOS models with restrictions, and for scalar field theories in two dimenisons like e.g. the Sine-Gordon model.

ACKNOWLEDGEMENTS

We wish to thank R. Ben-Av, D. Kandel and G. Mack for yaluable discussions. One of us (MM) gratefully acknowledges several discussions with A. Sokal. Three of us (HGE, MM, and KP) have enjoyed the kind hospitality of the Weizmann Institute and the Hebrew University. Support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged by HGE, MH, and KP. This work was also supported in part by grants No. 1-131-095.07/89 from the German-Israeli Foundation for Research and Development (GIF), No. 517/89 from the Basic Research Foundation of The Is-
rael Academy of Sciences and humanities, No. 8800144/1 from the United States - israel Binational Science Foundation (BSF), and a grant from the Minerva Foundation. Last but not least we would like to express our gratuiude to the HLRZ in julich. where our computer runs were performed.

REFERENCES

1. Talk by H.G. Evertz at this conference.
2. Talks by M. Harmate and P.G. Laumers at thes conference.
3. Talk by J. Kinar at this confereace.
4. M. Hasenbusch and S. Heyer, Custer Epiate Accelcration of Thterfact Howgenemag min the 3D Ising Madel, Kaiserslautern preprint TH-1490. (September 1990).
5. For eviews on SOS type of modets see: L. B. Abraham, Surface Stracturyes and Pluase Trensitions - exect reswits. in Phase Transituczs and Critical Pbemomatal Vol. 10. C. Donn and J. L. Leibonitz editors, (Acadernic. 1986);
H. van Beijeren and I. Nolden, Tha Rosgherinng Tnansuticn, in Topics in Current Physics Vol. 43. W. Schommers and P. van Blankenhagen editors (Springer. 1987).
6. R. H. Swerdsen and 1. S. Wang, Phys. Rew. Lett. 58 (1987) 86
R.C. Brower and P. Tamayo, Phys. Rew. Lett. 62 (1989) 1087.
7. D. Kandel, E Domany and A. Brandt, Phys. Rev. B40 (1989) 330.
8. See U. Wolf's review in Latice '89. Capri 1989, N. Cabbibo et al. editors. Nucl. Phys. B (Proc. Suppl.) 17 (1990).
9. J. M. Kosterlitz and D. J. Thouless, J. Phys. C6 (1973) 1181:
J. M. Kosterlitz, J. Phys. C7 (1974) 1046.
10. A. D. Sokal, Monte Carlo methods in Statistical Mechanics: Foundations and New Algorithms, Cours de Troisième Cycle de la Physique en Suisse Romande (Lausanne, June 1989), and Review talk in this conference.
11. H.G. Evertz, M. Hasenbusch, M. Marcu, Klaus Pinn and S. Solomon, preprint TAUP 1836-90 and DESY 90-126, to appear in Phys. Lett. B.
12. Since the discrete Gaussian model is the large fugacity limit of the Sine-Gordon model, the kinks discussed here are nothing but the well known kinks of the renormalizable phase of that model.

[^0]: *Speaker at the conference

