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By an application of reflection positivity with respect to oblique lattice planes it is proven that in lattice gauge theories with 
scalar matter fields the Wegner-Wilson loop is bounded from below by exp(-const..perimeter). 

For pure lattice gauge theories the qualitatively different behaviour of the Wegner-Wilson loop in different 
phases - area decay in the confinement phase and perimeter decay in the free charge phase - provides an impor- 
tant order parameter. However, if the gauge fields are coupled to dynamical matter fields, then pair creation 
can lead to a shielding of the gauge charges and one has to expect [ 1 ] perimeter behaviour of the Weg- 
ner-Wilson loop in all phases of the system, namely 

W(L): = ( z ( U ( L ) ) )  >~ const..exp( -c~. ILl) (1) 

(here ILl is the perimeter of the loop L, U(L) the product of gauge fields around the loop), provided Z is the 
character of a representation of the gauge group under which the matter fields (or polynomials of them) 
transform. 

In this letter we present a general proof of the inequality (1) for abelian and nonabelian lattice Higgs theories. 
In abelian Higgs models with a fixed length of the Higgs fields relation (1) follows from Griffith inequalities 
which are known to hold for such models [ 2]. In the non-abelian case no general proof seems to exist. Recently 
Borgs [3] proved the perimeter law in the strong coupling region of pure lattice gauge theories for represen- 
tations which are trivial on the center of the gauge group. His methods can probably be applied also to the 
present problem to yield the perimeter law in the convergence region of the strong coupling expansion. In con- 
trast to the lower bound (I)  an upper bound for the perimeter behaviour was established under quite general 
assumptions by Simon and Yaffe [4] for pure gauge theories. If the norm II ~ll of the Higgs field stays bounded, 
e.g. II ~ll = 1, then their result can easily be extended to Higgs systems. 

Our proof of (1) relies on reflection positivity with respect to oblique lattice hyperplanes, e.g. ~ + = {x~ 7] D, 
x4=x~}. In ref. [5] this property has been derived for the U(1 ) Higgs model, and it has been shown to imply 
the inequality 

G(R)  ~< const.' W(R,  R)~/4 . (2) 

Here G(R)  = (q ) (y )  U(F)  ~ ( z )  ) ,  cb is the Higgs field, F a straight lattice path of length R from y to z, and 
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W(R, S) the Wegner-Wilson loop (1) for a rectangular loop with side lengths R and S. 
Let us first show that G(R) always decays exponentially. This may be seen in the temporal gauge (we call 

the direction of F the time direction) by exploiting reflection positivity through hyperplanes perpendicular to 
F both through lattice sites and halfway between lattice sites. Such reflection positivity assures [ 6 ] the exis- 
tence of the transfer matrix T, which implies that 

G( R ) = ( qb(y)g2, T R  (I~(y).(-2) , (3) 

where ( . , . )  denotes the quantum mechanical scalar product, £2 the vacuum and T the transfer matrix and 
qb(y) is the time-zero Higgs field operator. Since 0 ~< T~< 1, we have the spectral representation 

TR ~(y)SC2) = ld/ t (2)  2/~ , (4) (~b(y)o, 
d 

where/t  is a positive bounded measure with support in the interval [0, 1 ]. H61der's inequality yields 

\ l/R (R- l )/R 

(5) 

hence 

G(R) >1 G(0)[G(1 )/G(O)] s . (6) 

Since G(1 ) ~ 0 for a nonvanishing hopping parameter, inequalities (6) and (2) together provide an alter- 
native proof of  (1) for the U( I  ) Higgs m o d e l .  

In contrast to the proof relying on Griffith inequalities the above proof which uses reflection positivity admits 
a generalization to the nonabelian case as we will now show. Let G be a compact group and U an n-dimensional 
unitary representation of G. Consider, on a hypercubic lattice Z D, the following fairly general action of gauge 
fields coupled to scalar matter fields: 

sA=- E z(g0p)-x E (q~(Oob), U(g(b)) ,~(O~b))+ Z v(~(x)) , 
p e  PA b E B A  X ~  A 

(7) 

where A is a box in 71 n, PA the set of oriented plaquettes and BA the set of oriented bonds in A. q) denotes an 
n-component complex field defined on the lattice sites and g a group valued gauge field defined on the lattice 
bonds b with g ( b -  1) =g(b )  - 1, where b -  ~ denotes the bond b with inverse orientation. Z is an invariant func- 
tion of positive type on G (i.e. a positive linear combination of characters), gop is the usual plaquette variable, 
i.e. the conjugacy class of  the product I~g(b), where beOp, with an arbitrary starting point. Oob is the initial 
and O~b the final point of  the bond b. Finally V (the Higgs potential) is such that exp [ -V(q~)]  d ~  is a G 
invariant measure on C ~. 

Now let 0 + denote the reflection through the hyperplane I-[ +. For each functional F of the matter and gauge 
field configuration (q~, g) we define the reflection operator 0 + by 

(O+F)(clg, g) =F(q~ °+ , gO+), (8) 

with qg°+(x)= q~(0+x) and g°+(b)=g(O+b). For A invariant under 0+ we show as in ref. [5] that reflection 
positivity 

I,~A dq~(x) I~ exp[-SA(q~,g)]FO+(F)>~O dg(b) (9) 
. b E B A  

holds for functionals F which depend only on fields in the half space x 4 >/x 1, x~A. 
Let us briefly sketch the proof. Inequality (9) becomes obvious if one replaces the action by zero. So it suf- 

fices to show that exp(--SA) is an element of  the multiplicative and a~ditive cone 
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lo al zed n    ' }.  lO) 

We split SA into three pieces, 

SA=S+ + O + ( S + ) + S ~  , ( l l )  

where S+ is localized in x4>~x ~ and 

So= - ~, Z(go,,), (12) 
P~ Pc 

with Pc denoting the set of plaquettes p which are cut by H+.  (Terms in SA with support completely inside 
H+ are unaffected by 0 + and can thus be split equally between S+ and 0(S+ )). Now let z(g)  = Y~ flo Tr U~ (g), 
ft, >t 0 denote the expansion of z into simple characters. Let Op = (Op)+. (Op)_ be the decomposition of Op into 
the parts above and below H+.  We have 

Tr U~(goo) = Tr  U~r(g( Op) + ) Ua(g( Op)_ ) 

= ~ U~,,j(g(Op) + ) U~,j,(g(Op) _ ) = ~ U~,ij(g(Op) + ) U~, ifig(Op) E 1 ) ,  (13) 
l,J l,J 

which is in C since (Op)_ ~ =O+((Op)+) .  Since C is multiplicative and additive, also e x p ( - S c ) e C ,  and the 
same holds for exp ( - SA ) = exp ( -- S+ ) 0 + ( exp ( - S+ )) exp ( - So). Hence reflection positivity also holds in the 
nonabelian case. 

We conclude that there are infinite volume Gibbs states satisfying reflection positivity with respect t o / / + ,  
if the appropriate thermodynamical limits exist. Clearly this property remains true if there is more than one 
Higgs field in the action (7). 

Next we prove two lemmata which provide interim results for the proof of  inequality (1). Here we will need 
reflection positivity, in order to be able to define a scalar product and use Schwartz' inequality. Assume that 
( . . . )  is an infinite volume Gibbs state which is reflection positive with respect to the hyperplanes xU= a/2 or 
x~ '+x"=a,  aeT/, l t#v , /a ,  v=O .... , D - 1 .  ( . . . )  is automatically translation invariant. Define 

U(F)  = 17 U(g(b) )  (14) 
b~ F 

(path ordered) and 

V(F) = (~n(00F), U(F)C,(O,F)) (15) 

for a lattice path F.  Let H be one of the hyperplanes for which reflection positivity holds, and let 0 be the 
reflection through H and 0 the associated reflection operator. We consider a path F from y to z consisting of 
two pieces F = F j  oF2 such that F j  is the part of  F below H and F2 the part above H. Reflection positivity 
yields Lemma 1: 

L e m m a  1. 

I (  V(F ,  oF2))1<~ ( V (F ,  oOF;-') ) ~,2 

I' 1.. 
( V(Ol-~Z 0/-2) ) 1/2 

" . l  
o 
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(Here and in the following we indicate pictorially the reflections at the various hyperplanes to illustrate the 
steps involved. 

Proof. V(F~oF2) can be written as a sum over products ~FiGg with F, localized below and Gg above H: 

V(F~ oF2)  = ( ~ ( y ) ,  U(F, °F2)C,(z)) = (~n(y) ,  U(F~) U(F2)q~(z)) 

= ( U(F,  )*~(y) ,  U(F2)cl)(z)) = ( U(F ?')qb(y),  U ( F 2 ) ~ ( z ) )  

= ~ ( U(F V ~ ) qb(y))i (U(F2)  Cb(z)), = ~F~Gi, 

with Fi= ( U ( F l l ) ~ ( y ) ) i  and Gi= (U(F2)qb(z)), .. In the same way one obtains V(Flo F~ ]) = Z FiOF, and 
V(OF2 ] 1"2) = E O(G,) Gi. The statement of the lemma is now simply Schwartz' inequality for the scalar product 
defined by reflection positivity and the sum over i. q.e.d. 

In the case where y and z lie below H and F =FloF2oF3  with F~ and F 3 below and F2 above H we find 

in an analogous way lemma 2. 

Lernma 2. 

1( V(FI oF2 o F 3 ) ) 1 4  ( V(F, oOF ?') V( OF;~oF3) ) I/2 (Tr  U(OF2]oF2) )1/2 

O °" ' O*. I ° ~ - - ~  * °] e, °, 

°° eo l e t  O 
O O 

Now we turn to the proof of (1). Let G(R~, ..., Rk) = ( V ( F )  ) where F is a path in a two-dimensional lattice 
plane consisting of straight pieces R I ,  ..., Rk with all angles equal to +~/2,  let W(R, S ) =  (Tr  U ( F ) )  for a 
rectangular loop with side lengths R and S and let H(R,  S) = ( V ( F )  V(F - ~ +x)  > where F is a straight path 
of length R and x is a translation by S in a coordinate direction orthogonal to F.  Using lemma 1 we find the 

following relations: 

G(2R) <~G(R,R)~/2 G ( R , R ) ~ / 2 = G ( R , R ) .  (16) 

e, j ,o 
G O O i O 

I ° 

I 
i 

O 

This is obtained by reflection through an oblique lattice hype~lane through the midpoint of F and by observ- 
ing that the two resulting factors on the RHS are equal because of reflection symmetry of the system. Also: 

G(R, S) <~G(R, k, R) ~/2 G ( 2 S - k )  '/2, k<~2S. (17) 

. . . . . . . . .  f~72 . . . . . . . . . . . . . . . . . . . . . .  
G 0 

R R 
0 

Here one reflects through the (x~'= k/2) hyperplane where the second straight piece o f f  points into the positive 
/z-direction and the corner is at the origin. In a similar way lemma 2 leads to 
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G(R,S ,R)  <~W(k,S) In H ( 2 R - k , S )  I/2, k<~2R. (18) 

s 
o 

.k/2 

0 ' 0  

0 ' 0  

Here F is in the / t -u  plane, the second part o f F  is in the (xU=0) hyperplane, and the first part points into 
the negative/~ direction. The reflection is again through the (x ~ = k/2) hyperplane. Putting inequalities ( 16)-(  18 ) 

together we find, for S + k  even, S>~R: 

G(S+k)  <<.G(½(S+k), ~(S+k))<<.G(½(S+k),R, ½(S+k)) '/2 G ( S + k - R )  1/: 

o . I l Y o o . . . . . .  1 R 7 2  
• o ° k / 2 .  S /2  o 

<~ W(S ,R)  TM n ( k , R )  TM G ( S + k - R )  '/2 . 

[ ° ° [ 
S °--'if'--° o 

(19) 

We now exploit the fact that as in the abelian case 

G(R) = f  d/t(2) 2 R , (20) 

with a bounded measure/z on [0,1 ]. HOlder's inequality, taking as measure 2 k d/t(2), yields 

G ( S - R + k )  G(R+k)  <~ G(S+k)  G(k) (21) 

for all k~>0. Using (19), we arrive at the inequality 

G(S+k)  2 G(R+k)  2 <~ G(k) 2 H(k, R) W(S, R ) .  (22) 

Inequalities of  the type (16)-  (18) and (22) are useful in a variety of  contexts. In particular, inequality (22) 
implies the perimeter law for the Wegner-Wilson loop, provided supp/t  ¢ {0}, i.e. there are components with 
finite energy in the state ~,(y}£2 generated by the application of qb to the vacuum. (For bounded Higgs fields 
it was shown in ref. [ 7 ] that there are no infinite energy states for nonvanishing hopping parameter x.) In this 
case G(k) 40  for all k and 

G(RS+k)/G(k)  >1 [G(I +k)/G(k)] R , (23) 

by HOlder's inequality. Therefore from inequality (22) 

W(S, R) )ck(R)  exp[ - c~k .2 (S+R) ]  , (24) 

with ck(R)=G(k)Z/H(k ,R)  and o ~ k = - l n [ G ( k +  1)/G(k)].  Since H(k ,R)  can be written as 
( P(F,)g2, T R V(Fk)t2), where Fk is a straight path of length k, it is monotonically decreasing for R--+oo (because 
0 ~< T~< 1 ) and bounded from below (lT"(Fk)I2,g2). (/2, l?(Fk)g2 ) = G(k) 2. Therefore the parameters ck(R) sat- 
isfy the bound ck(1 )<~ck(R)~< 1. Thus we have now proved inequality (1). 

Since c~k--+/z for k--,oo, where ~t is the smallest value occurring in the energy spectrum of qbi(y)g2 (or, phrased 
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differently, /z  is the lowest energy of  dynamica l  fields in the presence of  a screened external  charge),  we find 
the asymptot ic  relat ion 

1 
l im sup - - (  - l n W ( R ,  S))  ~</t. (25)  
R,s~o~ 2 ( R + S )  

If  we denote  the l imi t  on the left side of  inequal i ty  (25)  by Eq and recall the re la t ionship between the Weg- 
ne r -Wi l son  loop and the potent ia l  V(R) between external  sources, we see that  Eq=  1 V(oo) is the field energy 
of  an external  charge, for w h i c h / 1 -  Eq >/0. The lat ter  re lat ion was der ived  in ref. [ 5 ] for the abel ian case, where 
/1 - E q  was found to be a very sensit ive order  parameter ,  dis t inguishing between a free charge phase ( / t - E q  > 0) 
and a confinement-Higgs phase ( / t - E q = 0 ) .  

The method  above  can be general ized to the Wegne r -Wi l son  loop in other  representa t ions  of  the gauge group 
and by replacing the Higgs field in eq. (15) by fields which are funct ions of  the Higgs field and the gauge field 
and t ransform under  the appropr ia te  representa t ion  of  the gauge group. This includes,  for example,  the case 
of  the Wegner -Wi l son  loop in the adjo in t  representa t ion  for pure gauge theories.  The general result is for- 
mula ted  in the following theorem: 

Theorem. Let the Higgs system be def ined by an act ion of  the form (7) .  Let a be an i r reducible  representa t ion 
o f  the gauge group a n d / ~  < oo the lowest energy in the sector with a screened external  charge of  type a at some 
point .  Then the associa ted Wegne r -Wi l son  loop W obeys the per imeter  law ( inequal i ty  (24))  and in add i t ion  

1 
l im sup - -  ( - l n  W(R, S)) <~#~. 
R , s ~  2 ( R + S )  

In order  to extend the above theorem to the case o f  fermionic  mat te r  fields, it remains  to prove reflection 
posi t iv i ty  for the obl ique hyperplane  H+. All o ther  arguments  are identical .  

Three  of  us (H.G.E. ,  K.J., and  H.A.K)  would like to thank J. Jersfik for many  fruitful discussions. 
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